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Abstract
Early in the development of computer graphics it was realized that projective geometry is suited quite well to
represent points and transformations. Now, maybe another change of paradigm is lying ahead of us based on
Geometric Algebra. If you already use quaternions or Lie algebra in additon to the well-known vector algebra,
then you may already be familiar with some of the algebraic ideas that will be presented in this tutorial. In fact,
quaternions can be represented by Geometric Algebra, next to a number of other algebras like complex numbers,
dual-quaternions, Grassmann algebra and Grassmann-Cayley algebra. In this half day tutorial we will emphasize
that Geometric Algebra

• is a unified language for a lot of mathematical systems used in Computer Graphics,
• can be used in an easy and geometrically intuitive way in Computer Graphics.

We will focus on the (5D) Conformal Geometric Algebra. It is an extension
of the 4D projective geometric algebra. For example, spheres and circles are
simply represented by algebraic objects. To represent a circle you only have
to intersect two spheres ( or a sphere and a plane ), which can be done with
a basic algebraic operation. Alternatively you can simply combine three
points (using another product in the algebra) to obtain the circle through
these three points.

Next to the construction of algebraic entities, kinematics can also be ex-
pressed in Geometric Algebra. For example, the inverse kinematics of a
robot can be computed in an easy way. The geometrically intuitive oper-
ations of Geometric Algebra make it easy to compute the joint angles of a
robot which need to be set in order for the robot to reach its goal.

Categories and Subject Descriptors (according to ACM CCS): G.4 [Mathematical Software]: Algorithm design and
analysis, Efficiency I.3.7 [Computer Graphics]: Animation
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PART ONE

Overview

1. Outline

In this tutorial we will give an overview of Geometric Al-
gebra and its application to Computer Graphics. First of all,
we want to motivate the topic and give insights into some
applications. In particular, the Conformal Geometric Alge-
bra with its so-called ’conformal model’ of 3-dimensional
Euclidean geometry will be introduced. In this model, Eu-
clidean objects and their interactions will be explored and
visualized interactively.

With help of the conformal model we will describe ani-
mations and motions. It will be shown how it can be used
quite advantageously to treat this kind of Computer Graph-
ics application. We will give some basic visual examples and
describe rigid body motions and their interpolations. We will
focus on the inverse kinematics and dynamics of kinematic
chains in order to describe motions of robots and human fig-
ures.

At the university of Amsterdam a ray tracer was devel-
oped in order to compare different geometric approaches
from the implementation and performance point of view.
Compared to linear algebra, the richer mathematical lan-
guage of GA leads to more work for implementing the al-
gebra, but less work for implementing the application.
We discuss the issues in implementing a numerical Geomet-
ric Algebra package for a language like C++. We compare
various existing implementations and look at their perfor-
mance. We conclude with future implementation methods
like SIMD hardware suitable for GA and generative pro-
gramming.

During the tutorial only the most fundamental mathe-
matical aspects of Geometric Algebra will be presented.
This is possible, since most aspects of Geometric Algebra
can be understood with geometric intuition. The actual math-
ematical ’inner workings’ of the algebra will be detailed in
an accompanying script that also contains many visual ex-
amples from the presentations.

The tutorial will be rounded off by an outlook into pos-
sible future applications of Geometric Algebra in Computer
Graphics.

1.1. Agenda

• Motivation

– some nice properties of GA ( Dietmar Hildenbrand )
– some applications

• Conformal model Tutorial ( Daniel Fontijne )

– Spanning rounds and flats from points

– Dualization, intersection
– The blades of the conformal model
– Language: orthogonal specification
– Towards versors: objects as operators

• Introduction to the mathematical foundations ( Christian
Perwass )

– main characteristics of the algebra
– how the algebra represents geometry
– algebraic operations for reflection, rotation, intersec-

tion and inversion

• Animation and Motion ( Dietmar Hildenbrand )

– basic visual samples of transformations
– rigid body motion
– interpolation of motions
– ( forward and inverse ) kinematics
– dynamics

• Implementation and Performance ( Daniel Fontijne )

– issues in implementing Geometric Algebra
– pros, cons, performance of various implementations
– future directions: hardware, generative programming

• Summary and Future Prospects ( Dietmar Hildenbrand )

2. Introduction

In this tutorial we will emphasize the advantages of a new
mathematical system for all areas of Computer Graphics.
Early in the development of Computer Graphics it was re-
alized that projective geometry is suited quite well to rep-
resent points and transformations. This is done in 4D with
help of an additional (homogenous) coordinate using 4D
vectors to represent points and 4x4 matrices to express trans-
formations. Now, maybe another change of paradigm is ly-

Figure 1: Geometric Algebra in Computer Graphics

ing ahead of us. Mainly at the SIGGRAPH 2000 and 2001
a new unified mathematical language was introduced to the
graphics community, the Geometric Algebra. In particular
the Geometric Algebra of 5D conformal space unifies a lot
of mathematical systems that are used in the graphics com-
munity like quaternions to represent rotations and Lie alge-
bra for the description of rigid body motions. It is hoped that
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our presentation of Geometric Algebra will stimulate a lot of
new insights in all areas of Computer Graphics.

3. History of Geometric Algebra

William K. Clifford (1845-1879) introduced what we now
call Geometric or Clifford Algebra, in a paper entitled "On
the classification of geometric algebras," [Cli82]. He real-
ized (as Grassmann did) that Grassmann’s exterior algebra
and Hamilton’s quaternions can be brought into the same al-
gebra by a slight change of the exterior product. With this
new product, which we will call the geometric product, the
multiplication rules of the quaternions follow directly from
combinations of basis vectors (more details later), while
Grassmann’s exterior algebra is not lost. Furthermore, com-
plex numbers and the Pauli matrices, as used in Quantum
mechanics, have also a natural representation in Clifford al-
gebra. However, due to the early death of Clifford, the vector
analysis of Gibbs and Heaviside dominated most of the 20th
century, and not the Geometric Algebra.

Geometric Algebra has found its way into many areas
of science, since David Hestenes treated the subject in the
’60s. In particular, his aim was to find a unified language
for mathematics, and he went about to show the advantages
that could be gained by using Geometric Algebra in many
areas of Physics and geometry [HS84, HZ91]. Many other
researchers followed and showed that applying Geometric
Algebra in their field of research can be advantageous, e.g.
[LFLD98, PL01, Dor01, LHR01].

The first time Geometric Algebra was introduced to a
wider Computer Graphics audience, was probably at the
SIGGRAPH conferences 2000 and 2001. These tutorials
were very well received by the community. Since then, many
people in the graphics community became interested in us-
ing Geometric Algebra. This convinced us that a tutorial in
which we present the fundamental ideas behind Geometric
Algebra, showing new applications and giving ideas for fu-
ture research, based on our experiences with the subject mat-
ter, would be very useful for the community.

4. Properties of Geometric Algebra

Geometric Algebra promises to stimulate new methods and
insights in all areas of science dealing with geometric prop-
erties. Geometric It treats geometric objects and operators on
these objects in one algebra. Furthermore, it allows for sim-
ple, compact, coordinate-free and dimensionally fluid for-
mulations.

4.1. Geometric Intuitivity

A very nice feature of Geometric Algebra is its geometric in-
tuitivity. For example, spheres and circles are both algebraic
objects with a geometric meaning. To represent a circle you
only have to take two spheres and to intersect them with help

Figure 2: Circle as intersection of two spheres

Figure 3: Screw motion along l

of their outer product. Another nice example are rigid body
motions. They are described with help of an operator includ-
ing the relevant geometric parameters like the rotation axis,
the angle of rotation and the displacement.

4.2. Unification

As mentioned before, in Geometric Algebra quaternions
can be represented. Furthermore, this algebra includes also a
lot of other mathematical systems like vector algebra, Grass-
mann algebra, complex numbers and quaternions.

4.2.1. Performance and elegance in a ray tracing
application

At the university of Amsterdam a ray tracer was developed
in order to compare different geometric approaches to this
standard graphics application. For details see section 5 or
refer to [FD02].

4.3. Low Symbolic Complexity

Expressions in Geometric Algebra normally have low com-
plexity. As will be shown in this tutorial the inner product of
two vectors P ·S can be used for different tasks like

• the Euclidean distance between two points
• the distance between one point and one plane
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Table 1: List of the conformal geometric entities (IPNS).
†This representation of a point is the same in the IPNS and
OPNS.

entity representation grade

Point† P = x+ 1
2 x2

e∞ + e0 1

Sphere s = P− 1
2 r2

e∞ 1

Plane π = n+de∞ 1

Circle z = s1 ∧ s2 2

Line l = π1 ∧π1 2

Point Pair q = s1 ∧ s2 ∧ s3 3

Point p = s1 ∧ s2 ∧ s3 ∧ s4 4

• the decision whether a point is inside or outside of a
sphere

5. Foundations of Conformal Geometric Algebra

5.1. Blades and Products

The three most often used products of Geometric Algebra
are the outer, the inner and the geometric product. In ta-
ble 3 the notation of these products is listed. Blades are the
basic computational elements and the basic geometric enti-
ties of the Geometric Algebra. For example, the Geometric
Algebra of the Euclidean 3D space consists of blades with
grades 0, 1, 2 and 3, whereby a scalar is a 0-blade (blade
of grade 0), the 1-blades are the three base vectors e1,e2,e3,
the 2-blades are plane elements spanned by three base vec-
tors and the 3-blade represents the whole space. There ex-
ists only one element of grade three in the Geometric Al-
gebra of 3D Euclidean space. It is therefore also called the
pseudoscalar. A linear combination of k-blades is called a
k-vector (also called vectors, bivectors, trivectors ... ). Fur-
thermore, a linear combination of blades of different grades
is called a multivector. Multivectors are the general elements
of a Geometric Algebra.

5.2. The Blades of the Conformal Geometric Algebra

Compared to the above mentioned 3D Euclidean Geometric
Algebra, the 5D Conformal Geometric Algebra provides a
greater variety of basic geometric entities to compute with.
Table 1 lists the conformal geometric entities with respect

to the inner product null space IPNS. In this table x and n
are marked bold since they represent 3D entities. The {si}
represent different spheres and the {πi} different planes. A
sphere is represented with help of its center point P and its
radius r. Note that the representation of a point as in the first
row of this table in terms of the IPNS, is simply a sphere

Table 2: List of the conformal geometric entities (OPNS)

entity representation grade

Sphere S = x1 ∧ x2 ∧ x3 ∧ x4 4

Plane Π = x1 ∧ x2 ∧ x3 ∧ e∞ 4

Circle Z = x1 ∧ x2 ∧ x3 3

Line L = x1 ∧ x2 ∧ e∞ 3

Point Pair Q = x1 ∧ x2 2

Point P = x+ 1
2 x2

e∞ + e0 1

Table 3: Notations

notation meaning alternative

AB geometric product of A and B

A∧B outer product of A and B

A ·B inner product of A and B A.B

A∗ dual of A dual(A)

A−1 inverse of A

Ṽ reverse of V

A∨B meet of A and B

e0 conformal origin e0

e∞ conformal infinity einf

< A >r grade selection of a multivector

A<r> blade of grade r

with radius zero. Similarly, a plane represented in the IPNS
is a sphere with infinite radius. The representation of a point
as in the last row of the table, is given by the intersection of
four spheres, which can at most intersect in a single point.
That is, not every outer product of four spheres represents a
point.

Table 2 lists the conformal geometric entities with respect
to the outer product null space OPNS. A sphere is repre-
sented with help of 4 points that lie on it. The IPNS and
OPNS representations are dual to each other. It depends on
the application which representation is more convenient to
use.

Remark: At times we will refer to the OPNS representa-
tion as the ’standard’ representation, and to the IPNS repre-
sentation as the ’dual’ representation.
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PART TWO

The Blades of the Conformal Model

Daniel Fontijne & Leo Dorst

This tutorial introduces the blades of the conformal model
of 3D Euclidean geometry, to date the most powerful way of
using Geometric Algebra for Euclidean computations. We
use GAViewer, a package for computation and visualization
of the elements of this model, to establish the correspon-
dence between geometric intuition and algebraic specifica-
tion in this model.

This tutorial follows the presentation given at Eurograph-
ics 2004 and is a selection of our more detailed tutorial 3D
Euclidean Geometry through Conformal Geometric Alge-
bra (a GAViewer tutorial), which can be found on our site
http://www.science.uva.nl/ga .

For a full understanding of the material, some basic
knowledge of Geometric Algebra is assumed; it can be at-
tained by reading part 3 of this tutorial, our more basic
GABLE+ tutorial, or reading tutorial papers such as [DM02]
and [MD02]. But for now, let’s just have a look at what’s
possible with Conformal Geometric Algebra.

6. Warming up to CGA

CGA (Conformal Geometric Algebra) is a very convenient
model to do Euclidean geometry. It is built upon a repre-
sentation of points and (dual) spheres. Internally, these are
represented as vectors, but you do not need to know that to
work with them. Also, no operations depend upon an origin,
or need to be specified in terms of coordinates relative to that
origin. In this sense, CGA is coordinate-free.

In this chapter, we get a feeling for its ease and possibili-
ties, by playing around with the basic concepts. In chapter 7,
we go into why this is possible and how it works – for that,
you will need to know some Geometric Algebra (or Clifford
algebra) – but for now you can get away with pattern match-
ing.

You should first download GAViewer from
http://www.science.uva.nl/ga/viewer .
Unpack it and start the executable. Then download
eg04_cga_blades.tar.gz which should be available
from the same page.

Since GAViewer supports several models, we need to
set ourselves up in the 3D Conformal Geometric Algebra.
This is most simply done by loading in the entire direc-
tory eg04_cga_blades for this tutorial. That will load
the necessary functions, and perform initialization. So, un-
der the File menu, select File→Load .g directory
and point it to where you have unpacked the software.

modifier LeftMouse MiddleMouse RightMouse

-none- Rotate Translate Zoom

Ctrl Select Select Translate

Table 4: Mouse actions.

6.1. Points

First, we have a way to specify a (typical) point in our dis-
play. It is represented by the vector ‘e0’

a = e0
a = 1.00*e0

This creates a point. By Ctrl-RightMouse-Drag you can
move it a bit (i.e. press the Ctrl key and the right mouse but-
ton at the same time while you are over the point, this selects
it; then drag the mouse to move it - see also table 4). You can
ask for the representation of this shifted point by typing ‘a’,
which will be something like:

a
a = 1.00*e1 + 0.50*e2 + 0.00*e3 +

1.00*e0 + 0.625*einf

So the point a has changed, and you see that in general there
are 5 coefficients to the specification of a point. The coeffi-
cient of e0 is an overall weight, the coefficients of e1, e2,
e3 are its (weighted) position relative to e0, and we will ex-
plain in section 7.1 that the coefficient of e∞ is proportional
to half the modulus squared of the displacement vector. The
{e1,e2,e3} part is therefore how you would represent a
point by its location vector in the regular representation of
Euclidean space, the ‘e0’ part extends that to the represen-
tation of a point in the homogeneous model, and the ‘e∞’
part makes this into the new ‘conformal’ representation. This
chapter will let you play around with such points to show
that the conformal part really helps to make a very nice and
compact description of Euclidean geometry.

Let us create some more points b, c, d:

b = c = d = e0

and you can drag them to any place by Ctrl-RightMouse-
Drag (repeatedly do Ctrl-RightMouse to cycle through dif-
ferent objects at the cursor location and note that the in-
formation bar at the bottom shows which one you have se-
lected). You should tilt the viewing plane with LeftMouse-
Drag to move the points to arbitrary 3D positions (if you
don’t, they will be in the same plane). We don’t really care
about their coordinates, in GA we never need them to de-
scribe the actual geometry, in the sense of the relationships
and operations of objects.

Now you make the sphere ‘spanned’ by these four points
simply by typing:

sphere = a^b^c^d
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Figure 4: Spanning rounds and flats in the conformal model.

(Ignore the printed sphere coordinates, for now.) So this ‘∧’
can span things. It is called the outer product. Using it on 3
points produces a circle:

circle = a^b^c

and doing it on 2 points makes a point pair:

ppair = a^b

(A point pair is blue, whereas individual points are red) But
it would really be nice to have all these objects change as we
drag the points around, to convince ourselves that it always
works. Let’s do that by making the definitions ‘dynamic’:

dynamic{ sphere = a^b^c^d ,},
dynamic{ circle = a^b^c ,},
dynamic{ ppair = a^b ,},

(Note the curly brackets, and the extra , just before the
final } ! If you make a mistake, you have to remove the
dynamic statements using Dynamic→View Dynamic
Statements and remove it by ticking the box.) (You can
use the ’up arrow’ to go back to earlier statements, edit them,
and re-enter them by pressing Enter.)

All these objects have a sense of orientation, and you can
show this by selecting them, and then check ‘draw orien-
tation’ in the Controls panel, which you can pop up by se-
lecting it in the View→Controls menu. In this way, you
should be able to see that the circle a∧b∧c has the opposite
orientation of a∧c∧b, but the same as c∧a∧b. Just drag the
points around along the circle (make sure you look at it from
straight above) and see the orientation change as one point
passes another. (If you find it hard to see the ‘barbs’ denot-
ing the orientation, de-select ‘draw weight’, and they’ll be
drawn at a standard length.)

Algebraically, this means that the outer product ∧ is anti-
symmetric in any two of its arguments. It is also associative
(so that defining it for 2 arguments extends to any number of
arguments), so we do not need to write (a∧b)∧c or a∧ (b∧
c) – these are both equal to a∧b∧ c.

Switch on the orientation display of the sphere, and note
that it also changes orientation as you swap points. For the
sphere, this happens when one of the points moves through
the plane determined by the three others.

When you move the points around, you find that in some
configurations, the circle almost becomes a straight line, and
the sphere a plane, but that it is very hard to get that exact.
There is, of course, also an explicit representation for these
entities. Such ‘flat’ spaces go through the point at infinity,
and in the conformal model, that is a regular point of the
algebra. We have denoted it as ‘e∞’.

So to form a line and a plane, do:

dynamic{ line = a^b^einf,},
dynamic{ plane = a^b^c^einf,},

As you see, the circle C = a∧b∧c lies in the plane C∧e∞ =
a∧ b∧ c∧e∞, so we are beginning to glimpse a geometri-
cally significant algebra. We call the elements in this algebra
blades: a circle is a 3-blade, a point a 1-blade, et cetera. The
number of points used to make it is called the grade of the
blade.

6.2. Complementation: the dual

Another important operation in the construction of elemen-
tary Euclidean objects is dualization. It is a ‘complementary’
representation of an object. It can be used to describe an ob-
ject not so much specifying the points that are on it, but the
points that are orthogonal to its complement.

If x is a point on a circle C (for instance constructed from
other points as C = a∧b∧ c), then we have x∧C = 0 since
yet another point on the circle does not help to span a sphere
or plane.

For the dual representation of C, i.e. D ≡ dual(C), the
points on C are characterized as x ·D = 0, with · the geomet-
rical inner product.

Of course we still think about a dual object in very much
the same way as about the original object. So in GAViewer
we plot it the same, but in a different color.

sphere = a^b^c^d,
dsphere = dual(sphere),

We draw direct spheres (or planes) yellow, and dual spheres
(or planes) red.

Dualization makes some operations much more easy to
specify, and is a powerful tool – we’ll use it immediately in
the next section.

6.3. Intersection

Apart from spanning using the ∧, making object of higher
dimensions, we can also intersect objects. The intersection
of A and B is generally given by the operation

A∩B = dual(B) ·A,
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at least if they are ‘in general position’. You can think of this
as removing (through the inner product) ’everything that is
not B’ from A.

But it is easier to remain in a dual representation, for

dual(A∩B) = dual(B)∧dual(A),

so basically intersection is an outer product in a dual repre-
sentation. dual(B)∧ dual(A) can intuitively be understood
as computing the union of ’everything that is not B’ and ’ev-
erything that is not A’. Then the dual of that must be what B
and A have in common. We will get back to understanding
this later in section 10, for now let’s just play with it.

The above suggests that we first construct the objects we
want using the outer product ∧; then dualize them all using
dual(); then use ∧ intersect them in this dual representation.
We may never choose to go back to the direct representation
after this.

So make dual representations of our objects that we still
have in the view:

dynamic{ dsphere = dual(sphere) ;},
dynamic{ dcircle = dual(circle) ;},
dynamic{ dplane = dual(plane) ;},
dynamic{ dline = dual(line) ;},

The ; before the final curly bracket is an instruction not
to draw the object constructed – if you want to see them,
change it to a comma (but what you see for the circle may
surprise you).

Now let’s form another dual sphere and show the intersec-
tions with the objects defined. Ignore how this dual sphere is
made for now, we just mention that it is at e0 and has unit
radius.

dA = e0-einf/2,

Now for the intersections. Before we make them, we sim-
plify the situation a bit by putting the points in more standard
positions relative to e0. (To prevent mistakes, you could also
run the whole demonstration by typing

DEMOintersect();

which also gives you some handy labels for the quantities to
aid in dragging them - just do Ctrl-RightMouse-Drag on the
label. It builds things up gradually, just keep pressing En-
ter while you see the DEMOintersect prompt.) To draw
things properly, we undualize them, though for continued
computations this is not really necessary.

a=pt(0), b=pt(e1), c=pt(e2), d=pt(e3),
dynamic{ dAsphere = -dual( dA^dsphere ) ,}
dynamic{ dAcircle = -dual( dA^dcircle ) ,}
dynamic{ dAplane = -dual( dA^dplane ) ,}

The function pt() creates a point that is the point e0 shifted
over the vector specified. As you move the dual sphere dA
around (Ctrl-RightMouse-Drag), you see the intersections
change. Note that some are peculiar: apparently, two spheres

always intersect in a circle, though this circle is not always
on the spheres! Such strange intersecting circles are in fact
imaginary (in the sense that their radius has negative square),
and we have drawn them dashed to show that they are un-
usual.

Now move dA around again, in different planes (by tilting
the view using LeftMouse-Drag), and note how intersections
change. They always exist, for the system is ‘closed’ due to
the inclusion of e∞. If you’re precise and capable of placing
some elements such that they touch or are parallel, you’ll
see some strange objects which we’ll discuss in at the end of
chapter 7.

If you’d like to play some more, DEMOincidence();
is similar.

7. Elementary objects

We can now unveil how CGA works, by going through some
of the details of the representation. To keep the explanation
down to earth, we will occasionally refer to a coordinate rep-
resentation. Although coordinates are not required to specify
the operations of Geometric Algebra, they are of course still
useful to specify its objects. We also give all of the kinds of
objects that appear when we combine the span and dual op-
erations (i.e. all intersections of spanned objects). After this
section, you will be able to define lines, planes, etcetera sim-
ply, and with the precise locational and directional properties
you desire.

7.1. Rounds and flats

You can best start this section with a clean display. Type

clearall();

This removes all objects and dynamics and clears the con-
sole.

We start with a point. The prototypical point is ‘e0’,
the point at the (arbitrary) origin of our 3D space. Let us
again pay attention to the representation of points. Make
a = e0 and move it around with Ctrl-RightMouse-Drag

to a new location. Then ask for its new representation, which
will be something like:

a
a = 1.00*e1 + 0.50*e2 + 0.00*e3 +

1.00*e0 + 0.625*einf

The general expression of a point at a location relative to e0
given by position vector the p (specified on the Euclidean
basis {e1,e2,e3} is:

p = αpt(p) ≡ α(e0 +p+ 1
2 (p ·p)e∞))

(where p · p is of course the squared norm of p, a scalar,
and α is a scalar). Thus the function pt() maps a Euclidean
vector to the CGA representation of a point at that relative
location. For instance:
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p = pt(e1 + 2 e2)

These points are the basic elements of CGA. The inner prod-
uct of CGA has been defined so that the basis elements of
{e1,e2,e3,e0,e∞} have the following inner products:

e1 ·e1 = e2 ·e2 = e3 ·e3 = 1

e0 ·e∞ = −1

All other inner products between basis vectors are 0. Note
the special nature of e0 and e∞: they are null vectors
(i.e. their norm is zero), but in a sense each other’s nega-
tive inverse under the inner product (since e0 ·e∞ = −1).
We sometimes call e0 and e∞ reciprocal null vectors.

Why it has been set up in this way you find out when you
compute the inner product between two normalized point
representatives (for which the weight α equals 1):

pt(p) ·pt(q) = (e0 +p+ 1
2 p2e∞) · (e0 +q+ 1

2 q2e∞)

= − 1
2 (p−q) · (p−q)

≡ − 1
2 d2

E(pt(p),pt(q))

The inner product of two normalized points gives the square
of the Euclidean distance! Since normalization is achieved
simply through division: pt(p) → pt(p)/(−e∞ · pt(p)),
we have for the vector representatives p and q of two points
P and Q:

p
−e∞ · p

· q
−e∞ ·q = − 1

2 d2
E(P,Q)

The Euclidean distance measure is therefore deeply embed-
ded into the algebra, and this means that all algebraic con-
structions incorporate it. (In the more classical approaches,
we have to impose it explicitly by more cumbersome con-
structions.) Note that point representatives are null vectors:

pt(x) ·pt(x) = 0, for any x

A sphere with center c and radius ρ can by constructed by
analyzing the demand:

x · c = − 1
2 ρ2

We want to rewrite this to something involving x explicitly.
We do this using e∞ ·x = −1, true for a normalized point x.
This gives:

x · (c− 1
2 ρ2e∞) = 0,

so that

s = c− 1
2 ρ2e∞

is the dual representation of a sphere with center c and radius
ρ2. Since s is a vector in CGA, we see that general vectors
‘are’ (weighted) dual spheres.

We will often make dual spheres at e0, which are simply

e0 - einf * r * r / 2,

So you often see us use the dual unit sphere at the origin:
e0-e∞/2.

As you see, you can also make a sphere with a radius
whose square is negative, for instance:

e0 + einf

We will call those ‘imaginary spheres’, and automatically
stipple them.

The squared radius of a sphere can be found as the square
of its dual (using the geometric product or the inner product):

s2 = (c− 1
2 ρ2e∞)2 = ρ2

(if you want to type this in, do something like ds =
pt(e1) - einf/20; rhosquared = ds ds,). In
this view, the points pt(x) are dual spheres with radius zero,
since pt(p)2 = 0 for any p. This will give us a nicely consis-
tent semantics in section 10.

To get the actual sphere corresponding to e0-einf/2,
just undualize it:

-dual(e0-einf/2)

The difference in display is that a dual sphere is red (since
it is an object of grade 1), whereas a direct sphere is yellow
(being of grade 4).

A plane is also a grade 4 object, and in fact merely a
sphere that also contains the point e∞. Dually, it looks like

n+de∞

where n is the unit normal vector denoting its attitude, and
d the distance to the origin. You may verify that this indeed
represents the plane, by showing that:

pt(x) · (n+de∞) = 0 ⇐⇒ x ·n = d,

which is the usual ‘Hesse normal equation’ of a plane.

A line can be made in various ways. You can do

a^b^einf,

showing that a line is determined by two points plus the point
at infinity. You can also intersect two planes, for instance the
planes dually represented by e1 and (e2+e∞):

dual( e1 ^(e2+einf) )

Or you can specify it by a point and a direction. For a line
through the point b, this is:

b^e1^einf

for a line in the e1-direction. Note that we need to put the
special point e∞ in as well (any line passes through infin-
ity).

Since a line is a grade 3 object, a dual line is of grade 2.
We have incorporated some tests that recognize these partic-
ular grade 2 objects and draw them as the line they represent
– but in blue, as befits a grade 2 object.
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The combination of dual spheres and dual planes allows
specification of dual circles rather easily, since the wedge is
their dual intersection. So to specify a circle with radius 1
around the origin in the e2∧e3 plane, simply type:

dual( (e0-einf/2)^e1 )

Note what happens when you leave out the dual:

(e0-einf/2)^e1

This is an imaginary point pair, ‘orthogonal’ to the circle. We
cannot automatically interpret this for you and draw it as a
circle, since point pairs (even imaginary point pairs) are also
legitimate objects. In fact, they are 1-dimensional spheres,
the set of points of a line which have equal squared distance
to a given point also on that line (the latter being the ‘center’
of the 1-dimensional sphere).

We will call planes and lines flats, and spheres, circles and
point pairs rounds. A flat is a round containing the point at
infinity ‘e∞’. As we will see later, this means that it does
not have a size in the way that spheres and circles do. Both
flats and rounds have a weight (or if you prefer, a density),
which you can see in the Controls panel by selecting the
object (Ctrl-RightMouse).

7.2. Tangent blades

With all these objects, you might think we are complete:
what more can there be when you intersect round and flat
things except other round and flat things? However, there are
several surprises. See what happens if you intersect a sphere
with one of its tangent planes:

-dual( (e0-einf/2)^(e1+einf) )

Your display shows a disk, which the information bar in the
Controls panel tells you is a ‘tangent bivector’. It is what
the sphere and the plane have in common at their point of
intersection, which is slightly more than merely the point. It
is grade 3, and you can think of it as an infinitesimal circle
in a well-defined plane. We knew of no better way to draw it
than this disk.

To make such a tangent object at the origin, type:

e0^e1^e2

but beware: a tangent bivector at a point c is not made using
the construction c∧e1∧e2. Of course there are also tangent
vectors, and you can make one at e0 by

e0^e3

7.3. Free blades (attitudes)

And still, this does not exhaust the possibilities of basic ob-
ject classes. Let us intersect two parallel planes:

-dual( e1^(e1+einf)),

and you find that the answer is

-e2^e3^einf

which is a form we have not seen before. It is a 2-
dimensional direction element, which we draw stippled at
the origin. Try to drag it away: you can’t. This is a transla-
tion invariant element of CGA, and eminently suitable to be
called an ‘attitude’: it has no position, only an attitude (or
orientation, if you will).

We call this a free bivector, because it has no position. We
could have drawn it anywhere, or as a ‘bivector field’. We
decided to draw it dashed at the origin and make it immov-
able, but this does not mean that it resides there – in fact, it
resides nowhere at all, it merely has an attitude. It certainly
does not reside at the origin, which is arbitrary anyway – but
we had to do something. Fortunately, you will find that these
elements hardly occur usefully by themselves, but mostly as
elements in the construction of more easily interpretable ob-
jects.

Similarly, the free vector

e1^einf

is drawn dashed at the origin; mind that it is different from
e0 ∧e1 (which is drawn solid). It is a one-dimensional atti-
tude, i.e. a direction vector. We now see that a line is in fact
made as the outer product of a point and an attiude:

a^(e1^einf)

which corresponds to the idea of a location/direction pair,
algebraically composed. You can drop the brackets since the
outer product is associative, and change the order (giving a
minus sign each time you swap two vectors) – that retrieves
the representation we have seen before.

7.4. That’s all

The above really does exhaust the objects that can be made
by repeated application of outer product and dualization ap-
plied to vectors and hence as the ‘closure’ of the spans of
points and their intersection. As you see, we have the classi-
cal repertoire of elements you use in linear algebra, and then
some more: spheres and tangents, free elements. All these
are precisely related algebraically. None of these is what we
call a ‘vector’ classically – that has in fact become an impre-
cise usage, since a ‘normal vector’ a ‘direction vector’ and a
‘position vector’ are all different (they react differently when
the origin is moved, or when the space is transformed). We
should reserve the term ‘vector’ for an element of the mod-
eling algebra, rather than for the elements of geometry.

CGA enables precise definitions for each vector-based
concept:

• ‘normal vector’ n (best seen as a dual plane n, which is
then automatically extended by translation to encode for
its location, see below)

• ‘direction vector’ v (best seen as the attitude v∧e∞)
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• ‘tangent vector’ t (which is e0∧t, translated to the desired
location)

• ‘position vector’ p (this corresponds to e0∧p∧e∞, a line
element from e0 to pt(p), although this is freely shiftable
along the line; it may be better to see a position vector as
a direction vector to be used from e0)

Each of these have well-defined properties and all are prop-
erly related within the unified framework.

8. A visual explanation

We can also show you more visually why this surprising
characterization of rounds by blades works. In this chap-
ter, we ‘pop up’ the e∞-dimension graphically, by using
the 3D CGA as a specification language for OpenGL com-
mands, but we will necessarily show you only the CGA for
a 2-dimensional Euclidean geometry. For us, this depiction
helped to take quite a bit of the magic out (though not affect-
ing the poetry of the procedure).

We have seen that a point at x is represented as:

pt(x) = e0 +x+ 1
2 x2e∞

In 2D, this requires a 4D space with a basis like
{e0,e1,e2,e∞}. This would seem hard to visualize. How-
ever, the e0-dimension works very much like the extra
dimension in homogeneous coordinates: it allows you to
talk about ‘offset linear subspaces’, linear subspaces that
are shifted out of the origin (you can run DEMOhomoge-
neous(); to remind yourself of this). So because of the
e0-term, we are allowed to draw planes, lines, et cetera that
do not need to go through the origin. If you accept that, we
do not need to draw this dimension explicitly, we can just use
this freedom and know that such things are blades because
of the e0-dimension.

The e∞-dimension is new, and much more interesting. If
we draw the Euclidean 2-space as the e1∧ e2-plane, then
there is apparently a paraboloid 1

2 x2 in the e∞-direction
that we should get to know better.

Just execute the command

DEMOc2ga();

By hitting return, it will execute various stages of our visual-
ization. For now, stop at the step where it says: DEMOc2ga
initialized » . (If you hit too far, just keep doing it
till your prompt returns to the regular prompt, then restart
DEMOc2ga().) You see the 2-dimensional Euclidean space
laid out in white, and the e∞-paraboloid indicated vertically
above it. The sliders in the bottom right of your window al-
low you to play with pan and tilt for better views.

Now we can play around. Let us first interpret a point x
– actually, we use flat points like x∧e∞. Hit return till you
get to: DEMOc2ga visualization of x » . As you
move the red vector x around (by dragging its point), you see
a yellowish plane move with it. This plane is the dual(x) (in

Figure 5: Visualization of the intersection of circles in the
conformal model.

the metric of 2D CGA): it consists of all the vectors per-
pendicular to the vector x (in this metric). (It doesn’t look
perpendicular, but that is because we are watching with Eu-
clidean eyes.)

If x is on the paraboloid, this plane is the tangent to the
paraboloid at that point. (Confirm this for yourself, if neces-
sary by changing your viewpoint.) How would we express
this? Well, in homogeneous coordinates x is on a plane P iff
x∧P = 0. Or, if we have a dual representation of the plane,
p = dual(P), then x is in the plane iff x ·p = 0. You will
remember that the metric of CGA is set up in such a way
that x ·x = 0, and the motivation for that was that a point
represented by x has distance 0 to itself in the Euclidean
metric. We now see that we can also read this as: if the vec-
tor x represents a Euclidean point, then x is on the plane
dually represented by x in CGA. This is all consistent, for
the parabola is given by the CGA metric, which in turn was
designed to make the inner product of points be related to
the (squared) Euclidean distance.

In the 2D CGA metric, the duality of a point to a plane
works in a matter that you may discover by moving the point
around: project the point x onto the parabola by a (vague red)
line perpendicular to the Euclidean 2-space. The dual plane
for x will be parallel to the tangent plane at this intersection
point, but as far above the paraboloid as x is below it (or vice
versa).

You see that the plane intersects the paraboloid in an el-
lipse (if you are at the proper side of it), and that we have
drawn a circle in the 2D Euclidean plane as its projection.
Apparently, there is a direct correspondence between the
dual of a vector (the plane) and a Euclidean circle. But we
know that there is. Let c be the representation of a Euclidean
point – so c is on the paraboloid. Now subtract 1

2 ρ2e∞ from
c, which gives the vector

s= c− 1
2 ρ2e∞

This is the dual representation of a sphere (and in 2D, a
sphere is a circle). But it is also a general vector of the form
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we have just moved around. If we enquire which actual Eu-
clidean points are on this set, we have to enquire for which
vectors x, which satisfy x · x = 0, the equation x · s = 0
holds. The former demand is: x lies on the paraboloid, and
the latter: x lies on the plane dual to s. Together you can
work it out as:

0 = x · (c− 1
2 ρ2e∞) = − 1

2 d2
E(x,c)+ 1

2 ρ2

(using x ·e∞ = −1, true for normalized points). So indeed
these are the points x that have squared distance ρ2 from c.

As you move the point s ‘inside’ the parabola, the dual
plane lies outside it, and it seems there is no intersection.
Actually, the intersection is imaginary, leading to a sphere
with negative radius squared, but we hope that the interactive
depiction provides the confidence that this is all completely
regular.

There is a small artifact of our depiction: if you would
have x precisely on the paraboloid, the circle should
degenerate to a 2D CGA point. But in our depiction
(which fakes this using 3D CGA geometry), it actually
becomes a 3D CGA tangent bivector. Try it by defining
x = pt(e1+e3/2).

Now hit return again in the demo, to get to the
prompt "DEMOc2ga visualization of x and y
» ". The construction shows how the intersection of two
spheres (circles in 2D) is done in CGA, and we explain it as
follows.

A point pair is a 1D sphere. We know that the 2D CGA
model would represent this as the outer product of two vec-
tors x∧y, i.e. as a line in this homogeneous depiction. For
two vectors representing points, this is easy enough: the vec-
tors lie on the parabola, and so the intersection of the line
with the parabola precisely retrieves the points. If the vectors
x and y are off the paraboloid, they represent dual circles.
Then their outer product dually represents the intersection
of those circles. Undualizing should then provide the direct
representation of this intersection, i.e. a point pair.

In the terminology of our visualization: make the planes
corresponding to the vectors x and y, and intersect them to
form a line `. That is the representation of the intersection
of the circles. To find the point pair, ask which points lie in
the set `; you do that by intersecting ` with the paraboloid.
If it really intersects, the point pair is real, and otherwise
imaginary (in a location that is rather counterintuitive but
can be explained with some effort – look for hyperbolas, if
you must...).

Move x and y around from the initial situation to get a
feeling for how it is all connected. And you may enjoy typ-
ing the following to try a situation with two tangent circles
(zoom, pan, tilt if necessary):

x = pt(-1.5 e2 + e3),
y = pt(-2 e2 + 1.5 e3),

Here is the take-home message of all this visualization:

In 2D CGA, ‘intersecting circles’ is identical to
‘intersecting homogeneous planes’ in 1 more di-
mension, which in yet 1 more dimension is identi-
cal to ‘intersecting subspaces through the origin’
– which is easy to do. So intersecting circles is
easy – and so is intersecting general rounds in nD.

Since spheres are important to Euclidean geometry (planes
and lines et cetera are merely affine, not Euclidean), this is
a relevant trick. We hope you now understand slightly better
where those two extra dimensions come from.

9. Practicalities

This section treats some practicalities that might be among
the first problems that a computer graphics practitioner todo
would have to tackle to write a real application using confor-
mal Geometric Algebra.

9.1. Parameters

If we want to draw the blades from the conformal model,
we need to break them down into parameters such as loca-
tion and attitude that we can send to OpenGL. Having these
parameters can also be handy for other parameters, such as
breaking a point pair up into to separate points.

In principle, computing parameters of the various kinds of
blades is not too hard. For instance, the square of a normal-
ized dual sphere gives you its radius squared, for

(e0 − 1
2e∞ ρ2)2 = − 1

2 (e0e∞ +e∞e0)ρ2 = ρ2

For the direct representation of a round there may be extra
signs (depending on its grade), and for a general formula you
need to normalize first. Tangents have size 0, and for the flats
and attitudes, size is not an issue, they don’t really have any.

Instead, attitudes and flats only have a weight, an overall
multiplicative factor relative to unity. The weights of 2e1, of
2e1∧e∞, of 2e0 ∧e1∧e∞ are all 2, but so is the weight
of the tangent 2e0 ∧e1 and the dual round 2e0 −e∞. So
tangents and rounds have weights too. In some cases, these
weights have a traditional way of displaying: a vector of
weight 2 can be depicted as having length 2, and a tangent
bivector of weight 2 as an area element of 2 areal units. But
we have not decided how to depict a sphere of weight 2, and
if we would draw points (i.e. dual spheres of zero radius)
as different sizes, they would easily become confused with
spheres. So for some objects, you will just have to monitor
the weight, for instance using the ‘Controls’ panel.

The set of functions defined in confor-
mal_blade_parameters.g defines the various
blade parameters as the functions. The actual computations
are indicated in table 5.

The location of a blade could be the Euclidean coordi-
nates of some relevant point. For a round, this is naturally the
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class attitude flat dual flat tangent round

form ∞E p∧ (∞E) = p · (∞E) = p∧ (p · (∞E)) = v∧ (v · (∞E)) =
Tp(o∧ (∞E)) Tp(E) Tp(oE) Tp((o+α∞)E)

condition ∞∧X = 0 ∞∧X = 0 ∞∧X 6= 0 ∞∧X 6= 0 ∞∧X 6= 0
∞·X = 0 ∞·X 6= 0 ∞·X = 0 ∞·X 6= 0 ∞·X 6= 0

X2 = 0 X2 6= 0

attitude X ∞·X ∞∧X ∞∧ (∞·X) ∞∧ (∞·X)

location none (q ·X)/X (q∧X)/X X
∞·X

X
∞·X or 1

2
X∞X

(∞·X)2

sq. weight (q · att(X))2 (q · att(X))2 (q · att(X))2 (q · att(X))2 (q · att(X))2

sq. size none none none 0 α = − X X̂
2(∞·X)2

inverse none p∧ (∞E−1) p · (∞E−1) none 1
2 Tp((o/α+∞)Ê

−1
)

Table 5: All non-zero blades in the conformal model of Euclidean geometry, and their parameters. For a round, the squared
size α equals radius squared, for a dual round it is minus the radius squared. Locations are denoted by dual spheres. The points
q are probes to give locations closest to q, one can just use o = e0. We denote e∞ = ∞, and X̂ is the grade inversion (−1)xX
with x = grade(X), while X̃ is the reversion (−1)x(x−1)/2X . For more information see test [Dor03].

center, but for planes and lines such a point is not uniquely
indicated in a coordinate free manner. We can either take the
point closest to the origin (obviously not coordinate-free) or
closest to some given point q. The formulas in the table ac-
tually produce a normalized dual sphere as the location; this
is often enough, or you can take its Euclidean part as the Eu-
clidean location vector (usable in a translation versor tv()),
or compute the center by reflection e∞ into the round X of
grade k by:

c = − 1
2

X e∞ X
(e∞ ·X)2

All these class-dependent functions have been collected in
conformal_blade_parameters.g, but in a rather
coded way for fast usage. The most useful are:

function attitude(X)
// gives attitude of X

function location(X)
// location of X

function sq_weight(X)
// squared weight of X

function sq_size(X)
// squared size, radius is +/- 2 sq_size

9.2. Example: Dissecting a Point Pair

At times, it may be necessary to split a point pair up into two
separate points, for example, to draw it on the screen. We
can use the parameter functions from above to achieve that.
The following GAViewer code assume pp is a normalized
point pair:

// get center & attitude of point pair ’pp’:
L = location(pp),
A = attitude(pp),

// compute translation versor...
// ...in direction of A:

T = exp(0.25 A);

// translate ’L’ over ’T’ one way:
p1 = T * L * inverse(T),

// translate ’L’ over ’T’ the other way:
p2 = inverse(T) * L * T

In general, p1 and p2 will be dual spheres. They can be
turned into regular points adding their radius times 0.5e∞:

p1 = p1 + 0.5 p1.p1 einf,
p2 = p2 + 0.5 p2.p2 einf,

Translation versors such as T will be treated in part 4 of this
tutorial.

A more careful analysis can reduce this method of dis-
secting a point pair to the following, more efficient equation:
{p1, p2} =

pp · (e∞∧ pp)− (pp · pp)e∞±√
pp · pp(e∞ · pp)

(e∞ · pp)2

where the division by (e∞ · pp)2 is used only to normalize
the points.

9.3. Angles between flats

A problem that occurs often in computer graphics is how to
compute the angle between a pair of lines or a pair of planes.
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These angles can be computed in the same way as with reg-
ular vectors. Say that the two normalized lines/planes are
called x1 and x2, we compute cosine of the angle between
them as

ca = x1 . x2

To see why this is true, first write:

x1 = px1 ∧Ex1 ∧e∞
x2 = px2 ∧Ex2 ∧e∞

By this we mean what each xi can be factored as the outer
product of a point pi, a purely Euclidean element Ei and the
point at infinity. We can then proceed to derive:

x1 · x2 = (px1 ∧Ex1 ∧e∞) · (px2 ∧Ex2 ∧e∞)

= px1 · (Ex1 · (e∞ · (px2 ∧Ex2 ∧e∞)))

= −px1 · (Ex1 · (Ex2 ∧e∞))

= −px1 · (Ex1 ·Ex2e∞)

= Ex1 ·Ex2

So x1 · x2 just computes the inner product of the Euclidean
part of both blades. If the blades are not normalized, then we
should divide the result by

√
x1 · x1

√
x2 · x2; again, just as

with regular vectors. Angles between other (non-flat) primi-
tives can be computed with similar formulas, although com-
puting the angle between primitives that are not of the same
grade is more involved.

10. Construction by containment and orthogonality

We have constructed elements by spanning, or by intersec-
tion of spanned quantities. There are many geometrical prob-
lems in which this is enough, but CGA also allows direct
specification of objects with different partial data. When we
explore the rules involved, we seem to uncover a new and
compact language for Euclidean geometry. In this section,
we give you a feeling for this very new subject, attempting
to develop algebraic rules and geometric intuition in tandem.

Let us see how we could specify a sphere of which we
know the center c and one point p on it. Recall that the repre-
sentation of a dual sphere with center c was: s = c− 1

2 ρ2e∞.
If we know a point p on it, we must have p · c = − 1

2 ρ2. Re-
arranging terms (using the distributive law of inner product
over outer product, as well as p ·e∞ = −1) we find that the
dual representation is:

c+(p · c)e∞ = p · (c∧e∞)

This is immediately converted into GAViewer commands:

clearall(); // clear screen, dynamics
p = e0, c = e0, label(p);
dynamic{ s = p.(c^einf), }

Drag p and/or c to see the result. Notice that the sphere is
drawn in red, since it is a dual sphere. Note also that c∧e∞
is a ‘flat point’ – we will get back to the geometrical intuition
behind this equation below.

Key to the correspondence of geometrical intuition and al-
gebraic expressions are two rules, involving ‘being part of’
and ‘being perpendicular to’. Both can be given in direct
form, and in dual form, and all four together provide our
framework. We state them without proof. (In each of these
expressions, the inner product is the default in our software:
the contraction inner product.) We use the notation ·∗ to de-
note dualization, for easy reading of the formulas.

• containment: for vector x and blade A (with grade at least
1)

x ∈ A ⇐⇒ x∧A = 0 = x ·A∗

• perpendicularity for blade A and blade B (with
grade(A) ≤ grade(B))

A ⊥ B ⇐⇒ A ·B = 0 = A∧B∗

Let us play with that. Suppose we have three spheres A, B, C,
and are looking for the GA object X that is perpendicular to
each. We therefore need to satisfy X ·A = 0, X ·B = 0, X ·C =
0. Dualizing this, we get X ∧A∗ = X ∧B∗ = X ∧C∗ = 0. The
simplest object satisfying this is:

X = A∗∧B∗∧C∗

Done. Let’s show it.

clearall();
a = e0-einf/4, b = e0-einf/2, c = e0-einf,
dynamic{ X= a^b^c,}

Drag a, b, c around, and be convinced.

The outcome is interesting. The direct representation of
the object perpendicular to other objects is the outer prod-
uct of their duals. Shrinking the spheres to points, you see
that you get a circle through them. So in this interpretation,
points are small dual spheres, and to ‘pass through’ a point
means to cut its corresponding direct sphere perpendicularly.
This neatly unifies the point description with the spheres in
one consistent scheme. This is a subtle point, and it pays to
pause here a moment to let it sink it and make it your own.

Now let us revisit the object p · (c∧e∞). It was a dual
sphere through the point p, with center c. Dualizing this, we
see that it is the direct object

p∧ (c∧e∞)∗.

With what we have just learned we see that this indeed con-
tains p, and that we can think of it as being perpendicular to
the flat point c∧e∞. Since the result has to be the sphere,
this suggests the intuitive picture of Figure 6: a flat point
has ‘hairs’ extending to infinity, and our object cuts them or-
thogonally. These hairs therefore help to construct an object
consisting of points equidistant to c.

At the right of the figure, we see a similar explanation for
the construction of the midplane between two points p and
q, which is q− p, or written multiplicatively and dualized:

(q− p)∗ = (e∞ · (p∧q))∗ = e∞∧ (p∧q)∗.
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Figure 6: The specification of dual spheres and planes, see text.

Therefore the direct representation contains e∞ and cuts p∧
q orthogonally, a fair description of the midplane.

If we replace e∞ with a finite point r, we get r · (p∧ q).
Please explore its meaning yourself, and verify your insights
using a small implementation.

With what we have learned, we can also interpret an object
like

p∧e1∧e∞.

It contains the points p and e∞, and should be orthogonal
to e1∗, which is the (e2∧e3)-plane through the origin. Ob-
viously this is the line through p in the e1 direction.

Now you can play with DEMOortho(); and get some
more intuition for the construction of such blades. It con-
structs the circle through p perpendicular to the planes du-
ally characterized by e1 and e2, you would simply type:

dp1 = e1,
dp2 = e2,
p = e0,
dynamic{c = p^dp1^dp2,},

In the setup in the demo, this gives a 2-tangent, and as you
move p a little you see that that is in a sense an infinitesimal
circle. Then DEMOortho(); proceeds to construct more
elements (see its legenda in the upper left), which you should
try to understand.

Let’s get back to the incidence operation A ∩ B =
−dual(dualB∧dualA) from section 6.3. We now recognize
the outcome as the dual of a blade that is the composed (by
spanning) of elements perpendicular to both A and B. The
result is therefore in both A and B.

We can use our new insights to show the relationship
between the direct representation of a sphere as the outer
product of four points S = a∧ b∧ c∧ d, and the dual rep-
resentation by a center m and a point a on it which is
s = a · (m∧e∞). This is illustrated in DEMOspheres();,
which you may run in tandem with the algebraic explanation
below.

We realize that the center should be the intersection of the
midplanes of three points pairs. These midplanes are dually

represented as b−a, c−a and d−a, and the dual of their in-
tersection is their outer product. However, this is not merely
the center m, since e∞ is also on all planes. Therefore:

(m∧∞)∗ = α(b−a)∧ (c−a)∧ (d −a)

(which α some proportionality constant) This helps use re-
late the two immediately. The dual representation gives 0 =
x · s, and we dualize this and rearrange:

0 = (x · (a · (m∧∞)))∗

= x∧ (a · (m∧∞))∗

= x∧
(
a∧ (m∧∞)∗

)

= α x∧ (a∧ (b−a)∧ (c−a)∧ (d −a))

= α x∧ (a∧b∧ c∧d)

This is of the form 0 = x∧S, so we have found the direct rep-
resentation. Done! And this also shows why the representa-
tion space for 3D Euclidean geometry is 5-dimensional: the
dual of a vector is a 4-blade.

It is rather satisfying that such geometrically involved
computations can be done so simply in CGA, without even
introducing coordinates!

11. Summary and conclusion

This concludes our cursory exploration of the blades of the
conformal model of Euclidean geometry. As you have seen,
many familiar but not-so-well defined elements from prac-
tical geometry find a home here, and are enriched by their
relationship with other elements.

We have not touched upon operations and the correspond-
ing calculus at all, and have done very little that could be
seen as an ‘application’. Our main goal was to give you a
good understanding of the basics: why it works, and what
makes it different from more classical methods.

If you want to learn more, you can try
the more detailed tutorial at our website
http://www.science.uva.nl/ga/ of which
tutorial this was just a selection. On our website, you can
also find GABLE, a gentle introduction to 3D Geometric
Algebra, and other tutorial papers.
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PART THREE

A Mathematical Introduction to
Geometric Algebra

Christian Perwass

This text is meant to be a script of a tutorial on Geometric
Algebra. It is therefore not complete in the description of the
algebra and neither completely rigorous. The reader is also
not likely to be able to perform arbitrary calculations with
Clifford algebra after reading this script. The goal of this
text is to give the reader a feeling for what Clifford algebra
is about and how it may be used. It is attempted to convey
the basic ideas behind the use of Clifford algebra in the de-
scription of geometry in Euclidean and projective space. A
more detailed introduction in the same style as this text can
be found in [PH03].

There are also many other introductions to Clifford
and Geometric Algebra and its applications in Euclidean,
projective and conformal space. Some of these are
[HS84, Hes86, HZ91, GLD93, Lou97, Rie93, GM91] and
[Por95, LFLD98, Dor01, Mac99, Per00, MDB01]. A col-
lection of papers discussing in particular the conformal
space in detail and applications of Geometric Algebra in
Computer Vision may be found in the book Geometric
Computing with Clifford Algebra [Som01].

You can also try out the mathematics discussed in this
text using CLUCalc. CLUCalc is a user friendly soft-
ware tool to calculate with and visualize Geometric Alge-
bra. It is available for download from [Per02]. In CLU-
Calc you can type your equations in a simple script lan-
guage, called CLUScript and visualize the results imme-
diately with OpenGL graphics. The program comes with a
manual in HTML form and a number of example scripts.
There is also an online version of the manual under:

http://www.perwass.de/CLU/CLUCalcDoc/

CLUCalc should serve as a good accompaniment to this
script, helping you to understand the concepts behind Ge-
ometric Algebra visually.

CLUCalc is of course not the only software avail-
able that deals with Clifford or Geometric Algebra.
Many software packages have been developed, be-
cause the numerical evaluation of Clifford algebra
equations becomes more and more important as Clif-
ford algebra becomes more prominent in applied fields
like computer vision, computer graphics and robotics
[LFLD98, Sel96, LL98, PL01, Dor01, Som01, DDL02].
There are packages for the symbolic computer algebra
systems Maple [amo96, aF02] and Mathematica [Bro02],

a package for the numerical mathematics program MatLab
called GABLE [MDB01], the C++ software library gen-
erator Gaigen [FBD01], the C++ software library GluCat
[Leo02], the Java library Clados [Dif02] and a stand alone
program called CLICAL [Lou87], to name just a few.

By the way, CLUCalc was also used to create all of the 2d
and 3d graphics in this section. You can use it for the same
purpose, illustrating your publications or web-pages, from
the version 3.0 onwards. Some other features of the current
version CLUCalc v4.0.0 are:

• render and display LaTeX text and formulas to annotate
your graphics, or to create slides for presentations,

• prepare presentations with user interactive 3D-graphics
included in your slides,

• draw 2D-surfaces, including the surface generated by a set
of circles,

• do structured programming with if-clauses and loops,
• do error propagation in Geometric Algebra,
• construct and visualize 2D-conic sections in a Geometric

Algebra,
• and much more...

If you want to know more details, go to
www.clucalc.info or simply send an email to
help@clucalc.info.

Figure 7: A screenshot of CLUCalc v4.0.

12. Introduction to Geometric Algebra

In this section we discuss the geometric interpretation of al-
gebraic entities, since it is hoped that the reader’s geomet-
ric intuition will further the understanding. A discussion of
the algebra in a purely mathematical sense will not be given
here. The reader should refer to [GM91, Por95] for an in
depth discussion of the algebra from a purely mathematical
point of view.
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In this introduction we will neglect many algebraic as-
pects and introduce Geometric Algebra as an extension of
the standard vector algebra. The actual algebra product is
called "geometric product", but we will not start this dis-
course by discussing this product. Instead, we start by intro-
ducing the "inner product" and "outer product", which can
be regarded as special "parts" of the geometric product. This
"top-down" approach is hoped to show the applicability of
the mathematics before giving a lot of details that may con-
fuse the reader.

In the following the terms "scalar product" and "inner
product" will be used quite often, and it is important to un-
derstand that in this text these two terms refer to quite differ-
ent operations. Depending on which books you have read
before, you may be used to employing these terms inter-
changeably. Here, a scalar product is a product which results
in a scalar - no more, no less. This scalar is in general an
element of R, in particular it may also be zero or negative.
This may, for example, occur if the basis of the vector space
we are working in is not Euclidean. This will in fact turn up
in conformal space.

The operation termed "inner product" here, may coincide
with the scalar product, but represents in general an alge-
braic operation which does not result in a scalar. This will
be explained further in section 12.4. One may also say that
the scalar product is a "metric" operation, since it depends
on a metric, while the inner product is an algebraic opera-
tion, which can also be executed without the knowledge of a
metric.

So let’s start with a 3d Euclidean vector space denoted
by E3. We will use the coordinate representation R3 for E3.
We assume that the standard scalar product is defined on E3.
It will be denoted by ∗. Furthermore, the usual vector cross
product exists on E3 and will be written as ×. Recall that the
scalar product gives the length of the component two vec-
tors have in common. The vector cross product, on the other
hand, results in a vector perpendicular to both of the initial
vectors. For example, let a,b,c ∈ E3, then

a∗b ∈ R and a×b ∈ E
3.

Furthermore,

c = a×b ⇒ c ⊥ a and c ⊥ b.

A plane in E3 is typically represented by its normal and an
offset vector. Given two vectors that are to span a plane,
the vector cross product can be used to find the plane’s nor-
mal. However, this only works in 3d. In higher dimensions
the (standard) vector cross product of two vectors is not de-
fined.Nevertheless, we may be interested in describing the
two dimensional subspace spanned by two vectors also in a
n-dimensional vector space.

12.1. The Outer Product

Without explaining exactly what it is, we can define a Geo-
metric Algebra on Rn, G(Rn) or simply Gn if it is clear that
we are forming the Geometric Algebra over the reals. The
latter will in fact be the case for the whole of this text.

The outer product is an operation defined within this alge-
bra and is denoted by ∧. Here are the properties of the outer
product of vectors. Let a,b,c ∈ En.

a∧b = −b∧a
(a∧b)∧ c = a∧ (b∧ c)
a∧ (b+ c) = (a∧b)+(a∧ c).

(1)

Another important property is

a∧b = 0 ⇐⇒ a and b are linearly dependent. (2)

Let {a1, . . . ,ak} ⊂ Rn be k ≤ n mutually linearly indepen-
dent vectors. Then

(a1 ∧a2 ∧ . . .∧ak) ∧ b = 0, (3)

if and only if b is linearly dependent on {a1, . . . ,ak}. The
outer product of k vectors is called a k-blade and is denoted
by

A〈k〉 = a1 ∧a2 ∧ . . .∧ak =:
k∧

i=1
ai.

The grade of a blade is simply the number of vectors that
"wedged" together give the blade. Hence, the outer product
of k linearly independent vectors gives a blade of grade k, a
k-blade.

12.2. The Outer Product Null Space

In Geometric Algebra, blades, as defined above, are given a
geometric interpretation. This is based on their interpretation
as linear subspaces. For example, given a vector a ∈ Rn, we
can define a function Oa as

Oa : x ∈ R
n 7→ x∧a ∈ G(Rn).

The kernel of this function is the set of vectors in Rn that
Oa maps to zero. This kernel will be called the outer product
null space (OPNS) of a and denoted by NO(a). That is,

kern Oa = NO(a) :=
{

x ∈ R
n : x∧a = 0 ∈ G(Rn)

}
. (4)

We already know that x∧a is zero if and only if x is linearly
dependent on a. Therefore, NO(a) can also be given in terms
of a as

NO(a) =
{

αa : α ∈ R
}
,

which means that the OPNS of a is a line through the origin
with the direction of a. In Geometric Algebra it is therefore
said that a vector in En represents a line.

Given a 2-blade a∧b ∈ G(Rn), where a,b ∈ Rn, a func-
tion Oa∧b can be defined as

Oa∧b : x ∈ R
n 7→ x∧a∧b ∈ G(Rn).
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The kernel of this function is

kernOa∧b = NO(a∧b) :=
{

x∈R
n : x∧a∧b = 0∈G(Rn)

}
.

(5)
As before, it follows that the OPNS of a∧b can be parame-
terized as follows

NO(a∧b) =
{

αa+βb : (α, β) ∈ R
2}.

Hence, a∧ b is said to represent the two-dimensional sub-
space of Rn spanned by a and b, ie a plane through the ori-
gin. In general the OPNS of some k-blade A〈k〉 ∈ G(Rn) is a
k-dimensional linear subspace of Rn.

NO(A〈k〉) :=
{

x ∈ R
n : x∧A〈k〉 = 0

}
.

Consider again the three-dimensional Euclidean space E3

with a,b,c∈E3 three mutually linearly independent vectors.
Hence, {a,b,c} form a basis of E3. Then

NO(a∧b∧ c) :=
{

x ∈ E3 : x∧a∧b∧ c = 0 ∈ G(R3)
}

=
{

αa+βb+ γc ∈ E3 : (α, β, γ) ∈ R3}.

Therefore, the OPNS of a ∧ b ∧ c is the whole space E3.
Since the OPNS of the outer product of any basis of E3 is
the whole space E3, the blades created from different bases
have to be similar. In fact, they only differ by a scalar factor.
A blade of grade n in some G(Rn) is called a pseudoscalar.
"Pseudoscalar" because all pseudoscalars only differ by a
scalar factor, just like the scalar element 1 ∈ G(Rn).

Aside. Note that the fact that NO
(
A〈n〉 ∈

G(Rn)
)

= Rn, implies that no blades of grade
higher than n can exist in G(Rn).

12.3. Magnitude of Blades

On the Euclidean space En the norm typically used is the
L2 norm. This is defined in terms of the scalar product. Let
a ∈ En, then

‖a‖2 :=
√

a∗a. (6)

This norm can also be extended to blades in G(En). We will
not give a proper derivation here, but try to motivate the def-
inition. In the following we will also use ‖.‖ instead ‖.‖2 for
brevity. Let a,b ∈ R3 and denote by b⊥ and b‖ the parts of
b = b⊥+b‖ that are perpendicular and parallel to a, respec-
tively. Then

a∧b = a∧ (b⊥ +b‖)

= a∧b⊥ +a∧b‖
︸ ︷︷ ︸

=0
= a∧b⊥.

(7)

Similarly, for any k-blade A〈k〉 =
∧k

i=1 ai, we can find a
set of k mutually orthogonal vectors {a′1, . . . , a′k}, such that

A〈k〉 = A′
〈k〉 :=

k∧

i=1
a′i .

Now, it may be shown that

‖A〈k〉‖ = ‖A′
〈k〉‖ =

√√√√ k

∏
i=1

(a′i)2 =
k

∏
i=1

‖a′i‖, (8)

with k > 0. Since the {a′i} are mutually orthogonal, the norm
or magnitude of A〈k〉 is the "volume" spanned by them. For
k = 1 this reduces to the norm of a vector.

Figure 8: Area of bivector.

An illustrative example is the norm of a 2-blade (also
called bivector). The bivector a ∧ b ∈ G(Rn) may also be
written as a ∧ b⊥, where b⊥ is the component of b that
is perpendicular to a. Then ‖b⊥‖ = sinθ‖b‖, with θ =
∠(a,b). Therefore,

‖a∧b‖ = ‖a∧b⊥‖ = ‖a‖‖b‖ sinθ,

which is the area of the parallelogram spanned by a and b.

Now consider a n× k matrix A, whose columns are the
{ai}k

i=1 ⊂ Rn. This will be written as A = [a1, . . . , ak]. We
could now define the norm of such a matrix to be the "vol-
ume" of the parallelepiped spanned by its column vectors.
This would then be in accordance with the norm of a blade
of these vectors. In fact, for a matrix B = [b1, . . . , bn], where
the {bi}n

i=1 ⊂ Rn are a basis of Rn, the determinant of B,
det(B) does give the volume of the parallelepiped spanned
by the {bi}n

i=1. Therefore, in this case,

‖b1 ∧ . . .∧bn ‖ = det([b1, . . . , bn]).

The unit pseudoscalar of some G(Rn), is a blade of grade
n with magnitude 1 and is usually denoted by I. Therefore,
for example,

b1 ∧ . . .∧bn = ‖b1 ∧ . . .∧bn ‖ I = det([b1, . . . , bn]) I.

12.4. The Inner Product

Another important operation in Geometric Algebra is the in-
ner product. The inner product will be denoted by ·. For vec-
tors a,b ∈ Rn, their inner product is just the same as their
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scalar product, ie

a ·b = a∗b.

This may be called the "metric" property of the inner prod-
uct, since the result of the scalar product of two vectors de-
pends on the metric of the vector space they lie in. However,
the inner product also has some purely algebraic properties
for elements in G(Rn), which are independent of the metric
of the vector space Rn. In the following a number of these
properties are stated without proof.

Let a,b,c∈Rn, then the bivector b∧c∈G(Rn). The inner
product of a with this bivector gives,

a · (b∧ c) = (a ·b)c− (a · c)b. (9)

Since (a · b) and (a · c) are scalars, we see that the inner
product of a vector with a bivector results in a vector. More
generally it may be shown that for k ≥ 1

x ·A〈k〉 = (x ·a1) (a2 ∧a3 ∧a4 ∧ . . .∧ak)
− (x ·a2) (a1 ∧a3 ∧a4 ∧ . . .∧ak)
+ (x ·a3) (a1 ∧a2 ∧a4 ∧ . . .∧ak)
− etc.

=
k

∑
i=1

(−1)(i+1) (x ·ai)
[
A〈k〉 \ai

]
,

(10)
where [A〈k〉 \ ai] denotes the blade A〈k〉 without the vector
ai. Here the inner product of a vector with a k-blade results
in a (k− 1)-blade. An example of another important rule is
this

(a∧b) ·A〈k〉 = a ·
(
b ·A〈k〉

)
, (11)

with k ≥ 2. More generally, the inner product of blades
A〈k〉,B〈l〉 ∈ G(Rn), with 0 < k ≤ l ≤ n, can be expanded
as

A〈k〉 ·B〈l〉 = a1 ·
(

a2 ·
(
. . . · (ak ·B〈l〉)

))
. (12)

Hence, the result of this inner product is a (l − k)-blade.

In comparison to the outer product we see that the inner
and the outer product are antagonists: while the outer prod-
uct increases the grade of a blade, the inner product reduces
it.

12.5. The Inverse of a Blade

Similar to the formula for vectors, the inverse of a blade
A〈k〉 ∈ G(Rn), k ≤ n, is in general given by

A−1
〈k〉 :=

Ã〈k〉

‖A〈k〉‖2 ,

as long as ‖A〈k〉‖ 6= 0. Note that the magnitude of a blade
can in fact become zero in Minkowski spaces. Using this
formula it may indeed be shown that

A〈k〉 ·A−1
〈k〉 = A−1

〈k〉 ·A〈k〉 = 1.

The symbol Ã〈k〉 denotes the reverse of a blade. The re-
verse is an operator that simply reverses the order of vectors
in a blade. For example, if A〈k〉 =

∧k
i=1 ai then

Ã〈k〉 =
1∧

i=k

ai = ak ∧ak−1 ∧ . . .∧a1. (13)

Since the outer product is associative and anti-commutative,
the reordering of vectors in a blade can only change the
blade’s sign. For the reverse we find in particular

Ã〈k〉 = (−1)k(k−1)/2 A〈k〉. (14)

So, why do we need the reverse in the definition of the
inverse of a blade? The answer is, that the reverse takes care
of a sign that is introduced due to the grade of a blade. As
an example consider the orthonormal basis {ei} of Rn. From
equations (12) and (10) it follows that

(e1 ∧ e2) · (e1 ∧ e2) = e1 ·
(
(e2 · e1)e2 − (e2 · e2)e1

)

= e1 ·
(
− e1

)

= −1.

On the other hand, obviously e1 · e1 = 1. That is, depending
on the grade of a blade (a vector being a blade of grade 1),
an additional sign is introduced or not. This is fixed by the
reverse. Given any blade A〈k〉 ∈ G(Rn), then

A〈k〉 · Ã〈k〉 = ‖A〈k〉‖2,

whereas

A〈k〉 ·A〈k〉 = (−1)k(k−1)/2 ‖A〈k〉‖2. (15)

12.6. Geometric Interpretation of Inner Product

We can already get an idea of what is happening by looking
at the Geometric Algebra of R2, G(R2) with orthonormal
basis {e1,e2}. The outer product e1 ∧ e2 spans the whole
space, ie a plane. Now let’s look at the inner product of e1
with this bivector.

e1 · (e1 ∧ e2) = (e1 · e1)e2 − (e1 · e2)e1 = e2. (16)

This may be interpreted as "subtracting" the subspace repre-
sented by e1 from the subspace represented by e1 ∧e2. What
is left after the subtraction is, of course, perpendicular to e1.

More generally, let x,y,a,b ∈ Rn and let

y = x · (a∧b) = (x ·a)b− (x ·b)a.

Now we find that

x ·y = x ·
[
(x ·a)b− (x ·b)a

]

= (x ·a)(x ·b)− (x ·b)(x ·a)
= 0.

That is, x is perpendicular to y, which again implies that
the inner product x · (a∧ b) "subtracted" the subspace rep-
resented by x from the subspace represented by a∧b. This
can also be illustrated quite nicely in E3.
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Figure 9: Inner product of vector and bivector.

Let P denote the bivector a∧b ∈ G(R3). In E3 this bivec-
tor represents a plane through the origin, as shown in figure
9. A vector x ∈ R3 will in general have a component parallel
to P, x‖, and a component perpendicular to P, x⊥, such that
x = x‖ +x⊥. Therefore,

y := x ·P = (x‖ +x⊥) ·P = x‖ ·P.

The inner product x‖ ·P now "subtracts" the subspace rep-
resented by x‖ from the subspace represented by P, which
results in a vector that lies in P and is perpendicular to x, as
shown in figure 9.

12.7. The Inner Product Null Space

Just as for the outer product, we can also define the null
space of blades with respect to the inner product. The inner
product null space (IPNS) of a blade A〈k〉 ∈ G(Rn), denoted
by NI(A〈k〉), is the kernel of the function IA〈k〉 defined as

IA〈k〉 : x ∈ R
n 7→ x ·A〈k〉 ∈ G(Rn), (17)

and thus

NI(A〈k〉) :=
{

x ∈ R
n : IA〈k〉(x) = 0 ∈ G(Rn)

}
. (18)

For example, consider a vector a∈R3, then NI(a) is given
by

NI(a) :=
{

x ∈ R
3 : x ·a = 0

}
.

That is, all vectors that are perpendicular to a belong to its
IPNS. In R3 the IPNS of a is therefore a plane of which a
is the normal. Earlier we already saw that the OPNS of a
bivector represents a plane. This implies that there has to be
some kind of relationship between the IPNS of a vector in
R3 and the OPNS of a bivector in G(R3).

12.8. The Dual

Let {e1,e2,e3} denote again an orthonormal basis of R3.
The IPNS of e1 is the set of all vectors that are perpendicular
to e1. Hence,

NI(e1) =
{

αe2 +βe3 : (α,β) ∈ R
2 }

,

the plane spanned by e2 and e3. However, we know that this
is also the OPNS of e2 ∧ e3,

NO(e2 ∧ e3) =
{

αe2 +βe3 : (α,β) ∈ R
2 }

.

We may therefore ask whether there is a relation between the
concepts of the IPNS and the OPNS. Such a relation does
indeed exist and it is called duality. In the following we will
see how this comes about.

Before we start with the actual calculations, we will intro-
duce two set operations for sets of vectors that will become
quite useful. The first is the direct sum of two sets of vec-
tors denoted by ⊕. Given two sets A := {ai}k

i=1 ⊂ Rn and
B := {bi}l

i=1 ⊂ Rn their direct sum is

A⊕B :=
{

ai +b j ∈ R
n : 0 < i ≤ k, 0 < j ≤ l

}
. (19)

In particular this means for two infinite sets, ie one dimen-
sional subspaces

A :=
{

αa∈R
n : α∈R

}
, and B :=

{
βb∈R

n : β∈R
}
,

that their direct sum is the set of all linear combinations of
the elements of A and B. That is,

A⊕B =
{

αa+βb ∈ R
n : (α,β) ∈ R

2 }
.

In this spirit it makes sense also to define a "direct subtrac-
tion" between two such sets as

A	B :=
{

x ∈ A : x∗y = 0 ∀y ∈ B
}
, (20)

where we assume that a scalar product is defined on the ele-
ments of A and B. Hence, the direct subtraction removes the
linear dependence on elements of B from the elements of A.
Note that this is more than just to remove the elements of B

from A.

Now let us return to the question of duality. First of all
note that the OPNS of e1 is simply

NO(e1) =
{

αe1 : α ∈ R
}
,

a line through the origin with direction e1. The direct sum of
NO(e1) and NO(e2 ∧ e3) is the whole space R3,

NO(e1)⊕NO(e2 ∧ e3) ={
αe1 +βe2 + γe3 : (α,β,γ) ∈ R3 }

≡ R3.

and, in particular, "removing" the linear dependence on
NO(e1) from R3 gives
NO(e2 ∧ e3),

NO(e2 ∧ e3) = R
3 	NO(e1).
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With respect to R3, NO(e1) may therefore be called the com-
plement set to NO(e2 ∧ e3). Furthermore,

NI(e1) = R
3 	NO(e1).

The question now is: can we find an operation in G(Rn)
which transforms any blade A〈k〉 ∈ G(Rn) into a comple-
mentary blade B〈n−k〉 ∈ G(Rn), such that

NO(A〈k〉) = R
n 	NO(B〈n−k〉).

Such an operation does indeed exist and is called the dual.
The dual of a multivector A ∈ G(Rn) is written A∗ and is
defined as

A∗ := A · I−1, (21)

where I−1 is the inverse unit pseudoscalar of G(Rn). It is a
nice feature of Geometric Algebra that the dual can be given
as a standard product with a particular element of the alge-
bra. However, this has also the drawback that the dual of the
dual of a multivector may introduce an additional sign. That
is,

(
A∗)∗ =

(
A · I−1) · I−1 = A

(
I−1 · I−1).

Why the last step in this equation works will be shown later
on in equation (31), page 26. If we believe this equation for
the moment, then it shows that an additional sign is intro-
duced whenever I−1 · I−1 = −1. Since I−1 is a n-blade in
G(Rn) we know from equations (14) and (15) that

I−1 · I−1 = (−1)k(k−1)/2 ‖I−1‖2 = (−1)k(k−1)/2.

With respect to the orthonormal basis {e1,e2,e3} of R3,
the dual operation has the following effect. Consider again
the bivector e2 ∧ e3 which represents the plane spanned by
e1 and e2 in its OPNS. The unit pseudoscalar of R3 and its
inverse may be given as

I = e1 ∧ e2 ∧ e3 and I−1 = Ĩ = e3 ∧ e2 ∧ e1 = −I.

Now, the dual of e2 ∧ e3 is

(e2 ∧ e3)
∗ = (e2 ∧ e3) · I−1

= (e2 ∧ e3) · (e3 ∧ e2 ∧ e1)
= e2 ·

(
e3 · (e3 ∧ e2 ∧ e1)

)
,

where we used equation (12). We first evaluate the term
within the outer brackets using equation (10).

e3 · (e3 ∧ e2 ∧ e1) = (e3 · e3)(e2 ∧ e1)− (e3 · e2)(e3 ∧ e1)
+(e3 · e1)(e3 ∧ e2)

= e2 ∧ e1.

Therefore,

(e2 ∧ e3)
∗ = e2 · (e2 ∧ e1)

= (e2 · e2)e1 − (e2 · e1)e2
= e1.

This is a nice example to see that the dual of a blade gives a
blade complementing the whole space. In this case

(e2 ∧ e3) ∧ (e2 ∧ e3)
∗ = I,

the unit pseudoscalar. With respect to the OPNS we have

NO
(
e2 ∧ e3

)
⊕NO

(
(e2 ∧ e3)

∗) = R
3.

It is now also clear that the relation between the OPNS
and IPNS is the duality. For example, we have seen before
that

NO
(
e2 ∧ e3

)
= R

3 	NO
(
e1

)
= NI

(
e1

)
.

Since e1 = (e2 ∧ e3)
∗ we have

NO
(
e2 ∧ e3

)
= NI

(
(e2 ∧ e3)

∗).
In general we have for some blade A〈k〉 ∈ G(Rn)

NO
(
A〈k〉

)
= NI

(
A∗
〈k〉

)
. (22)

12.9. Geometric Interpretation of the IPNS

Figure 10: Dual of plane represented by bivector a∧b.

We have already seen that the IPNS of some vector n ∈
R3 is a plane through the origin, whereby n is the plane’s
normal. With respect to the dual operation, it was shown in
the previous section that the normal of a plane spanned by
a,b ∈ R3, is given by (a∧b)∗. Suppose that n = (a∧b)∗.
The side of the plane a∧b from which the normal n sticks
out from is usually regarded as the "front"-side of the plane.
Thus, a bivector represents a sided plane. For example, the
normal m of b∧a is given by

m = (b∧a)∗ = −(a∧b)∗ = −n.

Hence, the plane represented by b∧ a consists of the same
subspace in R3 as the plane represented by a∧ b, but their
front-sides point in opposite directions. This situation is
shown in figure 10. This also shows the relation between
the vector cross product and the outer product:

a×b = (a∧b)∗.

Aside. Note that the idea of a plane normal vec-
tor does only work in R3. In any dimension higher
than three the set of vectors perpendicular to one
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vector spans a higher dimensional space than a
plane. Nevertheless, a bivector always describes a
plane, independent of the dimension it is embed-
ded in.

Now that we are happy that a vector in R3 represents a
plane with respect to its IPNS, we can ask what the IPNS
of blades of higher grade is. Consider the non-zero bivector
a ∧ b ∈ G(R3). In order to give its IPNS we have to find
which vectors x ∈ R3 satisfy x · (a∧b) = 0. With the help of
equation (10) we find

x · (a∧b) = (x ·a)b− (x ·b)a.

Since we assumed that a∧ b 6= 0, a and b have to be lin-
early independent. Therefore, the above expression can only
become zero if and only if

x ·a = 0 and x ·b = 0.

Geometrically this means that x has to lie on the plane rep-
resented by a and on the plane represented by b, in their
IPNS. Hence, x lies on the intersection of the two planes
represented by a and b. This shows that the outer product
of two vectors represents the intersection of their separately
represented geometric entities. In terms of sets this reads

NI(a∧b) = NI(a) ∩ NI(b). (23)

Such an intersection line also has an orientation, which in
this case is given by (b∧a)∗.

Figure 11: Intersection of two planes in terms of IPNS.

Aside. Note that in R3 we cannot represent two
parallel but not identical planes through the IPNS
of two vectors, since all such planes go through
the origin.

The last type of blade we can discuss in R3 with respect to
its IPNS is a 3-blade, or trivector. As we have seen already
a trivector A〈3〉 ∈ G(R3) is a pseudoscalar and thus

A〈3〉 = ‖A〈3〉‖ I,

where I is the unit-pseudoscalar of G(R3). Let A〈3〉 be given
by

A〈3〉 := a∧b∧ c.

If A〈3〉 6= 0 then a, b and c are linearly independent. In order
to find the IPNS of A〈3〉, we need to find which vectors x
satisfy x ·A〈3〉 = 0. Using again equation (10) it follows

x ·A〈3〉 = (x ·a) (b∧ c)
− (x ·b) (a∧ c)
+ (x · c) (a∧b).

The bivectors (b∧ c), (a∧ c) and (a∧b) are linearly inde-
pendent and thus x ·A〈3〉 = 0 if and only if

x ·a = 0 and x ·b = 0 and x · c = 0.

Geometrically this means that x ·A〈3〉 = 0 if and only if x
lies on the intersection of the three planes represented by
a, b and c. Since all planes represented through the IPNS
of vectors pass through the origin, the only point all three
planes can meet in is the origin. Hence, the only solution for
x to x ·A〈3〉 = 0 is the trivial solution x = 0 ∈ R3. Figure 12
illustrates this.

Figure 12: Intersection of three planes in terms of IPNS.

12.10. The Meet Operation

We have seen that we can intersect subspaces quite easily,
if they are represented through the IPNS of blades. For ex-
ample, two vectors a,b ∈ R3 represent two planes in their
IPNS. The intersection of these two planes is simply repre-
sented by a∧ b. (Recall figure 11) The question we would
like to answer in this section is: is there an operation that
evaluates the intersection of subspaces represented through
the OPNS of blades?

The short answer is: yes. The longer answer will follow
now. First we need to remember how the OPNS and IPNS
are connected. Given a bivector a∧b∈G(R3) representing a
plane in its OPNS, we can find the respective representation
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of the plane in term of the IPNS by taking the dual of the
bivector. Suppose that c ∈ R3 is given by c = (a∧b)∗, then

NI
(
c
)

= NI
(
(a∧b)∗

)
= NO

(
a∧b

)
.

Using a so far unproven property of the inner product (equa-
tion (31)), we can also write

c · I = (a∧b)∗ · I
=

(
(a∧b) · I−1) · I

= (a∧b) (I−1 · I)
= a∧b,

where I is again the unit pseudoscalar of G(R3). That means,
in order to transform an IPNS representation into an OPNS
representation, we have to multiply with the unit pseu-
doscalar, a kind of "inverse" dual. In terms of sets,

NO
(
a∧b

)
= NO

(
c · I

)
= NI

(
c
)
.

Now we can see how to express the intersection of two
subspaces in terms of the OPNS of two blades. Suppose
a1 ∧ a2, b1 ∧ b2 ∈ G(R3) represent two planes in terms of
their OPNS. Let their respective normals be denoted by
na = (a1 ∧a2)

∗ and nb = (b1 ∧b2)
∗. Then in terms of the

IPNS the intersection of the two planes is given by na ∧nb.
As we have seen above, the corresponding expression of the
intersection line in terms of the OPNS is simply (na∧nb) · I.
Substituting now for na and nb gives,

[
(a1 ∧a2)

∗ ∧ (b1 ∧b2)
∗] · I.

This is actually not quite the general intersection operation
we were looking for, but it is already pretty good and is
thus given its own name: the regressive product. Here is the
proper definition.

Let A,B ∈ G(Rn) be two arbitrary multivectors and let I
denote the unit pseudoscalar of G(Rn). The regressive prod-
uct is denoted by O and is defined as

AOB :=
[
A∗ ∧ B∗] · I. (24)

For the above example this means that given the bivectors
a1 ∧a2 and b1 ∧b2, representing two planes in their OPNS,
the intersection of these planes in the OPNS is given by

(a1 ∧a2) O (b1 ∧b2).

Unfortunately, their is a problem. Let {e1,e2,e3} again
denote an orthonormal basis of R3. Now suppose we wanted
to find the intersection of a line represented by e2 and a plane
represented by e2 ∧ e3, through their OPNS. We see imme-
diately that since e2 is also contained in the bivector e2 ∧e3,
the line is completely contained within the plane and thus
their intersection should be the line e2 itself. However, the
regressive product gives

e2 O(e2 ∧ e3) =
[
e2

∗∧ (e2 ∧ e3)
∗] · I

=
[
(e1 ∧ e3)∧ e1

]
· I

=
[
− (e1 ∧ e1)∧ e3

]
· I

= 0,

where I is the pseudoscalar of G(R3). The problem is that
the line NO(e2) and the plane NO(e2 ∧ e3) live in a 2d-
subspace of R3 spanned by e2 and e3. The dimension e1 is of
no importance for the evaluation of their intersection. Sup-
pose now that we work in the subalgebra G(R2) ⊂ G(R3),
where {e2,e3} give an orthonormal basis of R2. Then the
respective unit pseudoscalar is I = e2∧e3 and I−1 = e3∧e2,
and we obtain

e2
∗ = −e3 and (e2 ∧ e3)

∗ = 1.

Hence, the regressive product now gives

e2 O(e2 ∧ e3) =
[
e2

∗∧ (e2 ∧ e3)
∗] · I

=
[
− e3 ∧1

]
· I

= −e3 · I
= e2,

which is what we want. This shows that the regressive prod-
uct works, if we evaluate it in the correct subalgebra. This
notion is captured in the general intersection operation: the
meet.

The meet is basically the regressive product where
the pseudoscalar is chosen appropriately. "Appropriately"
means that instead of the pseudoscalar of the whole space,
the pseudoscalar of the space spanned by the two blades of
which the meet is to be evaluated, is used. This introduces
the concept of the join.

Given two blades A〈k〉,B〈l〉 ∈ G(Rn), then their join is a
unit blade J ∈ G(Rn) such that

NO(J) = NO(A〈k〉) ⊕ NO(B〈l〉).

The join is sometimes also written as an operator, denoted
by ∧̇. For example, the join of e2 and e2 ∧ e3 is simply

e2 ∧̇ (e2 ∧ e3) = e2 ∧ e3,

since ‖e2 ∧ e3‖ = 1 and

NO(e2 ∧ e3) = NO(e2) ⊕ NO(e2 ∧ e3).

Aside. Note that this definition of the join does
not fix the sign of J. This is just as for the unit
pseudoscalar I, where we only demanded that its
magnitude is unity, but we did not say anything
about its sign. We will not discuss this problem
further apart from noting that it becomes irrelevant
when working in projective spaces.

We can now define the meet in terms of the join. Let
A〈k〉,B〈l〉 ∈ G(Rn) and let J = A〈k〉∧̇B〈l〉 be their join. Then
the meet of A〈k〉 and B〈l〉 is denoted by ∨ and defined as

A〈k〉∨B〈l〉 :=
[(

A〈k〉 · J−1) ∧
(
B〈l〉 · J−1)] · J. (25)

In terms of sets this is

NO
(
A〈k〉∨B〈l〉

)
= NO

(
A〈k〉

)
∩ NO

(
B〈l〉

)
.

Note that the meet is only defined for blades and it be-
comes the regressive product, if the join is the pseudoscalar.
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Equation (25) can also be simplified to read

A〈k〉∨B〈l〉 =
(
A〈k〉 · J−1) · B〈l〉. (26)

12.11. The Geometric Product

We have already seen a lot of features of Geometric Alge-
bra. However, so far, we managed to avoid the actual alge-
bra product, the geometric product. The formula most often
shown right in the beginning of a Geometric Algebra intro-
duction is

ab = a ·b+a∧b, (27)

where a,b ∈ Rn are two vectors, and juxtaposition of two
vectors, as in ab, denotes the geometric product. It is im-
portant to note that this equation is only valid for vectors,
not for blades or multivectors in general. It might at first
seem strange to add a scalar (a · b) and a bivector (a∧ b),
but they are just different elements of the Geometric Alge-
bra. This is just like for complex numbers, where a real and
an imaginary part are added.

A somewhat more general form of equation (27) is

aB〈l〉 = a ·B〈l〉 +a∧B〈l〉, (28)

with B〈l〉 ∈ G(Rn) and l > 0. For l = 0, ie B〈l〉 a scalar, we
have

aB〈0〉 = a∧B〈0〉.

In general we always have for a scalar α ∈ R and a multi-
vector A ∈G(Rn) that their inner product is identically zero,

α ·A ≡ 0.

This turns out to be a necessary definition to keep the system
of operations in Geometric Algebra self-consistent.

The geometric product is associative and distributive
but in general not commutative. That is, for multivectors
A,B,C ∈ G(Rn)

(AB)C = A(BC),
A(B+C) = (AB)+(AC),
(B+C)A = (BA)+(C A),

AB 6= BA, in general.

(29)

Two further useful properties of the geometric product are
the following. Given two blades A〈k〉,B〈l〉 ∈ G(Rn), then

NO(A〈k〉)∩NO(B〈l〉) = ∅ ⇐⇒ A〈k〉 B〈l〉 = A〈k〉∧B〈l〉,
(30)

and

NO(A〈k〉) ⊆ NO(B〈l〉)

or NO(B〈l〉) ⊆ NO(A〈k〉)

}
⇐⇒ A〈k〉 B〈l〉 = A〈k〉 ·B〈l〉.

(31)
Equation (31) for example implies that for some vector a ∈
Rn,

a∗ · I = (a · I−1) · I = (a I−1) I = a(I−1 I) = a,

where I is the pseudoscalar of G(Rn).

12.12. Reflection

So far we have seen how to construct linear subspaces using
the outer product and to subtract linear subspaces from one
another using the inner product. We also now know how to
intersect linear subspaces using the meet and how to form
their union with the join. We now would like to operate
on subspaces while keeping their dimensionality unchanged.
For example, rotating a line results in another line, not in
a point or a plane. An operation on a blade that does not
change its grade, is called grade preserving.

Without much further ado, we will look at such a grade
preserving operation. Let a,n ∈ Rn denote two vectors,
whereby ‖n‖ = 1. Also write a = a‖ + a⊥, where a‖ is the
component of a parallel and a⊥ the component perpendic-
ular to n. Note that the following calculation is valid for all
dimensions n ≥ 2 of the vector space.

nan = (na)n
= (n ·a+n∧a)n
= (n ·a)n+(n∧a) ·n+(n∧a)∧n︸ ︷︷ ︸

=0

.

So far we only applied the associativity of the geometric
product and equation (27). Using equation (10) we see that

(n∧a) ·n = (a ·n)n− (n ·n)a.

Hence,

nan = (n ·a)n+(a ·n)n− (n ·n)︸ ︷︷ ︸
=1

a

= 2 (n ·a)n−a.

Clearly we have n ·a = n ·a‖, and since a‖ is the component
of a parallel to n, we can also write a‖ = ‖a‖‖n. Thus,

nan = 2 (n ·a‖)n−a
= 2‖a‖‖ n−a
= 2 a‖−a‖−a⊥

= a‖−a⊥.

That is, the component of a perpendicular to n has been
negated, while the parallel component a‖ remained un-
changed. Geometrically this is a reflection of the vector a
on the line through the origin with direction n. This is illus-
trated in figure 13.

The really nice thing about this reflection operation is that
it can be applied to any blade. For example, given a plane
as bivector A〈2〉 ∈ G(R3), it can be reflected in a normalized
vector n ∈ R3 simply by evaluating nA〈2〉 n. This is shown
in figure 14.

Let A〈2〉 = a1 ∧a2 with a1,a2 ∈ R3, then it may in fact be
shown that

nA〈2〉 n =
(
na1 n

)
∧

(
na2 n

)
.

That is, the reflection of the outer product of two vectors, is
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Figure 13: Reflection of vector a on vector n.

Figure 14: Reflection of bivector A〈2〉 on vector n.

the outer product of the separately reflected vectors. By the
way, this property is also called outer-morphism, not to be
confused with auto-morphism.

Figure 15: Reflection of vector a on bivector N〈2〉.

A blade may also be reflected on another blade. Figure 15
shows the reflection of a vector a ∈ R3 on a bivector N〈2〉 ∈
G(R3) by evaluating N〈2〉aN〈2〉. This operation again results
in

N〈2〉aN〈2〉 = a‖−a⊥,

where a‖ and a⊥ are this time the parallel and perpendicular
components of a with respect to N〈2〉.

The reflection operation is in fact the only operation we
will ever be using in Geometric Algebra. Any other opera-
tion needed will be obtained by combining a number of dif-
ferent reflections. In Euclidean space this confines us in fact
to reflections and rotations about axes that pass through the
origin, as will be shown in the next section. To extend the
set of available operations Euclidean space will have to be
embedded in other spaces, which will be discussed later on.

12.13. Rotation

Reflections with respect to a normalized vector n are always
reflections on a line with direction n, passing through the
origin. It may be shown that two consecutive reflections on
different, normalized vectors n and m are equivalent to a
rotation of twice the angle between n and m.

Figure 16: Rotation of vector a by consecutive reflections of
a on n and m.

Figure 16 shows such a setup in 3d-Euclidean space. The
normalized vectors n,m ∈ R3 enclose an angle ∠(n,m) = θ
and define a rotation plane through their outer product n∧m.
Reflecting a vector a ∈ R3 first on n and then on m, rotates
the component of a that lies in the rotation plane by 2θ. The
component of a perpendicular to the rotation plane remains
unchanged.

The rotation of vector a in the plane n∧m by an angle 2θ
may then be written as

b = mnanm. (32)

From the definition of the geometric product we find that

mn = m ·n+m∧n

and also

nm = n ·m+n∧m = n ·m+(m∧n) .̃
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Since the reverse of a scalar is still the same scalar it follows

mn = (nm) .̃

Equation (32) may therefore also be written more succinctly
as

b = Ra R̃, with R := mn. (33)

Since applying R as above has the effect of a rotation, R is
called a rotor. Note that a rotor has to satisfy the equation

RR̃ = 1,

because it would otherwise also scale the entity it is applied
to. We can actually recognize this as something familiar, by
expanding R as

R = mn
= m ·n+m∧n
= cosθ+ sinθ U〈2〉,

(34)

where θ = ∠(m,n) and U〈2〉 is the normalized version of
m∧n, ie

U〈2〉 :=
m∧n

‖m∧n‖ .

From equation (15) we know that

U〈2〉 ·U〈2〉 = (−1)2(2−1)/2 ‖U〈2〉‖2 = −1.

Since U〈2〉 squares to −1, the expression for R in equation
(34) is similar to that of a complex number z in the polar
representation

z = r (cosθ+ i sinθ),

where i =
√
−1 represents the imaginary unit and r ∈ R is

the radius. For complex numbers it is well known that the
above expression can also be written as

z = r exp(iθ).

The definition of the exponential function can be extended
to Geometric Algebra, and it can be shown that the Taylor
series of exp(θ U〈2〉) does indeed converge to

exp
(
θ U〈2〉

)
= cosθ+ sinθ U〈2〉 = R. (35)

It turns out that R = exp(θU〈2〉) actually represents a clock-
wise rotation by an angle 2θ in the plane U〈2〉. The term
"clockwise" only makes really sense in 3d-space. Here it
means clockwise relative to the rotation axis given by U∗

〈2〉.
If we want to represent a mathematically positive, ie anti-
clockwise, rotation about an angle θ, within the plane U〈2〉,
we need to write the corresponding rotor as

R = exp
(
− θ

2 U〈2〉
)
. (36)

Just as for reflections, a rotor represents a rotation in any
dimension. A rotor can also rotate any blade. That is, with
the same rotor we can rotate vectors, bivectors, etc. It turns
out that for a rotor we also have an outer-morphism. This

means that given a blade A〈k〉 =
∧k

i=1 ai, with {ai} ⊂ Rn,
and a rotor R, we can expand the expression RA〈k〉R̃ as

RA〈k〉 R̃ =
(
Ra1 R̃

)
∧

(
Ra2 R̃

)
∧ . . . ∧

(
Rak R̃

)
. (37)

Hence, the rotation of the outer product of a number of vec-
tors is the same as the outer product of a number of rotated
vectors.

13. Geometry

In the previous sections we first talked about Geometric Al-
gebra and how elements of that algebra are taken to represent
geometric entities. We also saw how we can operate on such
entities in order to reflect or rotate them. In this section we
would like to return to the geometric interpretation of the
algebra.

Although we will talk in the following about spaces which
embed Euclidean space in some way, the basic meaning of
blades as linear subspaces and the reflection operator remain
the same within these spaces. However, their effect on the
embedded Euclidean space, or rather their interpretation in
terms of the embedded Euclidean space may change quite
substantially.

We will denote the homogeneous embedding of Euclidean
space En by PEn. PEn is also called a projective space. The
properties of PEn basically derive from the way Euclidean
space is embedded in it. The projective space PEn will be
represented by Rn+1 \ 0, ie a (n + 1)-dimensional vector
space without the origin. The canonical (orthonormal) basis
of Rn+1 will be denoted by {e1, . . . , en, en+1}. The basis
vector en+1 is also called the homogeneous component or
dimension.

13.1. The Setup

The transformation operator from Euclidean to the corre-
sponding projective space will be denoted by P and its in-
verse by P−1. The operator P is defined as

P : x ∈ E
n 7→ x+ en+1 ∈ PE

n. (38)

That is, Euclidean space is embedded as a particular hyper-
plane P(En) in projective space. A vector in PEn will also
be called a homogeneous vector. Note that the origin of Eu-
clidean space becomes en+1 in projective space. This means
that the origin of Euclidean space, as represented in projec-
tive space is not a special point any more. For example, while
the scalar product of a vector with the origin in Euclidean
space is always identically zero, this is not necessarily the
case in projective space.

Figure 17 illustrates the embedding of Euclidean vectors
in projective space for the case of E2. A vector a ∈ E2 from
Euclidean space is embedded in projective space PE2 by
adding the homogeneous dimension e3. The homogeneous
representation of a in PE2 is then denoted by A = P(a).
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Figure 17: Embedding of Euclidean vector a ∈ E2 in pro-
jective space PE2 as A = P(a).

Although Euclidean vectors are mapped to a hyperplane
in projective space, a general homogeneous vector may lie
anywhere in PEn ≡ Rn+1 \0. Therefore, the question is how
homogeneous vectors that do not lie on P(En) are projected
back to En. This projection is in fact the key to the power of
the homogeneous representation.

The transformation from PEn to En is denoted by P−1

and is defined as

P−1 : A ∈ PE
n 7→ 1

A · en+1

n

∑
i=1

(
A · ei

)
ei ∈ E

n. (39)

Clearly, this transformation is only valid for homogeneous
vectors that have a non-zero homogeneous component.
Those homogeneous vectors that do have a zero homoge-
neous component would map to infinity and are accordingly
called points at infinity or direction vectors.

Using the transformation P−1 the whole of PEn apart
from the plane en+1 = 0 is mapped to En. What does this
mean for a particular homogeneous vector? Well, the ho-
mogeneous vector is first scaled such that its homogeneous
component is unity, and then its first n components are taken
as the n components of the corresponding Euclidean vector.
This is illustrated in figure 18.

The effect of P−1 is that the overall scale of a homo-
geneous vector in projective space is of no importance. For
example, given a vector a ∈ En and a scale α ∈ R\0, then

P−1
(

αP
(
a
))

= a.

Hence, the name "projective space": homogeneous vectors
are projected onto the hyperplane P(En) before they are "or-
thographically" projected into En. The hyperplane P(En) is
also called the affine plane. Note that affine transformations
are in fact just those that when applied to a point on P(En)
leave the point on that plane. Projective transformations on
the other may move points through the whole space PEn.

Figure 18: Projections of a homogeneous vector A ∈ PE2

into the corresponding Euclidean space E2 as a = P−1(A).

13.2. Geometric Algebra on PEn

Recall that elements of Geometric Algebra are given geo-
metric meaning by looking at their OPNS or IPNS, the outer
or inner product null space. When we write down a blade,
its OPNS always represents a linear subspace. For example,
a bivector in PE2 is a two dimensional subspace, since we
represent PE2 by R2+1. However, we are not really inter-
ested in what this bivector represents in PE2. We would like
to know what it represents in the corresponding E2. How do
we do that? Well, we need to be more precise about which
null space we are actually interested in.

Given a bivector A〈2〉 ∈ G(PE2), we are only interested in
those vectors in PE2 that lie in one of its null spaces, which
we can also map back to Euclidean space. The other way
around: we ask which vectors in E2 when transformed to
PE2 lie in the null space of A〈2〉. We therefore introduce the
concept of the Euclidean outer and inner product null space,
denoted by NOE and NIE , respectively. For G(PEn) they are
defined as follows.

NOE(A〈k〉 ∈ G(PEn))

:=
{

a ∈ En : P(a)∧A〈k〉 = 0 ∈ G(PEn)
}
,

and NIE(A〈k〉 ∈ G(PEn))

:=
{

a ∈ En : P(a) ·A〈k〉 = 0 ∈ G(PEn)
}
.

(40)

13.3. The Euclidean OPNS

So how can we evaluate the Euclidean IPNS or OPNS of a
blade in projective space? Consider, for example, a vector
a ∈ En with homogeneous representation A = P(a) ∈ PEn.
The OPNS of A is simply given by

NO(A) =
{

αA ∈ PE
n : α ∈ R\0

}
,
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a projective line in PEn. The factor α must not be zero since
the origin of Rn+1 is not an element of PEn. Since all el-
ements of NO(A) can be mapped to En by P−1, we find
that

NOE(A) = P−1
(
NO(A)

)

=
{ 1

(αA)·en+1
∑n

i=1

(
(αA) · ei

)
ei : α ∈ R\0

}

=
{
P−1(A) : α ∈ R\0

}

= a.

This shows that even though the OPNS of A is a (projective)
line in PEn, the Euclidean OPNS of A is only the vector
a ∈ En. This is great, since it enables us to represent a zero-
dimensional object, ie a point, in En by a line in PEn.

An example of this has already been shown for the case
of E2 in figure 18. All points in PE2 along the line from, but
excluding, the origin of PE2 to the homogeneous vector A,
represent the same point a in E2.

Figure 19: Representation of line in E2 through bivector in
G(PE2).

Figure 19 illustrates the OPNS and Euclidean OPNS of
a bivector in PE2. The OPNS of the outer product of two
homogeneous vectors A,B ∈ PE2 is a plane in PE2. The or-
thographic projection of the intersection of NO(A∧B) with
the plane P(E2), then gives the Euclidean OPNS of A∧B: a
line in E2. Note that this line does not pass through the ori-
gin. This shows one of the advantages of working in G(PE2)
instead of G(E2). In G(E2) we could only represent lines
through the origin, whereas in G(PE2) we can represent ar-
bitrary lines in the corresponding E2.

Without going into any more detail, it may be shown that
the Euclidean OPNS of the outer product of three homoge-
neous vectors in G(PE3) represents a plane in E3. That is,
given vectors a,b,c ∈ E3 and A,B,C ∈ PE3 with

A = P(a) and B = P(b) and C = P(c),

it may be shown that NOE(A∧B∧C) is a plane in E3 which

passes through the points a, b and c. To summarize, we have

NOE(A) Point a
NOE(A∧B) Line through a and b

NOE(A∧B∧C) Plane through a, b and c

13.4. The Euclidean IPNS

We can also consider the Euclidean IPNS of blades of
G(E3). We will do this in some detail for a homogeneous
vector. Let A ∈ PE3 be given by

A = â−αeo,

where â ∈ E3 and ‖â‖ = 1. Furthermore, α ∈ R and eo de-
notes the homogeneous dimension e3+1, in order to empha-
size its meaning as the vector in PE3 representing the origin
of En. Let us now try to evaluate the Euclidean IPNS of A.
That is, we are looking for all those vectors x ∈ E3 that sat-
isfy A ·P(x) = 0.

A ·P(x) = 0 ⇐⇒ (â−αeo) · (x+ eo) = 0
⇐⇒ â ·x−α = 0
⇐⇒ â ·x‖−α = 0
⇐⇒ x‖ = α â,

where x‖ is the component of x parallel to â. If we write the
component of x perpendicular to â as x⊥, then it follows that
any vector x ∈ E3 of the form

x = α â+x⊥,

lies in the Euclidean IPNS of A. Hence, A represents a plane
with normal â and distance α from the origin in E3. As for
Euclidean space it may also be shown that for homogeneous
vectors A,B,C ∈ PE3, we have

Plane: NIE(A)
Line: NIE(A∧B) = NIE(A) ∩ NIE(B)

Point: NIE(A∧B∧C) = NIE(A) ∩ NIE(B) ∩ NIE(C)

In conformal space the Euclidean OPNS and IPNS of
blades are non-linear objects like circles and spheres, since
the embedding of Euclidean space in conformal space is a
non-linear one. Please see [PH03] for more details on this
embedding.

13.5. The Pinhole Camera Model

The Geometric Algebra of projective space is very useful to
represent projections in the pinhole camera model. Figure 20
show such a setup. Homogeneous vectors A1,A2,A3,A4 ∈
PE3 form a basis of PE3. The homogeneous vector A4
represents the optical center of the pinhole camera, while
P = A1 ∧A2 ∧A3 represents the image plane. In order to
project a homogeneous vector X onto the image plane, we
simply have to intersect the image plane P with the line L
connecting X with the optical center A4, ie L = A4 ∧X. We
can do this with the meet operation,

Y = L∨P = (A4 ∧X) ∨ (A1 ∧A2 ∧A3).
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Figure 20: Model of a pinhole camera in PE3.

Since the join of L and P is the whole space PE3, we can
also use the regressive product instead of the meet, which
simplifies the evaluation of the meet.

By using such simple geometric constructions, which
can be readily translated into Geometric Algebra equa-
tions, also the relations between two, three or more cam-
eras can be analyzed. This then leads, for example, to the
fundamental matrix and the trifocal tensor as was shown in
[LL98, PL98, PL01, Per00].

13.6. Reflections in Projective Space

By going from Euclidean to projective space, an additional
dimension, the homogeneous dimension, is introduced. We
may therefore wonder what effect this has when using the
reflection operator as introduced earlier. First of all consider
a vector a ∈ E2 and its homogeneous representation

A = P(a) = a+ eo ∈ PE
2,

where eo denotes again the homogeneous dimension e3 ∈
PE2. A reflection about eo gives

eo Aeo = eo aeo + eo eo eo
= −aeo eo + eo
= −a+ eo,

where we used the fact that eo is perpendicular to all vectors
in E2. Therefore,

eo a = eo ∧a = −a∧ eo = −aeo.

We thus have

P−1
(
eoP

(
a
)
eo

)
= −a,

which shows that a reflection of A about eo represents a re-
flection about the origin of a.

Next consider a vector n ∈ E2, with ‖n‖ = 1. Although
this is mathematically not quite rigorous, we can regard the

vector n also as a direction vector of PE2, since it has no eo
component. If we take A as given above, we can ask what a
reflection of a homogeneous vector A on a direction vector
n in PE2 means.

nAn = n(a+ eo)n
= nan+ne0 n
= nan− eo n2

= nan− eo.

For convenience, let us at this point introduce an operator
A that projects homogeneous vectors in PEn onto the affine
plane P(En) ⊂ PEn. The operator is therefore defined as

A : A ∈ PE
n 7→ A

A · eo
∈ PE

n, (41)

where eo is again the homogeneous dimension. We may also
say that A transforms homogeneous vectors to affine vec-
tors. This operator is also useful, since homogeneous vec-
tors on P(En) can be immediately identified with their cor-
responding Euclidean vectors in En. For our reflection ex-
ample from above we find,

A(nAn) = −nan+ eo

= −(a‖ +a⊥)+ eo

= a⊥−a‖ + eo,

where a‖ and a⊥ are the orthogonal and parallel components
of a with respect to n, respectively. This shows that the com-
ponent of the homogeneous vector A that is parallel to the
reflection direction n, is reflected and not the part perpendic-
ular to it. Figure 21 shows this setup.

Figure 21: Effect in E2 of reflection of homogeneous vector
on direction vector in PE2.

This is not really what we wanted to achieve. However, we
can remedy the situation by reflecting nAn again through
the origin. That is, in order to reflect a homogeneous vector
on a line with direction n, we have to use as operator (ne0)
instead of n.

(ne0)A(e0 n) = n(−a+ e0)n
= −nan+neo n
= −nan− eo,

and thus

A
(
(ne0)A(e0 n)

)
= nan+ eo.
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13.7. Rotations in projective space

In the last section we saw how a reflection in E2 has to be
expressed in projective space PE2 when applied to homoge-
neous vectors. Since a rotation expressed by a rotor is noth-
ing else than two consecutive reflections, a rotor may also
take on a different form in projective space.

Suppose we want to rotate the vector a ∈ E2 by reflecting
it first on n ∈ E2 and then on m ∈ E2. However, we want to
do this in projective space where A = P(a) ∈ PE2. Since a
reflection on n has to be expressed as (neo) and a reflection
on m as (meo), the rotation of A has to look like this

(meo)(neo)A(eo n)(eo m) = RA R̃, R := (meo)(neo).

Such a double reflection is illustrated in figure 22. Here vec-
tor a ∈ E2 is represented in PE2 by A. A first reflection of A
on neo gives B. A further reflection of B on meo gives C.

Figure 22: Double reflection of homogenous vector A on
reflection planes neo and meo in PE2.

However, the expression for R can be simplified.

R = (meo)(neo)
= −mneo eo
= −mn.

That is, compared to the expression of the rotor in E2, a mi-
nus sign is introduced. This, however, cancels out when the
rotor is applied.

RA R̃ = (−mn) A (−nm) = (mn) A (nm).

We may also argue that since an overall scalar factor is of no
importance for homogeneous vectors with respect to their
projection into Euclidean space, the minus sign of the rotor
in projective space may be neglected. Hence, we can use the
same representation of a rotor in Euclidean and projec-
tive space.
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PART FOUR

Animation and Motion

Dietmar Hildenbrand

In this section, we focus on an application particularly
suitable to Conformal Geometric Algebra, animations and
motions.
It is based on the previous sections and on chapter 3 of the
tutorial script [PH03]. Some other introductions to the Geo-
metric Algebra will be found in[MDB01],[LHR01],[BC01]
and [DM02].

We use the CLUCalc software to calculate with Geometric
Algebra and to visualize the results of these calculations.
CLUCalc is available for download at [Per02]. With help of
the CLUCalc Software you are able to edit and run Scripts
called CLUScripts. A screenshot of CLUCalc can be seen
in figure 3 (p. 18).

14. CLUCalc example RotationAxis

According to table 6 lines are basic entities in Conformal
Geometric Algebra. They are used to represent the axis of
rotation for transformations and motions.
In the following CLUScript RotationAxis.clu a line repre-
senting a rotation axis is shown in green based on the red
points a,b.

DefVarsN3();
:IPNS;

:Red;
:a = VecN3(0,-2,0);
:b = VecN3(0,2,0);

:Green;
axis = *(a^b^einf);
:axis;
?axis;

DefVarsN3(); in this CLUScript indicates that we are work-
ing in the 5-dimensional conformal space N3.

:Red; means that the succeeding geometric objects will be
drawn in red.

:a = VecN3(0,-2,0); assigns the 5-dimensional representa-
tion of a 3-dimensional point to the variable a according to
table 6. The leading colon means that this geometric object
is not only computed, but also visualized.

With help of axis = *(a ∧ b ∧ einf); a bivector representing
a line axis is computed.
According to table 6 the dual representation of a line is the

Figure 23: RotationAxis.clu

Table 6: list of the conformal geometric entities

entity representation dual representation

Sphere s = p− 1
2 r2

e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Point p = x+ 1
2 x2

e∞ + e0 x∗ = s1 ∧ s2 ∧ s3 ∧ s4

Plane π = n+de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞

Line l = π1 ∧π1 l∗ = x1 ∧ x2 ∧ e∞

Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Point Pair Ppi = s1 ∧ s2 ∧ s3 P∗
pi = x1 ∧ x2

outer product of 2 points and e∞, the point at infinity ( indi-
cated in CLUCalc by the predefined value einf ).
The resulting bivector after dualization ( indicated in CLU-
Calc by a leading "*" ) is calculated, visualized and printed.

Figures generated by CLUScripts are labeled by the name of
the script.
All the CLUScripts of this section can be downloaded at

http://www.dgm.informatik.tu-
darmstadt.de/staff/dietmar/

For details regarding CLUScript please refer to the CLUCalc
online help [Per02].

Table 6 lists the conformal geometric entities. x and n are
marked bold since they represent 3D entities

• x is a 3D point and x2 its scalar product
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• n is a normalized 3D normal vector

15. Transformations

All kind of transformations of an object a are done in Con-
formal Geometric Algebra with help of the following geo-
metric product

atrans f ormed = V aṼ .

with V being a so-called versor and with Ṽ as its reverse.

15.1. Rotors

For rotations, the operator

R = e−
φ
2 l (42)

describes a so-called rotor.
l is the rotation axis represented by a normalized bivector
and φ is the rotation angle around this axis.
R can also be written as

R = cos(
φ
2
)− lsin(

φ
2
) (43)

The rotation of a geometric object a is performed with help
of the operation

arotated = Ra R̃.

Note : R̃ is the reverse of R.

In the following CLUScript example Rotor.clu we will
rotate the sphere Earth around the sphere Sun located at the
origin.

Figure 24: Rotor.clu

_DoAnimate = 1;

This script is animated ( for details please refer to the Online
help of the CLU software ). The sphere Earth is continu-
ously rotated according to a continuously changing angle.
This angle is computed depending on the elapsed time.

DefVarsN3();
angle = ((Time * 45) % 360) * RadPerDeg;

SetMode(N3_IPNS, N3_SOLID);
:Red;
:a = VecN3(0,-2,0);
:b = VecN3(0,2,0);

:Green;
axis = *(a^b^einf);
:axis;
axis=axis/abs(axis);
?axis;

The bivector representing the rotation axis is computed as
before and normalized with help of the abs-function.

:Yellow;
:Sun = e0 -0.5*einf;

:Red;
:Earth =VecN3(2,0,0)-0.125*einf;

?R = exp(-angle/2*axis);

:Blue;
:R * Earth * ~R;

Sun is centered at the origin e0 with radius r = 1 ( see table
6 ). It is drawn as a yellow sphere.
The red sphere is used as the basis sphere for the rotation of
Earth. It is located out of the origin with half the radius of
Sun.
The blue sphere representing the earth is rotated with help of
the product REarth R̃.
The rotation operator depends on the fixed axis and the con-
tinuously changing angle.

15.2. Translators

In Conformal Geometric Algebra, translations can be ex-
pressed in a multiplicative way with help of translators T
defined by

T = e
e∞ t

2 (44)

where t is an inhomogenous vector

t = t1e1 + t2e2 + t3e3

Another form of a translator T is

T = 1+
e∞t

2
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Proof :
With help of the Taylor series

T = e
e∞ t

2 = 1+
e∞t

2
1!

+
( e∞t

2 )2

2!
+

( e∞t
2 )3

3!
...

Since (e∞)2 = 0

T = 1+
e∞t

2
.

15.3. Rigid Body Motion

A motion in 3D includes both a rotation and a translation. In
Conformal Geometric Algebra it is described by one opera-
tor M, a so-called motor

M = RT (45)

with
R being a rotor ( see section 15.1 ).
T being a Translator( see section 15.2 ).
A rigid body motion of an object a is described by

arigid_body_motion = M aM̃.

In the CLUScript example RigidBody.clu we will per-

Figure 25: RigidBody.clu

form a rigid body motion of the sphere Earth. It is based on
the rotation example of the previous section.

_DoAnimate = 1; DefVarsN3();
?angle = ((Time * 45) % 360) * RadPerDeg;

SetMode(N3_IPNS, N3_SOLID);

:Red;
:a=VecN3(0,-2,0);

:b=VecN3(0,2,0);

:Green;
axis = *(a^b^einf);
:axis;
axis=axis/abs(axis);
?axis;

:Yellow;
:Sun = e0 -0.5*einf;
:Red;
:Earth=VecN3(2,0,0)-0.125*einf;

?R = exp(-angle/2*axis);

TVEC = angle/4*e2;
?T= exp(e*TVEC/2);

:Green;
:T* Earth * ~T;
?Motor=R*T;

:Blue;
:Motor* Earth * ~Motor;

The sun is drawn as a yellow sphere.
The red sphere is the basis for the rigid body motion of the
earth.
The green sphere shows only the translation part of the mo-
tion. In this example it is a translation in the direction of e2
dependent on the angle of the rotation.
The blue sphere is rotated and translated with help of the
geometric product Motor Earth M̃otor.

16. Interpolation of motions

An alternative description of a rigid body motion is a screw
motion that is very suitable for the interpolation of motions.

16.1. Screw Motion

A screw motion describes a rigid body motion in a compact
form including both a rotation and translation in the direc-
tion of the rotation axis. The screw motion of an object a is
described by

ascrew_motion = M aM̃.

with the motor

M = e−
θ
2 (l+e∞m) (46)

whereas

• l is a bivector representing an axis through the origin,
• θ is the angle of rotation,
• m is a 3D vector.
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Figure 26: Screw motion along l

If l is zero, a pure translation is described.
If m is zero, a pure rotation is described.
Another form of the motor is

M = e−
θ
2 (l+e∞d) (47)

whereas ( see figure 26 )

• l = l+m⊥ is a bivector representing an arbitrary axis,
• θ is the rotation angle,
• d = m‖ is a vector parallel to the axis l.

For details please refer for instance to [BR].

16.2. Interpolation of twists

The exponent of a motor representing a screw motion is
called a twist. Assume two transformations described by the
two twists T1 and T2.

T1 = −θ1
2

(l1 + e∞d1)

T2 = −θ2
2

(l2 + e∞d2)

Interpolations between these two transformations can be de-
scribed by interpolating their twists, e. g. in a linear manner

T (t) = (1− t)∗T1 + t ∗T2 (48)

with the resulting Motor

M(t) = eT (t) (49)

For t ∈ [0..1] we get

M(0) = eT1 ,M(1) = eT2 ,

In the CLUScript example LinCombRBM.clu an interpo-
lation of two transformations is performed based on the lin-
ear interpolation of twists.

...

PHI1 = 1;
d1=-0.7;
M1 = d1*d1_vec;
?Twist1 = -PHI1 / 2 *(L1+e*M1);

Motor1 = exp(Twist1);

:Green;
:Motor1* Earth1 * ~Motor1;

PHI2 =Pi/2;
d2=-0.1;
M2 = d2*d2_vec;
?Twist2 = -PHI2/2*(L2+einf*M2);

Motor2 = exp(Twist2);

:Magenta;
:Motor2* Earth1 * ~Motor2;

:Blue;
?LinComb_LOG = (1-t)*Twist1+t*Twist2;

?LinComb = exp(LinComb_LOG);
:LinComb* Earth1 * ~LinComb;

The twists Twist1 and Twist2 and the motors Motor1
and Motor2 are computed according to equation 47.
LinComb_LOG is related to the linear interpolation of the
two twists dependent on the continuously changing parame-
ter t. It has to be exponentiated in order to describe a motion.

17. Kinematic chains

Objects like robots or virtual humans can be modelled as a
set of rigid links connected together at various joints. These
objects are described as kinematic chains.
In the following CLUScript example
KinematicChain.clu a robot with 5 degrees of
freedom ( DOF ) is visualized. With help of sliders you are
able to change the 5 angles θ1,θ2,θ3,θ4,θ5.
In the include file robot_globals.clu all the robot

parameters are described.

len = (0.8, 0.7, 0.6, 0.0, 0.3);
rad = (0.2, 0.15,0.08,0.07,0.04);
angle=( 0, -1, -0.4, 0.5, 0 );
rot_direction = (9,0,0,0,0);

Each cylindrical link is described with help of its length and
radius. Each joint is described by a direction of rotation and
the default joint angle.

The function computeRotation in the include file
Environment.clu is responsible for computing
the local rotations of each joint dependent on the direction
of rotation and the angle.
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Figure 27: KinematicChain.clu

computeRotation = {
// evaluate the rotor dependend on
// _P[1] : the direction of rotation
// _P[2] : the angle
if (_P[1] ==0) {

Rot = RotorN3(1,0,0, _P[2]);
}
else {

...
}

}

The rotations are computed with help of the CLUCalc func-
tion RotorN3. The first 3 parameters mean a 3D rotation axis
and the last one describes the angle.
The function computeTransformation in the include file
Cylinder.clu is responsible for computing the chain of
transformations for the different joints.

computeTransformation = {
_idx = _P[1];
computeRotation(rot_direction[_idx],

angle[_idx]);

...

M=M*TranslatorN3(0,0,len[_idx-1])*Rot;

...
}

M is the global transformation accumulated with all the local
transformations. Each local transformation consists of the
translation dependent on the length of the relevant link and
the rotation of the relevant joint computed by the function
computeRotation().

18. Inverse Kinematics

In the previous section we determined the position and ori-
entation of a robot gripper in terms of the joint angles. This

section is concerned with the inverse problem of finding the
joint angles in terms of a position and orientation.
In Conformal Geometric Algebra, this so-called inverse
kinematics can be done in a geometrically very intuitive
way because of its easy handling of intersections of spheres,
circles, planes etc.
In the following CLUScript example
InverseKinematics.clu we show the inverse
kinematics of the 5DOF robot of the previous section. With

Figure 28: InverseKinematics.clu

help of sliders you are able to change the target position
pt of the gripper while the orientation of the gripper is
determined by the plane PIt
This approach is based on the paper [BCZE04]. With help
of some check boxes you are able to visualize the different
steps of the algorithm.

18.1. Step 1

In the first step point p2 is calculated.
p2 is the joint location of the last link of the robot.

St = pt - 0.5*len[5]*len[5]*einf;

This means that it has to lie on the sphere St with the center
point pt and with the length of this link as radius. Please
refer to table 6 for details.

zt = St^PIt;

Since the gripper also has to lie in the orientation plane PIt ,
we have to intersect it with St . The result is the circle zt .
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Figure 29: InverseKinematics.clu, Step 1

jz_dual = zt^einf;
ly_dual=e0 ^ e2 ^ einf;
ly =*ly_dual;

l_proj = proj(pt,ly_dual);

ld_dual = l_proj ^ pt ^ einf;
ld=*ld_dual;

PIj_dual = jz_dual ^(ld_dual*(einf*e0));
PIj = *PIj_dual;

Since p2 also has to lie in a plane spanned by the y coordi-
nate and pt , this plane PI j is computed.

Pp2= *(PIj ^ zt);
// choose one of the two points
p2 = DissectFirst(Pp2);

Its intersection with the circle zt results in a point pair. Only
one makes sense from the mechanics point of view. We
choose it as our point p2. Please find some details on dis-
secting a point pair in section 9.2.

18.2. Step 2

In the second step point p0 is calculated.

h=len[1];
d0 = sqrt(r*r+h*h);
S0 = e0 - 0.5*d0*d0*einf;
PI0 = e2 + h*einf;
z0=S0^PI0;

p0 is the location of the first joint. It rotates on a circle in
height h with radius r.

PI1 = *(ly_dual^p2);
Pp0 = *(z0^PI1);
// choose one of the two points
p0 = DissectSecond(Pp0);

Figure 30: InverseKinematics.clu, Step 2

The intersection with plane PI1 delivers a point pair Pp0.
Again, we choose the second one.

18.3. Step 3

Figure 31: InverseKinematics.clu, Step 3

In the third step point p1 is calculated.

S1 = p0 - 0.5*len[2]*len[2]*e;
S2 = p2 - 0.5*len[3]*len[3]*e;
Pp1 = *(S1^S2^PI1);
// choose one of the two points
p1 = DissectSecond(Pp1);

Computing this point is usually a difficult task because it is
the intersection of two circles. However, using Conformal
Geometric Algebra we can determine it by intersecting the
spheres S1 and S2 with the plane PI1.
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Figure 32: InverseKinematics.clu, Step 4

18.4. Step 4

In the fourth step all the planes and lines, that are needed for
the computation of the angles of the joints are calculated.

PI3_DUAL = p1 ^ p2 ^ pt ^einf;
PI2_DUAL = e3 * I;
PI1_DUAL = *PI1;
l1_dual = p0^p1^einf;
l2_dual = p1^p2^einf;
l3_dual = p2 ^ pt ^ einf;

18.5. Computation of the joint angles

Now, we are able to compute all the joint angles

angle[1]=
Pi/2-computeAngle(PI1_DUAL, PI2_DUAL);
angle[2]=
-computeAngle(l1_dual, ly_dual);
angle[3]=
computeAngle(l1_dual,l2_dual);
angle[5]=
Pi-computeAngle(PI1_DUAL,PI3_DUAL);
angle[4] = -
computeAngle(l2_dual, l3_dual);

with help of the function

computeAngle = {acos ( (_P[1] . _P[2])
/(abs(_P[1])*abs(_P[2])) )}

Please find some details on the computing of angles in sec-
tion 9.3.

19. Dynamics

Since a time dependent versor D = D(t) describes the rigid
body motion, its time derivative Ḋ(t) is needed for the gen-
eralized screw velocity that we are able to split into the well-
known angular velocity and translational velocity.

For the purpose of dynamics also the second derivative is
needed. The dynamical equation for combined rotational and
translational motion takes the compact form

Ṗ = F (50)

with P as comomentum and F as coforce.

For details please refer to [DDL02]. In chapter 19, Hestenes
and Fasse describe the basics of rigid body mechanics in
Conformal Geometric Algebra.
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PART FIVE

Implementation and Performance of
Geometric Algebra

Daniel Fontijne & Leo Dorst

We describe and compare several approaches to imple-
menting a numerical Geometric Algebra package. We also
compare the performance and elegance of implementing ge-
ometry using Geometric vs using linear algebra in a ray trac-
ing application.

20. Introduction

In this short paper we give an overview of existing ap-
proaches to developing numerical, low dimensional Geo-
metric Algebra implementations. Low dimensional because
these approaches fail to be practical beyond 8D or 9D Ge-
ometric Algebras. However, typical computer graphics ge-
ometry problems require 3, 4 or 5 dimensional GAs, so this
limitation of scope should not be a problem.

We focus mainly on the run time performance of the im-
plementation because efficiency is still very important for
computer graphics and related areas. A typical remark after
a Geometric Algebra from a game developer or computer
graphics programmer is ’I learned some useful techniques,
but why present this if it is slower than linear algebra’.

The packages we consider are GABLE [MDB01], GAP
[ZD03], CLU [Per02], NKlein [Fle], Gaigen [FBD01], Clif-
ford [Sut03] and Gaigen 2. The performance difference be-
tween these packages turns out to be in the order of several
magnitudes.

We also compare the use of Geometric Algebra to the use
of traditional linear algebra in the context of a ray tracing
application. We implemented a simple ray tracer five times,
where the only difference between the implementations was
the way we did the geometry. This allows us to compare the
efficiency of the various ways of doing geometry and the
elegance of the equations used implement the geometry.

21. Issues in Efficiently Implementing a Numerical
Geometric Algebra Package

There are four issues inherent to Geometric Algebra that
complicate its efficient implementation. Three of these is-
sues are a consequence of the fact that GA is a very rich
mathematical language. This richness is to the advantage of
GA user, but it complicates the job of the implementation
developer. The issues are

scalars point pairs free vectors
5D pseudoscalar circles free bivectors
the point at infinity spheres free trivectors
points flat points tangent vectors

lines tangent bivectors
planes tangent trivectors

Table 7: Blades in the conformal model. See [Dor03] for a
formal classification of these blades.

1. The large number of primitive objects: In theory, we need
only one primitive in Geometric Algebra: the multivector.
However, this is similar to stating the only car you’ll ever
need is a tank. While the multivector can contain and rep-
resent any other primitive, it is usually much slower in
use than specialized primitives such as a ’3D bivector’
or a ’5D versor’. Introducing specialized primitives can
be useful for several reasons: it is more efficient to store
and compute with such a specialization: they require less
coordinates to be represented and hence less operations
when computed upon. Also, the GA user thinks in terms
of specific (groups of) primitives instead of the general
multivector.
The first classsification of specialized primitives we make
is based on grade. In 3D, we distinguish scalars (grade
0), vectors (grade 1), bivectors (grade 2) and trivectors
(grade 3). The are also odd (grade 1 and 3) and even ver-
sors (grade 0 and 2).
The second class of primitives arises once we introduce
basis vectors with some special meaning or inner product.
For instance, in the conformal model, the special defini-
tion of points introduces a whole array of primitives (see
table 7). Compare this to traditional use of linear alge-
bra for doing geometry, where the computational primi-
tives are limited to scalars, matrices, vectors and possibly
quaternions.

2. The large number of basic operations. Table 8 lists some
basic operations that every GA implementation should
provide.

3. The arbitrary definition of the inner product: In Geomet-
ric Algebra, it is common to use vectors that have a 0 (i.e.,
null vectors) or negative inner product with themselves.
Even reciprocal basisvectors are used. E.g., the confor-
mal model uses e0 ·e0 = 0,e∞ ·e∞ = 0,e0 ·e∞ = −1.
Arbitrary definition of the inner product complicates effi-
cient implementation because the inner products can not
easily be ’hard coded’.

4. The large number of coordinates required to store a high
dimensional Geometric Algebra primitive with respect
to a basis. A n-dimensional Geometric Algebra requires
2n coordinates. Of course, this is only a problem if the
GA implementation developer chooses to represent the
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geometric product outer product
Hestenes inner pr. modfied Hestenes inner pr.
left contraction right contraction
scalar product commutator product
meet join
projection rejection
exponent logarithm
add subtract
negation reversion
inversion dualization
grade involution clifford conjugate

Table 8: Some common Geometric Algebra operations.

// a = dual circle, b = dual sphere,
// c = intersection of circle & sphere
void c3gai_opt_04_op_02(const float *a,

const float *b, float *c) {
c[0]=a[2]*b[0]-a[1]*b[1]+a[0]*b[2];
c[1]=a[4]*b[0]-a[3]*b[1]+a[0]*b[3];
c[2]=a[5]*b[0]-a[3]*b[2]+a[1]*b[3];
c[3]=a[5]*b[1]-a[4]*b[2]+a[2]*b[3];
c[4]=a[7]*b[0]-a[6]*b[1]+a[0]*b[4];
c[5]=a[8]*b[0]-a[6]*b[2]+a[1]*b[4];
c[6]=a[8]*b[1]-a[7]*b[2]+a[2]*b[4];
c[7]=a[9]*b[0]-a[6]*b[3]+a[3]*b[4];
c[8]=a[9]*b[1]-a[7]*b[3]+a[4]*b[4];
c[9]=a[9]*b[2]-a[8]*b[3]+a[5]*b[4];

}

Figure 33: A function taken from the bowels of source code
generated by Gaigen. It computes the intersection of a circle
and a sphere in the conformal model.

multivectors on such a basis instead of using some other
method.

The combination of the number of primitives with the
number of operations make it a hard task to achieve opti-
mal efficiency. Table 7 lists 16 primitives for the conformal
model alone (omitting the versors, that can represent all con-
formal (angle preserving) transformations!). A binary oper-
ation on these primitives allows for 16x16=256 combina-
tions. Given about the same number of basic binary oper-
ations leads a number of functions in the order of 103 to 105,
when versors specialization are also included. These func-
tions can grow quite large (not to mention boring) because of
the number of coordinates required to represent a primitive
grows as the dimensionality of the algebra grows. E.g., figure
33 shows a function generated by Gaigen that computes the
intersection of a circle and a sphere in the conformal model.

Efficient implementation by hand, as is often done for low
dimensional linear algebras, is close to impossible.

We must note that the ’optimal performance’ we are re-
ferring to depends heavily on how much flexibility the GA

user is willing to sacrifice. For instance, if a users wants to
use only general multivectors, many types of optimizations
are barred by that choice. But by programming explicitly in
terms of highly specialized primitives (e.g. lines, spheres),
the user sacrifices some of the flexibility of Geometric Alge-
bra: many GA algorithms will work for many types of prim-
itives and this stimulates to think and program in terms of
families of primitives instead of specific instances. However,
it is possible to define functions over multivectors and then
specialize them for specific primitives.

In general, the more information the programmer using
GA is willing to specify at compile time, the more optimiza-
tions can theoretically be applied by the Geometric Alge-
bra implementation. An analogy to this is type systems in
programming languages: a dynamic (run-time) type systems
is versatile but slow, a static (compile-time) type system is
more restrictive but also more efficient.

22. Approaches to Implementing a Numerical
Geometric Algebra Package

22.1. Matrix based

Most of the basic operations of Geometric Algebra are lin-
ear, and linear operations can be implemented using matrix-
vector or matrix-matrix multiplication. Suppose we want to
implement a 3D GA. The general multivector is then repre-
sented using 8 coordinates. Then, to compute the geometric
product AB, we fill a 8×8 matrix [AG] in the right way (see
figure 34 for an illustration, and [MDB01] for the details).
We can then compute the geometric product by multiplying
this matrix with a vector [B] appropriately filled with the co-
ordinates of B. We can even multiply two of these matrices,
and the resulting matrix can be immediately used to compute
another geometric product: e.g., ([AG][BG][C]).

To compute the product derived from the geometric prod-
uct, specific entries in these matrices are set to zero accord-
ing to the rules that define the products. This allows us to
compute outer products, inner products and scalar products.

Addition and subtraction and most unary operations are
trivial to implement. Inversion can be performed using ma-
trix inversion.

This is, in short, how GABLE works. The upside of this
approach is that this a simple and effective way to implement
GA. The downside is that it is slow, wastes memory and does
not scale well with the dimension of the algebra. All of this is
due to the large matrices involved in computing the products.
[MR02] implemented an algorithm for computing singulari-
ties of 3D vector fields with Geometric Algebra in GABLE.
That same algorithm ported to Gaigen (below) ran approxi-
mately 6000× faster.
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[AG] =




+As +A1 +A2 +A3 −A12 −A13 −A23 −A123
+A1 +As +A12 +A13 −A2 −A3 −A123 −A23
+A2 −A12 +As +A23 +A1 +A123 −A3 +A13
+A3 −A13 −A23 +As −A123 +A1 +A2 −A12
+A12 −A2 +A1 +A123 +As +A23 −A13 +A3
+A13 −A3 −A123 +A1 −A23 +As +A12 −A2
+A23 +A123 −A3 +A2 +A13 −A12 +As +A1
+A123 +A23 −A13 +A12 +A3 −A2 +A1 +As




Figure 34: Geometric product matrix for 3D Euclidean multivector A. Notation: A12 is coordinate A that refers to e1 ∧ e2.

22.2. Run-time Configurable

A number of implementations (GAP[ZD03], CLU[Per02],
NKlein[Fle], and a hardware implementation [PGS03]) use
more or less the following approach: First, the programmer
who wants to use GA defines a vector space through some
kind of datastructure. This definition includes the dimen-
sionality of the space, the signature of the basis vectors and
possibly some extra information like the names or canonical
order of these basis vectors.

Given the space, basis blades can be defined, which in
turn can summed (that is, stored in lists or arrays) to create
general multvectors or any other primitive GA object. Com-
monly, each coordinate is accompanied by a bitmap that in-
dicates what basis blade it refers to.

To compute the products, one iterates over the basis blades
of both operands and computes the required product for the
every pair of basis blade. This computation can be done
using a precomputed multiplication table or entirely at run
time. The definition of the vector space is required for such
computations, since that defines the outcome of the inner
products. The results of the loop are summed, to acquire the
final result of the product.

Many other basic operations are also implemented for
each (pair of) basis blade, and to compute such operations
for a multivector or other primitive, one simply iterates over
each blade of the (pair of) multivectors. For lack of a bet-
ter name we call this class of approaches ’run-time config-
urable’.

This approach is faster than the matrix approach. In most
of these implementations it is easy to represent sparse multi-
vectors efficiently. This saves both memory and computation
time. It is also a very intuitive and versatile implementation
method. However, due the explicit iteration over the individ-
ual basis blades, this type of implementation is far from opti-
mal. The loops cause many misprediction branches. Bench-
marks presented in section 24 will show that this approach
is in the order of 100× slower than traditional hand coded
linear algebra.

22.3. Generative Programming

The third class of approaches we discuss here is genera-
tive programming [CE00]. Generative programming means
that you write a program that outputs programs according
to some specification in a domain specific language. This
can be achieved in several ways. The most explicit way is
to write a program that outputs source files that are then
compiled by an ordinary compiler. This is what Gaigen and
Gaigen 2 do. Another approach is the use of template meta-
programming techniques. Here, the template capabilities of
C++ are used to let the C++ compiler generate the required
code at compile-time. This is what Clifford does.

22.3.1. Gaigen

Gaigen stands for Geometric Algebra Implementation Gen-
erator [FBD01]. Gaigen takes a definition of a Geometric
Algebra and turns this into C++ code that implements this
definition. This removes the need for explicit loops at run-
time that were required with the run-time configurable ap-
proaches.

The definition of the algebra includes the dimensionality
of the space, and the names, order and signature of the basis
vectors, and what products and other operations are required.

Gaigen generates from this definition a C++ class that im-
plements the general multivector. However, this general mul-
tivector class exploits sparseness of blades and versors by
storing only grade parts that are not zero. To make this pos-
sible, each multivector variable contains a bitfield that tracks
what grade parts are (non-)zero.

Particular about Gaigen is its use of a profile guided op-
timization (PGO) step that allows for optimization of the
generated code: once a full application that used has been
Gaigen has been developed, the program is run with PGO
enabled and Gaigen then counts what combinations of op-
erations and primitives are used. Using this information it
regenerates the code that implements the most-used combi-
nations of operations and primitives more efficiently. A typ-
ical piece of code generated by Gaigen is shown in figure
33.

Gaigen is pretty efficient (about 25× faster than CLU),
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but about 3× slower than optimal code. This non-optimality
of Gaigen is mainly caused by the run-time tracking of
which grade parts are non-zero: this requires conditional
jumps that are not required in truly optimal code.

22.3.2. Gaigen 2

Gaigen 2 is currently under development. It targets to be
an optimally efficient Geometric Algebra implementation
for multiple programming languages. The user of Gaigen 2
will not only provide the definition of the vector space, but
also definition of specialized primitives and their properties
(like bladedness). Using this information Gaigen 2 generates
an implementation for the requested output language (C++,
Java, Matlab).

Like its predecessor, Gaigen 2 also uses a PGO step to
find out what functions are called on what types of primi-
tives by the program. Given the profile information, Gaigen
2 regenerates the source code, which will this time result in
near optimal run time performance.

Additionally, the user can write functions in Gaigen 2’s
own programming language. For instance, the user can de-
fine some function over general multivectors. When this
function is called with specialized primitives as arguments,
Gaigen 2 will generate an optimized version of the function
specifically for those arguments.

Gaigen 2’s own programming language is C-like. How-
ever, it supports Geometric Algebra directly. For Geomet-
ric Algebra types, the precedence of the operators (see table
9) is handled correctly. Optimizations that Gaigen 2 will be
able to perform on functions written in its own language in-
clude:

• algebraic manipulations to simplify expressions,
• generating very efficient code for exponentiation and

taken a logarithm of a versor (this is useful for interpo-
lation of transfomations in computer graphics),

• detecting linear operations and implementing those as
matrix-vector multiplications when that is more efficient.

• detecting piece of code that operate only in a subspace of
the algebra and taking advantage of that by switching to
appropriate (lower dimensional) basis.

22.3.3. Clifford

Clifford [Sut03] is a C++ implementation of Geometric Al-
gebra that uses template meta-programming and expression
templates (see e.g., [VJ02]). This means that the C++ com-
piler gets to do the code generation work by expanding a
set of templates and template classes that define the algebra,
its primitives and its operations. Meta-programming and ex-
pressiong templates have also been used to implement linear
algebra [CE00] and tensor algebra [Lan02] efficiently.

This time, a traits class is used to define the vector space
(dimensionality of the space, signature of the basis vectors).

∧ outer product

& meet
| join

· inner product

geometric product

+ add
- subtract

Table 9: Precedence order of the operators in Geometric
Algebra. The outer product ∧ is the most important oper-
ator since it is used to construct the blades. Note that this
precedence order is entirely different from standard prece-
dence order used for integers and floats, and that the ’space’
operator is used for the Geometric Algebra.

This definition is used as a template argument to the tem-
plates that implements the multivector and the operations. At
compile-time, the compiler expands the templates and this
results in just the right code for the job. This is combined
with expression templates to further increase efficiency.

This way, Clifford generates optimal code for most sit-
uations (equal or exceeding traditional linear algebra effi-
ciency).

A disadvantage of this approach is that it works only for
programming languages that allow for ’Turing Complete’
template meta programming. Compilation of code can be
quite slow (due to the compile time template expansion) and
a standards compliant compiler is required (luckily, the qual-
ity of C++ compilers w.r.t. to the C++ ISO standard has in-
creased over the last few years).

Unfortunately, the status of the Clifford source code is un-
certain to us. The source code has disappeared from its re-
spective website [Sut03] and a request for set of benchmarks
of Clifford v.s. Gaigen in a ray tracer application (section 24)
went unanswered.

22.4. Direct Integration into Programming Language

Optimal efficiency combined with maximum user satisfac-
tion can only be achieved by directly integrating Geomet-
ric Algebra into programming languages. Compiler for these
languages will have total control over the optimization pro-
cess. Precedence of the Geometric Algebra operators can be
handled correctly. No profile guided optimization or long
template compile times will be required anymore.

We realize that new languages don’t get into mainstream
use overnight, but still, we entertain the idea that some day
there might be a language designed (amongst others) for do-
ing numerical and geometric computations that supports lin-
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ear algebra, Geometric Algebra and tensor algebra directly,
or at least seamlessly.

22.5. Summary Pro / Cons of the approaches

• Matrix based

– pro: simple.
– con: slow.

• Run time configurable

– pro: versatile, can be implemented in most languages.
– con: not very efficient.

• Code generation (like Gaigen)

– pro: very efficient, can be implemented in many lan-
guages. With built-in language can get precedence of
operators right.

– con: requires PGO, requires separate program (the
code generator). Building a code generator takes a lot
of time.

• Code generation (meta programming)

– pro: very efficient, requires no extra tools.
– con: limited to few languages (and sturdy compilers),

long compile times. Hard to implement and debug.

• Direct integration into programming language

– pro: optimally efficient, gets precedence of operators
right.

– con: compiler extensions required.

23. Geometric Algebra Hardware

Little research has been done on implementing Geometric
Algebra directly into hardware. The only research known to
us is [PGS03]. A field programmable gate array (FPGA) was
used as co-processor that can compute geometric products.
Central to the design was a basis blade pipeline that could
compute geometric products for individual basis blades. The
results of these were summed afterwards. Multiple basis
blade pipelines could be used in parallel, but due to hardware
limitations, only one pipeline could be implemented on the
FPGA. Benchmarks indicated that the single pipeline ver-
sion is about as fast as Gaigen, given that the FPGA would
operate at the same clockspeed as the CPU that Gaigen ran
on.

Another approach to hardware implementation could be
SIMD instructions fit for doing Geometric Algebra. How-
ever, the low level code for computing the products from
Geometric Algebra resemble traditional cross products (or
computing (sub-)determinants, if you will). CPU SIMD in-
struction sets (such as Intels SSE) are designed mostly for
matrix-vector multiplications. They lack efficient ’swizzle-
negate’ hardware that enables computing these products ef-
ficiently.

Current graphics processors (GPUs) do have zero-cost
swizzle-negate hardware and thus are a great target for doing
fast Geometric Algebra computations. Geometric Algebra
could easily be integrated into high level shading languages.
It could also be used in compilers that intend to use GPUs as
general purpose processors (e.g. BrookGPU, see[BFH∗02])

The conformal model seems to be especially fit for hard-
ware implementation. It is by nature more parallel than the
traditional way of doing geometric computations. For in-
stance, the code in figure 33 could theoretically execute in
three cycles (multiply, add, add). However, this would re-
quire very wide SIMD hardware and fast memory access to
get the 10 coordinates of the circle and the 5 coordinates of
the sphere into the processor in time.

24. Performance and Elegance of Five Models of
Geometry in a Ray Tracing Application

Computations of 3D Euclidean geometry can be performed
using various computational models of different effective-
ness. We decided to compare five alternatives, from plain
old 3D linear algebra to the 5D conformal model using Ge-
ometric Algebra. We wanted to compare them not just theo-
retically, but by showing how you would implement a simple
recursive ray tracer in each of them. The project was meant
as a tangible case study of the profitability of choosing an
appropriate model, investigating the trade-offs between ele-
gance and performance for this particular application.

This section is a summary of the full paper [FD03] and
more information and source code can be downloaded at
[FD02].

The models we compare are: 3D linear algebra (3D LA);
3D Geometric Algebra (3D GA, which naturally absorbs the
quaternions into 3D real geometry); 4D linear algebra (4D
LA, i.e. the familiar homogeneous coordinates extended with
Plücker coordinates); the 4D homogeneous model (4D GA, a
Geometric Algebra which naturally absorbs Plücker coordi-
nates of lines and planes into homogeneous computations);
and the 5D conformal model (5D GA). We picked both 3D
LA and 4D LA because we wanted a basic and an advanced
mainstream model as baseline. We selected 3D GA and 4D
GA because they are the (improved) GA variants of the 3D
LA and 4D LA models. The 5D GA model is used to demon-
strate what kind of improvements are possible with more so-
phisticated models.

Our reasons for choosing a ray tracer as benchmark are
the following. 1) Everybody familiar with computer graph-
ics knows how a basic ray tracer works, and possibly has
implemented one. 2) Implementing the core of a ray tracer
can be done with relatively little code, which was important
to us, since we were going to write many different imple-
mentations of the same algorithm. 3) A ray tracer contains
a diverse selection of geometric computations, like rotation,
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3D LA 3D GA 4D LA 4D GA 5D GA

Figure 35: The same result can be achi eved in many ways. These images are identical, but each one was rendered using a differ-
ent model of 3D Euclidean geometry. The scene consist of 5 objects modeled with about 7800 triangles: a textured/bumpmapped
teapot, a transparent drinking glass, a reflective sphere , a red diffuse sphere, and a textured/bumpmapped piece of wood.

model implementation rendering time executable size run time memory usage

3D LA standard 1.00×(0.99s) 52KB 6.2MB
4D LA standard 1.22× 56KB 6.4MB
3D GA Gaigen 1.86× 64KB 6.7MB
4D GA Gaigen 2.62× 72KB 7.7MB
5D GA Gaigen 4.58× 100KB 9.9MB
3D GA CLU 72.0× 164KB 12.6M
4D GA CLU 97.1× 176KB 14.7MB
5D GA CLU 178.0× 188KB 19.0MB

Table 10: Performance benchmarks run on a Pentium III 700 MHz notebook, with 256 MB memory, running Windows 2000.
Programs were compiled using Visual C++ 6.0. All support libraries, such as fltk, libpng and libz were linked dynamically to
get the executable size as small as possible. Run time memory usage was measured using the task manager.

3D LA 3D GA 4D LA 4D GA 5D GA

Figure 36: Summary of the representation of a line and the intersection of a line and a plane in 5 models of Euclidean Geometry.
See the full matrix at [FD02].
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translation, reflection, refraction, (signed) distance compu-
tation, and line-plane and line-sphere intersection computa-
tions. This allows us to show by example how to perform
these computations in different models. But we emphasize
that our main goal was to compare frameworks for represen-
tation and computation of geometry in some practical situa-
tion, not to build a ray tracer per se. The resulting ray tracer
is not a marvel of contemporary computer graphics; yet it is
sufficiently sophisticated to render images such as figure 35.

Table 10 gives benchmarks for the 5 ray tracer implemen-
tations (+3 extra where CLU was used instead of Gaigen).
Our conclusions as far as performance goes were the follow-
ing:

• More refined models of geometry are less efficient. The
conformal model is about 2.5× slower than 3D GA. The
penalty for the 4D models was less severe.

• Gaigen is not as efficient as hand coded linear algebra.
Since 3D GA and 3D LA use (on a low level) the same
operations, the 1.86× slowdown of 3D GA is entirely due
to Gaigen.

• If we assume that we could improve Gaigen to match the
performance of 3D LA for the 3D GA case, then we can
extrapolate that, without further optimizations, the confor-
mal model should be about 2.5× slower than 3D LA.

• CLU is a far from optimally efficient GA implementation
(both in processing time and memory).

On the elegance side of the equation we see great im-
provements by using more refined models. Figure 36 shows
an two examples. The top example shows how a line is rep-
resented in each of the 5 models. In 3D LA and 3D GA the
line is represented in terms of two separate vectors. The 4D
models improve on this by having a separate primitive for
representing lines, although 4D LA lacks the ability to ex-
press this in a coordinate free way. 5D GA generalizes the
line representation in a way that also allows for circles.

The bottom example in figure 36 shows the improve-
ments for the computing the intersection point of a line and a
plane. The computations in the 3D models are basically the
same, and quite involved. Both 4D models compute the same
thing, but again the speech impediment of 4D LA/Plücker
coordinates leads to an involved equation. 5D GA general-
izes the equation of 4D GA so it works on line/circles and
planes/spheres.

25. Conclusion

GA implementation is still in a state of flux. There is no sin-
gle do-it-all implementation that is easy to use, optimally ef-
ficient and available in several programming languages, all
at the same time.

However, we have shown that GA is usable right now for
developing computer graphics applications by implementing
a ray tracer using GA. Performance may still lack somewhat,
but will no doubt improve in coming years.

Investment in development of advanced implementations
such as programming languages directly supporting GA or
special GA hardware may depend on the invention of some
(profitable) ’killer applications’ that are only possible using
GA.
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