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Preface

This text is meant to be a script of a tutorial on Clifford (or Geometric) algebra. It is
therefore not complete in the description of the algebra and neither completely rigorous.
The reader is also not likely to be able to perform arbitrary calculations with Clifford al-
gebra after reading this script. The goal of this text is to give the reader a feeling for what
Clifford algebra is about and how it may be used. It is attempted to convey the basic ideas
behind the use of Clifford algebra in the description of geometry in Euclidean, projective
and conformal space.

There are also many other introductions to Clifford and Geometric algebra and its appli-
cations in Euclidean, projective and conformal space. Some of these are [19, 18, 20, 16, 25,
32,15, 31, 21, 10, 26, 28, 9]. A collection of papers discussing in particular the conformal
space in detail and applications of Geometric algebra in Computer Vision may be found in
the bookGeometric Computing with Clifford Algeb{a3].

This text is separated into three main parts: "Introductions to Clifford Algebra”, "Ge-
ometries” and "An Interactive Introduction to Geometric Algebra”. The plural "Introduc-
tions” in the title of the first chapter is fully intentional, since two introductions will be
given. The first concentrates on the geometric interpretation of Clifford algebra elements
and the second on algebraic properties. The second chapter discusses the application of
Geometric algebra to projective and conformal spaces. Here we will see how Geometric
algebra can be used to represent points, lines, planes, circles and spheres. It will be shown
that intersections between any of these objects can be expressed by a single operation and
operations like reflections, rotations or inversions are equally expressed in a uniform way for
all geometric entities. The third chapter recapitulates some important aspects of Geometric
algebra in worked examples using the Geometric algebra visualizatio@taéCalc. This
chapter should be particularly helpful, since it shows you how to explore important aspects
of Geometric algebra interactively.

CLUCalc is of course not the only software available that deals with Clifford or Ge-
ometric algebra. Many software packages have been developed, because the numerical
evaluation of Clifford algebra equations becomes more and more important as Clifford al-
gebra becomes more prominent in applied fields like computer vision, computer graphics
and robotics [21, 35, 22, 30, 10, 38, 8]. There are packages for the symbolic computer al-
gebra systems Maple [1, 2] and Mathematica [5], a package for the numerical mathematics
program MatLab called GABLE [9], the C++ software library GluCat [23], the C++ soft-
ware library generator Gaigen [14], the Java library Clados [7] and a stand alone program
called CLICAL [24], to name just a few.

In 1996, one of the authors (C. Perwass), started developing a C++ library to implement
Clifford algebra operations. It has since grown to a whole suite of C++ libraries and stand
alone programs for the manipulation and visualisation of Clifford algebras. This suite is
called theCLU-Project[27]. 'CLU’ stands forClifford algebraL ibrary andUtilities. The
goal of the CLU-Project is to offer an easy to use and yet powerful interface to work with
and understand Clifford or Geometric algebra. All C++ libraries of the CLU-Project are
Open Source and thus available to everybody.



viii

CLUCalc is a user friendly frontend to these libraries. It is used in the "Interactive In-
troduction...” and is available for download from [27]. In CLUCalc you can type your
eqguations in a simple script language, cal@dUScript and visualize the results imme-
diately with OpenGL graphics. The program comes with a manual in HTML form and a
number of example scripts. There is also an online version of the manual under:

http://mww.perwass.de/CLU/CLUCalcDoc/

CLUCalc should serve as a good accompaniment to this script, helping you to understand
the concepts behind Geometric algebra visually. The&JScript s used in chapter three can
also be downloaded through the following link:

www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

By the way, CLUCalc was also used to create all of the 2d and 3d graphics in this script.
You can use it for the same purpose, illustrating your publications or web-pages, from the
version 3.0 onwards, which is now available. Some other features of CLUCalc v3.0.0 are:

e render and display LaTeX text and formulas to annotate your graphics, or to create
slides for presentations,

prepare presentations with user interactive 3D-graphics included in your slides,

draw 2D-surfaces, including the surface generated by a set of circles,

do structured programming with if-clauses and loops,

do error propagation in Clifford algebra,

e and much more...
If you want to know more details, go teww.clucalc.info or simply send an email to
help@clucalc.info

Christian Perwass
Kiel, January 2004



2.clu (modified)

A/ An sxample of imversion
Dofnimate = 0; T
= Visualization
_BGColor = White;

DefvarsH3 (] ;

SetMode (W3_IPHS, W3_SOLID);

A/ Vary Pos bstwsen -3 and 3.
?Pos = 3 - abs|(Time % 12} - &};

A/ Maks vector user adjustabls
IA = VecH3 (1) IRed;

4/ Creats largs sphesrs

/7 Draw iranspareni sphere
IColox (0.8, 0.6, 0.1, 0.6}
I51 = A - e;

/4 Draw it again as wirs—frams
IH3 WIRE;

tcolox (0.8, 0.6, 0.1};

1s1;

F7@:2r] ™ CLUCalc v2.0 by C. Perwass - Output
i = v Pos=-1.5868

Figure 1: A screenshot of CLUCalc v2.0.






Chapter 1

Introductions to
Clifford Algebra

by Dr. Christian Perwass

This chapter is separated into two main parts: "Introductions to Clifford Algebra” and
"Geometries”. The plural "Introductions” is fully intentional, since two introductions will
be given. The first concentrates on the geometric interpretation of Clifford algebra elements
and the second on algebraic properties. These two introductions also reflect the two terms
mainly used for this algebra within the research community: "Geometric Algebra” and
"Clifford Algebra”. Roughly speaking, if somebody talks about Clifford algebra, he is more
interested in the algebraic aspects. If someone talks about Geometric algebra, his interest
lies more in the geometric interpretation of algebraic entities. Here we will start with the
geometric interpretation of algebraic entities, since it is hoped that the reader’'s geometric
intuition will further the understanding.

1.1 Geometric Algebra

In this introduction we will neglect many algebraic aspects and introduce Geometric al-
gebra as an extension of the standard vector algebra. The actual algebra product is called
"geometric product but we will not start this discourse by discussing this product. Instead,

we start by introducing theiriner product and "outer product, which can be regarded as
special "parts” of the geometric product. This "top-down” approach is hoped to show the
applicability of the mathematics before giving a lot of details that may confuse the reader. If
you prefer to first understand what the geometric product is, though, then read first section
1.1.11.

In the following the termsg$calar product and “inner product will be used quite often,
and it is important to understand that in this text these two terms refer to quite different



operations. Depending on which books you have read before, you may be used to employing
these terms interchangeably. Here, a scalar product is a product which results in a scalar - no
more, no less. This scalar is in general an elemeiR pin particular it may also be zero or
negative. This may, for example, occur if the basis of the vector space we are working in is
not Euclidean. This will in fact turn up in section 2.2. The operation ternmetet product

here, may coincide with the scalar product, but represents in general an algebraic operation
which does not result in a scalar. This will be explained further in section 1.1.4. One
may also say that the scalar product is a "metric” operation, since it depends on a metric,
while the inner product is an algebraic operation, which can also be executed without the
knowledge of a metric.

So let’s start with a 3d Euclidean vector space denotelhyWe will use the coordinate
representatiorR? for E3. We assume that the standard scalar product is defindéon
It will be denoted bys. Furthermore, the usual vector cross product exist&énand
will be written as x . Recall that the scalar product gives the length of the component two
vectors have in common. The vector cross product, on the other hand, results in a vector
perpendicular to both of the initial vectors. For exampledgb, c € E?, then

axbeR and axbeE.
Furthermore,
c=axb = claandc L b.

Aplane inE? is typically represented by its normal and an offset vector. Given two vectors
that are to span a plane, the vector cross product can be used to find the plane’s normal.
However, this only works in 3d. In higher dimensions the (standard) vector cross product
of two vectors is not definéd Nevertheless, we may be interested in describing the two
dimensional subspace spanned by two vectors alsairdémensional vector space.

1.1.1 The Outer Product

Without explaining exactly what it is, we can define a Clifford algebraidh C/(R™) or
simply (4, ifitis clear that we are forming the Clifford algebra over the reals. The latter
will in fact be the case for the whole of this text.

The outer product is an operation defined within this algebra and is denoted Hgre
are the properties of the outer product of vectors. 4. db, c € E".

aAb =-bAa
(aAb)Ac =aA(bAc) (1.1)
an(b+c) =(aAb)+(aAc).
Another important property is

aAb=0 <= aandb are linearly dependent (1.2)

!Note that in an -dimensional vector space, one can define a vector cross product betwednvectors.



Let {a1,...,a;r} C R™ be k < n mutually linearly independent vectors. Then
(aihNagA...Nag) AN b=0, (1.3)
if and only if b is linearly dependent oRay, ..., a;}. The outer product ok vectors is

called ak -bladeand is denoted by
k
A<k> =ajNasA... Nag =: /\ a;.
=1

The grade of a blade is simply the number of vectors that "wedged” together give the
blade. Hence, the outer product kflinearly independent vectors gives a blade of grade
a k-blade.

1.1.2 The Outer Product Null Space

In Geometric algebra, blades, as defined above, are given a geometric interpretation. This
is based on their interpretation as linear subspaces. For example, given aaect&f ,
we can define a functiod®, as

Oa: xeR" — xANaeR").

The kernel of this function is the set of vectorsi¥® that O, maps to zero. This kernel
will be called theouter product null spacéOPNS) ofa and denoted bNO(a). That is,

kern O, = NO(a) := {x e R" : xAa=0¢c (R")}. (1.4)

We already know thak A a is zero if and only ifx is linearly dependent oa. Therefore,
NO(a) can also be given in terms af as

NO(a) = {@a : a € R},

which means that the OPNS af is aline through the origin with the direction ai. In
Geometric algebra it is therefore said that a vectdEihrepresents a line.

Given a2-bladea A b € C/(R™), wherea,b € R™, a function O, can be defined
as

Oarp: X €R" — xANaAb € U(R").
The kernel of this function is

kern Oanp = NO(aAb):={x€eR" : xAaAb=0¢cR")}. (1.5)
As before, it follows that the OPNS ef A b can be parameterized as follows

NO(aAb)={aa+8b : (a, ) € R?}.



Hence,a A b is said to represent the two-dimensional subspadR’ospanned bya and
b, ie a plane through the origin. In general the OPNS of sém#ade Ay € C/(R") isa
k-dimensional linear subspace Bf* .

NO(Ayy) = {x€R" : x A Ay =0}.

Consider again the three-dimensional Euclidean sfigcwith a, b, c € E? three mu-
tually linearly independent vectors. Henda, b, c} form a basis off3. Then

NO(aAbAc) :={xecE®: xAaAbAc=0¢c (R}
:{aa—i-ﬁb—i-’chE?’ (o B, ’y)ERB’}.

Therefore, the OPNS ah A b A ¢ is the whole spacé&?. Since the OPNS of the outer
product of any basis oE? is the whole spac&?, the blades created from different bases
have to be similar. In fact, they only differ by a scalar factor. A blade of grade some
C/(R™) is called apseudoscalar’Pseudoscalar” because all pseudoscalars only differ by a
scalar factor, just like the scalar elemeng& C/(R"™).

Aside. Note that the fact thaNO(A4,,, € C/(R")) = R", implies that no
blades of grade higher than can exist inC/(R") .

1.1.3 Magnitude of Blades

On the Euclidean spacB™ the norm typically used is thd, norm. This is defined in
terms of the scalar product. Late E™, then

llal|2 := va*a. (1.6)

This norm can also be extended to blade€4(E™) . We will not give a proper derivation
here, but try to motivate the definition. In the following we will also ysé instead]||.||2
for brevity. Leta,b € R? and denote byb- and bl the parts ofb = bt + bl that are
perpendicular and parallel to, respectively. Then

aAb =aAa (bt +bl)

_ 1 I

—aAb-+aAb (1.7)
=0

=aAbtl.

Similarly, for any k -blade A,y = /\f:1 a;, we can find a set ok mutually orthogonal
vectors{aj, ..., a, }, such that



Now, it may be shown thét

k k

[T@)2=1] 14l (1.8)
=1

i=1

Ay | = 1Ayl =

with £ > 0. Since the{a;} are mutually orthogonal, the norm or magnitudeAy,, is the
"volume” spanned by them. Fdt = 1 this reduces to the norm of a vector.

l[alll[b]| sin(©)

Figure 1.1: Area of bivector.

An illustrative example is the norm of 2-blade (also calledbivector). The bivector
aAb € C/(R") may also be written aa A b', whereb is the component ob that is
perpendicular taa. Then|/b*| = siné ||b||, with § = Z(a,b). Therefore,

laAb] = [lanb| = |la]| |[b] sin,
which is the area of the parallelogram spannecbgndb.

Now consider an x k matrix A, whose columns are thga;}¥_ | c R". This will be
written asA = [ay, ..., a;]. We could now define the norm of such a matrix to be the
"volume” of the parallelepiped spanned by its column vectors. This would then be in accor-
dance with the norm of a blade of these vectors. In fact, for a m&rix [by, ..., b,],
where the{b;}? ; C R" are a basis oiR", the determinant o8, det(B) does give the
volume of the parallelepiped spanned by #fi& }”" , . Therefore, in this case,

IbiA...Aby | = det([by, ..., by)).

The unit pseudoscalar of sond@é(R™), is a blade of gradex with magnitudel and is
usually denoted by . Therefore, for example,

biA...Aby,=|biA...Ab, | I =det([by, ..., by]) L.

2In order to show this, the definition of the inner product is needed, which will be discussed later.



1.1.4 The Inner Product

Another important operation in Geometric algebra isitiveer product The inner product
will be denoted by-. For vectorsa,b € R™, their inner product is just the same as their
scalar product, ie

a-b=axb.

This may be called the "metric” property of the inner product, since the result of the scalar
product of two vectors depends on the metric of the vector space they lie in. However,
the inner product also has some purely algebraic properties for elemefti&ith) , which

are independent of the metric of the vector sp&e In the following a number of these
properties are stated without proof.

Let a,b,c € R", then the bivectob A ¢ € C/(R™). The inner product ok with this
bivector gives,

a-(bAc)=(a-b)c—(a-c)b. (1.9)

Since(a-b) and (a-c) are scalars, we see that the inner product of a vector with a bivector
results in a vector. More generally it may be shown thatior 1

XA<k> = (X-al)(ag/\ag/\a4/\.../\ak)
— (x-a2) (apANagAagA...Nag)

+ (X-ag) (a1 N as /\a4/\---/\ak) (2.10)
— etc.
k .

(=D (x-ai) [Agy \adl,
=1

7

where [A, \ a;] denotes the bladél ;y without the vectora; . Here the inner product of
a vector with ak-blade results in 4k — 1) -blade. An example of another important rule
is this

(aADb)- A<k> =a- (b . A<k>), (1.11)

with k£ > 2. More generally, the inner product of bladésy,, B, € C/(R"), with 0 <
k <1 <mn,canbe expanded as

Hence, the result of this inner product igla— k) -blade.

In comparison to the outer product we see that the inner and the outer product are an-
tagonists: while the outer product increases the grade of a blade, the inner product reduces
it.



1.1.5 The Inverse of a Blade

Similar to the formula for vectors, the inverse of a bladg,, € C/(R"), k < n, isin
general given by

Ay,
A—l — (k) ,
W Ay 112

as long a% | Ay |l # 0. Using this formula it may indeed be shown that

-1 -1
Al 'A(k> = A(k:) “Agy =1

The symbolfi<k> denotes theeverseof a blade. The reverse is an operator that simply
reverses the order of vectors in a blade. For examplé,if = /\f:1 a; then

1
A<k> = /\ a;=a,Nag_1/N\...\Naj. (1.13)
i=k

Since the outer product is associative and anti-commutative, the reordering of vectors in a
blade can only change the blade’s sign. For the reverse we find in particular

Ay = (=1)FE=D2 4. (1.14)

So, why do we need the reverse in the definition of the inverse of a blade? The answer
is, that the reverse takes care of a sign that is introduced due to the grade of a blade. As an
example consider the orthonormal bagis} of R™. From equations (1.12) and (1.10) it
follows that

(e1 A eg) . (e1 A 62) =e]- ((62 . 61)62 — (62 . eg)el)
—er(—e)
=—1.
On the other hand, obviously; - e; = 1. That is, depending on the grade of a blade (a

vector being a blade of grade), an additional sign is introduced or not. This is fixed by
the reverse. Given any bladé;, € C/(R"), then

Ay - Ay = [ Ay |7,
whereas

Agy - Agy = (D)FED2 1402, (1.15)

3The magnitude of a blade can in fact become zero in Minkowski spaces.



1.1.6 Geometric Interpretation of Inner Product

We can already get an idea of what is happening by looking at the Clifford alget®a of
C/(R?) with orthonormal basige;, es} . The outer product; A ey spans the whole space,
ie a plane. Now let’s look at the inner product@f with this bivector.

e;-(e1 Ney) =(e1-e)ex — (e1-e2) e = en. (1.16)

This may be interpreted as "subtracting” the subspace representgdflym the subspace
represented by, A es. What is left after the subtraction is, of course, perpendiculas to

More generally, lets,y,a,b € R" and let
y=x-(aAb)=(x-a)b—(x-b)a.
Now we find that
x-y =x-[(x-a)b—(x-b)a]
= (x-a)(x-b) = (x-b)(x-a)
=0.

That is, x is perpendicular toy, which again implies that the inner produxt- (a A b)
"subtracted” the subspace representedkbfyom the subspace representeddy b. This
can also be illustrated quite nicely I .

Al T

Figure 1.2: Inner product of vector and bivector.

Let P denote the bivectoa A b € C/(R3). In E3 this bivector represents a plane
through the origin, as shown in figure 1.2. A vector R? will in general have a compo-
nent parallel toP, x!, and a component perpendicular®y x*, such thatx = x/| +x=.
Therefore,

yi=x-P=xl+x).P=xIl.P

The inner produck!!- P now "subtracts” the subspace representecbyrom the subspace
represented by”, which results in a vector that lies i® and is perpendicular te, as
shown in figure 1.2.



1.1.7 The Inner Product Null Space

Just as for the outer product, we can also define the null space of blades with respect to the
inner product. Thénner product null spac€¢lPNS) of a bladeA ;,y € C/(R"), denoted by
NI(Ay) , is the kernel of the functiody ,, defined as

IA<k> :x€eR” — x- A<k> e (R, 2.17)
and thus
NI(Agy) = { x €R" : Ta,,(x) =0 € A(R") }. (1.18)

For example, consider a vectarc R?, thenNI(a) is given by
NI(a):={xeR® : x-a=0}.

That is, all vectors that are perpendicularsobelong to its IPNS. InR? the IPNS ofa

is therefore a plane of which is thenormal Earlier we already saw that the OPNS of

a bivector represents a plane. This implies that there has to be some kind of relationship
between the IPNS of a vector i and the OPNS of a bivector i¥(R?) .

1.1.8 The Dual

Let {e;,e2,e3} denote again an orthonormal basisRf. The IPNS ofe; is the set of all
vectors that are perpendicular¢g. Hence,

N]I(el) = { aes + fPeg : (Oé,ﬁ) € R? },
the plane spanned by, and e;. However, we know that this is also the OPNSegfA e3,
N(O)(eg/\eg):{ae2+ﬁe3 : (a,ﬁ)GRQ }

We may therefore ask whether there is a relation between the concepts of the IPNS and the
OPNS. Such a relation does indeed exist and it is callelity. In the following we will
see how this comes about.

Before we start with the actual calculations, we will introduce two set operations for sets
of vectors that will become quite useful. The first is the direct sum of two sets of vectors
denoted by® . Given two setsA := {a;}}_, C R" andB := {b;}\_, C R” their direct
sum is

AoB:={a;+b; eR" : 0<i<k, 0<j<I}. (1.19)
In particular this means for two infinite sets, ie one dimensional subspaces

A={aacR": acR}, and B:={3beR": feR},
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that their direct sum is the set of all linear combinations of the elements afid B . That
is,

AeB={aa+pb eR" : (a,8) eR* }.
In this spirit it makes sense also to define a "direct subtraction” between two such sets as
A@IB%::{XEA:x>|<y:0Vy€IB%}7 (1.20)

where we assume that a scalar product is defined on the elemehtswd B. Hence, the
direct subtraction removes the linear dependence on elemerisfiafm the elements of
A . Note that this is more than just to remove the element® éfom A.

Now let us return to the question of duality. First of all note that the OPN§, ois
simply

NO(e;) ={ ae; : a€R },

a line through the origin with direction; . The direct sum ofNO(e;) and NO(ez A e3) is
the whole spac&®?,

N@(el)@N@)(eg/\eg) = { ael + [Bey+ves : (a,ﬁ,’y) e R3 } = R3.

and, in particular, "removing” the linear dependencel@(e;) from R3 gives
N@(eg AN e3) ,

NO(ez A e3) = R? © NO(ey).

With respect toR?, NO(e;) may therefore be called trrwmplemenset toNO(ez A e3) .
Furthermore,

Nl(e;) = R © NO(ey).
The question now is: can we find an operationCitiR™) which transforms any blade
Ay € CU(R™) into a complementary bladB,,_, € C/(R"), such that
NO(Apy) = R" © NO(B,—y)-

Such an operation does indeed exist and is calleditiad The dual of a multivectord €
C¢(R™) is written A* and is defined as

A = AT (1.21)

where I~! is the inverse unit pseudoscalar 6fR"). It is a nice feature of Geometric
algebra that the dual can be given as a standard product with a particular element of the
algebra. However, this has also the drawback that the dual of the dual of a multivector may
introduce an additional sign. That is,

(A =(A-17Y -1t =A1" 171,
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Why the last step in this equation works will be shown later on in equation (1.31), page
18. If we believe this equation for the moment, then it shows that an additional sign is
introduced whenevef ! - I-! = —1. SinceI~! is an-blade inC/(R") we know from
equations (1.14) and (1.15) that

1.1 = (_1)k(k—1)/2 ||I_1||2 — (_1)19(]9—1)/2.

With respect to the orthonormal basfe:, es,e3} of R?, the dual operation has the
following effect. Consider again the bivectes A e3 which represents the plane spanned
by e; ande, inits OPNS. The unit pseudoscalar®f and its inverse may be given as

I=eAesAes and I '=T=e3AesNeg = —1.
Now, the dual ofes A eg is
(e2Ne3)” = (exAeg) - It
=(egNeg)-(e3sNeaNep)
=ey- (e3 - (e3 A eg /\e1)),
where we used equation (1.12). We first evaluate the term within the outer brackets using
equation (1.10).
es-(esNeaAey) = (e3-e3)(eaNep)— (e3-ex)(esAer)+ (es-ep)(es Aeg)
=ey Aej.
Therefore,
(ea Ne3)” =eo-(eaNep)
= (eg-e2)e; — (e2 - e1)ey
= e;.

This is a nice example to see that the dual of a blade gives a blade complementing the whole
space. In this case

(eaAes3) A (e2Ne3)" =1,
the unit pseudoscalar. With respect to the OPNS we have
NO(e2 Aeg) ®NO((e2 Aes)™) = R3.
It is now also clear that the relation between the OPNS and IPNS is the duality. For
example, we have seen before that
N(O)(eg A e3) =R3e N(O)(el) = N]I(el).
Sincee; = (e2 Aeg)* we have
NO(ez Aeg) = NI((e2 Aeg)™).
In general we have for some bladg;,, € C/(R")
NO(Ag) = NI(A,)- (1.22)
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1.1.9 Geometric Interpretation of the IPNS

(aAb)*

aAb

Figure 1.3: Dual of plane represented by biveciox b.

We have already seen that the IPNS of some vextarR? is a plane through the origin,
wherebyn is the plane’s normal. With respect to the dual operation, it was shown in the
previous section that the normal of a plane spanned fly € R?, is given by (a A b)*.
Suppose thah = (a A b)*. The side of the plana A b from which the normakn sticks
out from is usually regarded as the "front"-side of the plane. Thus, a bivector represents a
sidedplane. For example, the normai of b A a is given by

m=(bAa)"=—(aAb)" =—n.

Hence, the plane represented by\ a consists of the same subspaceRp as the plane
represented by A b, but their front-sides point in opposite directions. This situation is
shown in figure 1.3. This also shows the relation between the vector cross product and the
outer product:

axb=(aAb)".

Aside. Note that the idea of a plane normal vector does only worR#n In

any dimension higher than three the set of vectors perpendicular to one vector
spans a higher dimensional space than a plane. Nevertheless, a bivector always
describes a plane, independent of the dimension it is embedded in.

Now that we are happy that a vector R? represents a plane with respect to its IPNS,
we can ask what the IPNS of blades of higher grade is. Consider the non-zero bivector
aAb € C(R3). In order to give its IPNS we have to find which vectorsc R? satisfy
x - (a A b) = 0. With the help of equation (1.10) we find

x-(aAb)=(x-a)b—(x-b)a.
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Since we assumed thatA b # 0, a and b have to be linearly independent. Therefore,
the above expression can only become zero if and only if

x-a=0 and x-b=0.

Geometrically this means that has to lie on the plane representeddyndon the plane
represented by, in their IPNS. Hencex lies on the intersection of the two planes rep-
resented bya and b. This shows that the outer product of two vectors represents the
intersection of their separately represented geometric entities. In terms of sets this reads

NI(a A b) = NI(a) N NI(b). (1.23)

Such an intersection line also has an orientation, which in this case is givam by)* .

NI(b)

NI(a A b)

Figure 1.4: Intersection of two planes in terms of IPNS.

Aside. Note that inR? we cannot represent two parallel but not identical
planes through the IPNS of two vectors, since all such planes go through the
origin.

The last type of blade we can discussli with respect to its IPNS is &-blade, or
trivector. As we have seen already a trivectdys, € C/(R?) is a pseudoscalar and thus
Apy = [ Al 1,
where I is the unit-pseudoscalar o¥(R3). Let A3y be given by
A<3> :=aAbAc.

If Az # 0thena, b andc are linearly independent. In order to find the IPNSA#, ,
we need to find which vectors satisfyx- A3y = 0. Using again equation (1.10) it follows
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The bivectors(b Ac), (aAc) and (aAb) are linearly independent and thes A 3, = 0
if and only if

x-a=0 and x-b=0 and x-c=0.

Geometrically this means that- A3y = 0 if and only if x lies on the intersection of the
three planes represented by b and c¢. Since all planes represented through the IPNS
of vectors pass through the origin, the only point all three planes can meet in is the origin.
Hence, the only solution fok to x - A3y = 0 is the trivial solutionx = 0 € R3. Figure

1.5 illustrates this.

NI(a)

Figure 1.5: Intersection of three planes in terms of IPNS.

1.1.10 The Meet Operation

We have seen that we can intersect subspaces quite easily, if they are represented through
the IPNS of blades. For example, two vectard € R3 represent two planes in their IPNS.

The intersection of these two planes is simply representedl/bls . (Recall figure 1.4) The
question we would like to answer in this sectionissthere an operation that evaluates the
intersection of subspaces represented through the OPNS of blades?

The short answer igies The longer answer will follow now. First we need to remember
how the OPNS and IPNS are connected. Given a bivestarb € C/(R?) representing
a plane in its OPNS, we can find the respective representation of the plane in term of the
IPNS by taking the dual of the bivector. Suppose that R? is given byc = (a A b)*,
then

NI(c) = NI((aAb)*) = NO(aAb).
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Using a so far unproven property of the inner product (equation (1.31)), we can also write

c-I =(anb)" I

where I is again the unit pseudoscalar 6f(R®). That means, in order to transform an
IPNS representation into an OPNS representation, we have to multiply with the unit pseu-
doscalar, a kind of "inverse” dual. In terms of sets,

N(O)(a/\ b) = N@(c . I) = NH(C).

Now we can see how to express the intersection of two subspaces in terms of the OPNS
of two blades. Suppose; A az, by A by € C/(R3) represent two planes in terms of their
OPNS. Let their respective normals be denotedhhy= (a; A as)* andn, = (b; A by)*.

Then in terms of the IPNS the intersection of the two planes is given oy n;. As we
have seen above, the corresponding expression of the intersection line in terms of the OPNS
is simply (n, A ny) - I. Substituting now fom, andn; gives,

[(al AN ag)* N (bl A\ bg)*] -I.
This is actually not quite the general intersection operation we were looking for, but it is

already pretty good and is thus given its own name: rdggessiveproduct. Here is the
proper definition.

Let A, B € C/(R™) be two arbitrary multivectors and ldt denote the unit pseudoscalar
of C/(R™). Theregressivegroduct is denoted by and is defined as

AVB := [A* A B*] - 1. (1.24)

For the above example this means that given the bivectors a, and by A bs, rep-
resenting two planes in their OPNS, the intersection of these planes in the OPNS is given
by

(a1 A a2) \Y (bl A b2)

Unfortunately, their is a problem. Lefe;, e2,e3} again denote an orthonormal basis
of R3. Now suppose we wanted to find the intersection of a line representeg bpd a
plane represented by A es , through their OPNS. We see immediately that siagés also
contained in the bivectogs A es, the line is completely contained within the plane and thus
their intersection should be the lirg itself. However, the regressive product gives

eV (eaNe3) = [esn(eanes)] I

(e1 Neg) Aey - T
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where I is the pseudoscalar @¥(R?). The problem is that the linBQ(e3) and the plane
NO(ez A e3) live in a 2d-subspace oR? spanned bye, and e;. The dimensione; is

of no importance for the evaluation of their intersection. Suppose now that we work in the
subalgebra?’(R?) c C/(R?), where {es, e3} give an orthonormal basis d&%. Then the
respective unit pseudoscalarfis= e; A es and I~! = e3 A ey, and we obtain

es=—e3 and (e2Ne3)" =1.

Hence, the regressive product now gives

eaV(eaAeg) =[ejA(eaNnes)’] T
=[—e3nl] 1
— —e3- 1
= €y,

which is what we want. This shows that the regressive product works, if we evaluate it in
the correct subalgebra. This notion is captured in the general intersection operation: the
meet

The meet is basically the regressive product where the pseudoscalar is chosen appro-
priately. "Appropriately” means that instead of the pseudoscalar of the whole space, the
pseudoscalar of the space spanned by the two blades of which the meet is to be evaluated,
is used. This introduces the concept of fhia.

Given two bladesA .y, By € C/(R™), then their join is aunit blade J € C/(R") such
that

NO(J) = N@(A<k>) S?) N@(B@).

The join is sometimes also written as an operator, denoted bffor example, the join of
ey andes A eg is simply

es A (82 Aeg) = ey Aes,
sincellex Aesl| =1 and

N@(eg A 63) = N@(ez) D N@(eg A 63).

Aside. Note that this definition of the join does not fix the sign.6f This is

just as for the unit pseudoscalar where we only demanded that its magnitude
is unity, but we did not say anything about its sign. We will not discuss this
problem further apart from noting that it becomes irrelevant when working in
projective spaces.

We can now define the meet in terms of the join. L&, By, € C/(R") and let
J = A<k>/\B<l> be their join. Then theneetof A, and B, is denoted byv and defined
as

A<k> \/B(l> = [(A<k> . J_l) A (B<l> . J_l)] - (1.25)
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In terms of sets this is
NO(Ag v Byy) = NO(Ayy) N NO(By).
Note that the meet is only defined for blades and it becomes the regressive product, if
the join is the pseudoscalar. Equation (1.25) can also be simplified to read

1.1.11 The Geometric Product

We have already seen a lot of features of Geometric algebra. However, so far, we managed
to avoid the actual algebra product, tpeometric productThis product will be discussed

in more detail in the Clifford algebra introduction later on. At this point only some basic
features are introduced.

The formula most often shown right in the beginning of a Geometric algebra introduction
is
ab=a-b+aAb, (1.27)

wherea, b € R™ are two vectors, and juxtaposition of two vectors, aain, denotes the
geometric productlt is important to note that this equation @nly valid for vectorsnot

for blades or multivectors in general. It might at first seem strange to add a $aalé)

and a bivector(a A b), but they are just different elements of the Geometric algebra. This
is just like for complex numbers, where a real and an imaginary part are added.

A somewhat more general form of equation (1.27) is
aBg =a- By +aA By, (1.28)
with By € C/(R™) andl >0.Forl=0,ie By a scalar, we have
a B =aA B.

In general we always have for a scalare R and a multivectorA € C/(R™) that their
inner product isdentically zero,

a-A=0.

This turns out to be a necessary definition to keep the system of operations in Geometric
algebra self-consistent.

The geometric product is associative and distributive but in general not commutative.
That is, for multivectorsA, B, C' € C/(R")

(AB)C = A(BCO),
AB+C) =(AB)+(AC),
(B+C)A =(BA)+(CA),

AB # BA, ingeneral.

(1.29)
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Two further useful properties of the geometric product are the following. Given two
bladesA .y, By € C{(R™), then

N@(A(@) N N@(Bm) =) <— A(k) B(l) = A(k) A B(l)a (1.30)
and

NO(Ary) € NO(Byy)

or N@(B@)) C N@(A(@)

Equation (1.31) for example implies that for some veciar R",
a* - I=(a-I"'Y) . IT=(@lIHYI=a(l'l)=a,

where is the pseudoscalar @?(R").

1.1.12 Reflection

So far we have seen how to construct linear subspaces using the outer product and to subtract
linear subspaces from one another using the inner product. We also now know how to
intersect linear subspaces using the meet and how to form their union with the join. We
now would like to operate on subspaces while keeping their dimensionality unchanged. For
example, rotating a line results in another line, not in a point or a plane. An operation on a
blade that does not change its grade, is calledie preserving

Without much further ado, we will look at such a grade preserving operatiora,lret
R” denote two vectors, wherebjn| = 1. Also write a = all + al, whereal is
the component ot parallel anda’ the component perpendicular 0. Note that the
following calculation is valid for all dimensions > 2 of the vector space.

nan = (na)n
=(n-a+nAa)n
=(n-a)jn+(nAa)-n+(nAa)An.
=0
So far we only applied the associativity of the geometric product and equation (1.27). Using
equation (1.10) we see that
(nNa)-n=(a-n)n—(n-n)a.

Hence,

nan =(n-ajn+(a-n)n—(n-n)a
=1

=2(n-a)n—a.
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Clearly we haven - a = n - all, and sinceall is the component oh parallel ton, we can
also writeall = ||all|| n. Thus,

nan =2(n-al)n—a

—2||al|n-a
—oal _al —al

=al —at.

That is, the component af perpendicular tan has been negated, while the parallel com-
ponentall remained unchanged. Geometrically this iefiectionof the vectora on the
line through the origin with directiom . This is illustrated in figure 1.6.

n

A

nan a=al +at

all al

Figure 1.6: Reflection of vectax on vectorn.

The really nice thing about this reflection operation is that it can be applied to any blade.
For example, given a plane as bivectdy, € C/(R3), it can be reflected in a normalized
vectorn € R? simply by evaluatinga Ay n. This is shown in figure 1.7.

Let Ay = a; Aay with aj, ay € R?, then it may in fact be shown that
nA<2> n— (na1 n) A (na2 n).

That is, the reflection of the outer product of two vectors, is the outer product of the sepa-
rately reflected vectors. By the way, this property is also callggr-morphismnot to be
confused with auto-morphism.

A blade may also be reflected on another blade. Figure 1.8 shows the reflection of a
vector a € R? on a bivectorNy € C/(R?) by evaluatingN;5yaN 5 . This operation
again results in

NgyaNpgy = al — al,

whereall anda' are this time the parallel and perpendicular componeniswith respect
to N<2> .



20

Figure 1.7: Reflection of bivectad ,, on vectorn.

Nz

]\"<2> Ei]\7<2>

Figure 1.8: Reflection of vectax on bivector N, .

The reflection operation is in fact the only operation we will ever be using in Geometric
algebra. Any other operation needed will be obtained by combining a number of different
reflections. In Euclidean space this confines us in fact to reflections and rotations about
axes that pass through the origin, as will be shown in the next section. To extend the set of
available operations Euclidean space will have to be embedded in other spaces, which will
be discussed later on.

1.1.13 Rotation

Reflections with respect to a normalized veciorare always reflections on a line with
direction n, passing through the origin. It may be shown that two consecutive reflections
on different, normalized vectora and m are equivalent to a rotation of twice the angle
betweenn andm.
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Figure 1.9: Rotation of vectas by consecutive reflections ef on n andm.

Figure 1.9 shows such a setup in 3d-Euclidean space. The normalized vectors
R? enclose an angle/(n, m) = # and define a rotation plane through their outer product
n A m. Reflecting a vectoa € R? first on n and then onm, rotates the component of
a that lies in the rotation plane b%9. The component ok perpendicular to the rotation
plane remains unchanged.

The rotation of vectot in the planen A m by an angle26 may then be written as

b=mnanm. (1.32)

From the definition of the geometric product we find that
mn=m-n+mAn

and also
nm=n-m+n/Am=n-m+ (mAn).

Since the reverse of a scalar is still the same scalar it follows
mn= (nm)".

Equation (1.32) may therefore also be written more succinctly as

b=RaR, withR:=mn. (1.33)
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Since applyingR as above has the effect of a rotatidn,is called aotor. Note that a rotor
has to satisfy the equation

RR =1,
because it would otherwise also scale the entity it is applied to. We can actually recognize
this as something familiar, by expandirig as
R =mn
—m-n+mAn (1.34)
= cosf +sinf Uy,
wheref = Z(m,n) and Uy, is the normalized version af A n, ie

m/An
Uiy := —.
@ ImAn|

From equation (1.15) we know that
Uy - Uy = (=1)*CV2 Uy |* = 1.

Since Uy squares to-1, the expression for? in equation (1.34) is similar to that of a
complex numbetr: in the polar representation

z =1 (cosf +isinb),

wherei = /—1 represents the imaginary unit ande R is the radius. For complex
numbers it is well known that the above expression can also be written as

z=r exp(if).

The definition of the exponential function can be extended to Geometric algebra, and it can
be shown that the Taylor series etp (6 U,y) does indeed converge to

exp (9 U<2>) =cosf +sinf Upy = R. (1.35)

It turns out thatR = exp(0U ) actually represents a clockwise rotation by an angle
20 in the planeU . The term "clockwise” only makes really sense in 3d-space. Here
it means clockwise relative to the rotation axis given Ujg) . If we want to represent

a mathematically positive, ianti-clockwise, rotation about an angtg, within the plane
Uy , Wwe need to write the corresponding rotor as

R=exp(—5Upy). (1.36)

Just as for reflections, a rotor represents a rotation in any dimension. A rotor can also
rotate any blade. That is, with the same rotor we can rotate vectors, bivectors, etc. It
turns out that for a rotor we also have an outer-morphism. This means that given a blade
Apy = /\f:1 a;, with {a;} ¢ R™, and a rotorR, we can expand the expressim(k>}?
as

RA<k>R= (Rallfi) A (RaQR) JARRVAN (RakR) (1.37)

Hence, the rotation of the outer product of a number of vectors is the same as the outer
product of a number of rotated vectors.
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1.2 Clifford Algebra

In the previous section we mainly discussed the geometric interpretation of elements of
Geometric algebra. However, we did not say very much about the algebra itself. We will
do this now, and since we are in the following mainly interested in algebraic aspects, we
will talk about Clifford algebra instead of Geometric algebra. Recall that these are just two
names for the same thing. The only difference is that when we talk about Geometric algebra
we would like to emphasize the geometric interpretation of the elements of that algebra.
Note that in the following we will not be a hundred percent mathematically rigorous. For
a "proper”, pure mathematical introduction see for example [15, 31, 17, 32, 25]. An even
more abstract but very interesting approach to Clifford algebra can be found in [36, 37].

William K. Clifford (1845-1879) introduced what we now call Geometric or Clifford
Algebra, in a paper entitled "On the classification of geometric algebras,” [6]. He realized
(as Grassmann did) that Grassmann’s exterior algebra and Hamilton’s quaternions can be
brought into the same algebra by a slight change of the exterior product. With this new prod-
uct, which we will call the geometric product, the multiplication rules of the quaternions
follow directly from combinations of basis vectors (more details later), while Grassmann’s
exterior algebra is not lost. Furthermore, complex numbers and the Pauli matrices, as used
in Quantum mechanics, have also a natural representation in Clifford algebra.

1.2.1 The Geometric Product Revisited

Let V" be somen -dimensional vector space over a fidid wheren is finite*. Further-
more, let a scalar product, denoted by be defined onV™. That is, for two elements
a,beVn,

axb=bxack.

Note that a Hilbert space also satisfies these properties.

The Clifford algebra ove®v™, denoted byC/(V™) or simply C/,, , is an algebra that also
contains the elements &f" and the fieldF. The algebra product is called ti@ifford
or geometricproduct and will for the moment be denoted by Later on the geometric
product will be represented by the juxtaposition of two elements. At the moment an explicit
symbol is hoped to further the reader’s understanding.

In order to clarify what we mean by algebra, here are all the axiont¥(&") . First of
all, the elements of somé&(V™), which will be calledmultivectors satisfy the axioms of
a vector space over the fielgl.

1. Multivector addition. For any two elements!, B € C/(V") there exists an element
C=A+B €l(V"), their sum.

“We will only discuss finite dimensional Clifford algebras. Infinite dimensional Clifford algebras pose some
additional problems which we would like to avoid here.
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2. Scalar multiplication. For any elementd € /(V™) and any scalarx € F, there
exists an elementA € C/(V"™), the a.-multiple of A.

Now the axioms of the vector space. In the following &#f, denoteC/(V™). Also let
A B,Cell, anda,B €F.

1. Associativity of multivector addition

(A+B)+C=A+(B+0C).

2. Commutativity

A+ B =B+ A

w

. Identity element of addition. There exists an elemefit € /,,, the zero element,
suchthatA +0=A.

IS

. Associativity of scalar multiplication
a(BA) = (af)A.
5. Commutativity of scalar multiplication

aA = Aa.

(o2}

. ldentity element of scalar multiplication. The identity element € [ satisfies

1A=A.

\l

. Distributivity of multivector sums.

a(A+ B)=aA+aB.
8. Distributivity of scalar sums.

(a+p)A=aA+ B A.

If we choose the fieldF to be the realR, then it follows from these axioms that for each
A € ¢, there exists an elementA := (—1)A such that

A-—A=A+(-A)=A4+(-1)A=(1+(-1))A=04=0.

Now we come to the axioms of the algebra product, the geometric product. Again let
A B Cell, anda,B €F.

1. The algebra is closedunder the geometric product

(Ao B) € Cly,.
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2. Associativity.

(AoB)oC=Ao(Bo().

3. Distributivity.
Ao(B+C)=AoB+AoC and (B+(C)oA=BoA+C(CoA.

4. Scalar multiplication.

aoA=Aoa=aA.

So far, all the axioms we gave simply define a fairly general algebra. What actually
separates Clifford algebra from other algebras igli@fning equationWe said before that
v c ¢(V™), which is mathematically not quite rigorous but good enough to understand
what is going on. The defining equation of Clifford algebra is that for all vecioesV"” C
(V™) the following equation holds

aoca=axa €F. (1.38)

That is, the geometric product of a vectao{multivector in general) with itself maps to an
element of the fieldf'. From now we will only consider Clifford algebras over the reals, ie
we setF = R.

In order to work with Clifford algebra we would also like to know whether the scalar
product of two different vectora, b € V" can also be expressed in terms of the geometric
product. Well, using the defining equation (1.38) we find

(a+b)o(a+b) =(a+b)x(a+b)
<= aocat+aob+boa+bob =(axa)+2axb+bxb (1.39)

= 3(aob+boa) =axb.

The expressior% (aob+boa) isalso called theanti-commutator productWe will also
write this as

aXb := % (aob+boa), anti-commutator product. (1.40)
Similarly we can also define tt@ommutator producas
axb:=1(aob—boa), commutator product. (1.41)
In the literature the commutator product of two multivecteYsB € (¥/,, would usually
be written ag A, B] and the anti-commutator product &4, B} . In this text we will use the
symbols introduced above to emphasize the operator quality of these products. By applying
the properties of the geometric product we can see immediately that the geometric prod-

uct of two multivectors can be written as the sum of the commutator and anti-commutator
product.

AoB= AXB + AXB. (1.42)
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Usually vectors inV" are expressed as linear combinations of a{ggtes,...} of
orthonormal basis vectors af". However, in this formal setting we havn't even defined
what we mean by "orthogonal”. So let’s do this now. Two vectors are said ¢sthegonal
iff

aXb=axb =0.
A set of n orthonormal vectorde;, es, ..., e,} C V" therefore has the properties,
e;Xe; =1 and eiYej = 0, 7 7& j

From this it also follows that foi # 7,

ejoe; = e; Xe; +e;Xe; = e;Xej,
(1.43)
ejoe; =e;Xe; +e;Xe; =ejXe;,

and sinceA X B = —B x A by definition, we havee; o e; = —e; o e;. This is also one

of the properties of the outer product which we introduced in equation (1.1). Now that we
know the properties of thée;}, we can take a first look at the geometric product of two
general vectors. Let, b € (/(R?) be given bya = a’e; andb = 3'e;, wherei € {1,2}.

Note that we use the Einstein summation convention here, which states that a superscript
index repeated as a subscript index, or vice versa, implies a summation over the range of
the index. In this case’e; = 37| ae; .

aob = (alel + 06262) (ﬁlel + ﬂzeg)

O[lﬂl ejoe; + Oé2ﬂ2 €9 0 62) + (04152 ejoey + Oé2,61 €9 0 e1) (144&)

<a161+a262)+<a152—a261) el oey,

boa = (ﬁlel + 62e2) (alel + a2e2)

(
(alﬁl + a2ﬂ2) _ (alﬁZ _ azﬂl) e1 0 5.

We therefore see that

Blateoe + f2a%ey0 e2) + (ﬂlozz ejoey+ f2aleyo e1) (1.44b)

aXb =l(aob+boa) =a'fl+a? =axb, (1.45a)

axb =z(aob—boa) = (alﬁQ — a2ﬁl> efoeg =aAb. (1.45Db)

N N~

1.2.2 The Basis of’,,

The question still remains what the geometric algebra of a vector space is. Given a vector
spaceR"™ with an orthonormal basige;, e, ...,e,} there are2” ways to combine the
{e;} with the geometric product such that no two of these products are linearly dependent.
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Each of these products is calledasis blade Together they form the (algebraic) basis of
Cl,(R™) denoted byB,, . This will become more clear in the following example.

From now on we will write the geometric product again by juxtaposition of two ele-
ments. For example, the geometric productAfB € (/,, will no longer be written as
Ao B butasAB.

Consider the vector spad®® with orthonormal basige;, e, e3}. A set of linearly in-
dependent combinations of these basis elements using the geometric product is for example
given by,

Bs:={ 1 ,e1 ez e eses ezer,ere, ejeses } (1.46)
~N S ——— =

scalar vectors bivectors trivector

Recall that the geometric product is associative. Hence, we can (efi¢g)e3 simply as
ejezez. Also recall thate;e; = —eje; for ¢ # j. Therefore, using a different order for the
{e;} in the basis blades can at most change the sign of the basis blades.

Given a basisB,, := {E;} of some(,,, we can write a multivector explicitly as
A=d'F;; ie€{1,2,...,2"}, (1.47)

where we used the Einstein summation convention, which, as was already mentioned above,
says that a superscript index repeated as a subscript index, or vice versa, within a product
implies a sum over the range of the index. That is,

2”

Y d'Ei=d'E; ie€{1,2,...,2"}. (1.48)
i=1

In our (/s example the elements @5 may be defined as
El = 1,

Ey :=ey, B3 := e, By = eg,

(1.49)
Es5 := ese3, Eg := egeq, Br := ejeo,
Eg := ejeqes.
Therefore, a general multivector @5 looks like this.
A = o'E;
= o'+
a’e; +aes + ates+ (1.50)

a®eses + abese; + al ejeq+

OéS €1€9€3.
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Thegradeof a basis blade is defined as the number of differerelements the basis blade
contains. Hence, the grade efe; is 2 and the grade oé;ese3 is 3. Consequently the
grade of the scalat is zero. The basis blade of highest grade in a particular geometric
algebra is called thpseudoscalaof that algebra. It plays an important role in the context

of thedual operation, as we have already seen. A linear combination of basis blades all of
some gradek is called avector of gradek or a k-vector. Thus the namenultivectorfor

an arbitrary element of a geometric algebra: it is a linear combination of vectors of different
grades.

The basis blade$E;} of some Clifford algebra¥,, satisfy the following properties.

1. There exists an identity element denotedy such that

E\E; = E;E, = E;

2. E;E, =\, Eq, Where)\i S {—1, 1}
3. E;E; = gi;* Ex, whereg;;* € {—1,0,1} and for giveni and j, g;;* is non zero

for exactly one value of:.

From these properties it follows that every basis blade of s6fpds invertible, that is for
all E; there exists ary; * such thatE;E; ' = B, 'E; = E .

Let's take a look at some examples. The following calculations employ the associativity

of the geometric product and the propeefy; = —e;e; for i # j.

E2E2 = e1ey = 1;
(1.51)

E5E5 = (6263) (6263) = —62(6363)62 = —e€geg = -1

This shows that there exist basis blades that squarelto This is an important property
that has far reaching consequences. It allows us for example to create multivectors that
behave like complex numbers, without using the imaginary usit,/—1.

For example, considei’s with pseudoscalal := ejeo. From our previous considera-
tions it is clear thatf? = —1 if eje; = eses = 1. Define two multivectors4, B € /5 as
A:= a1+ (11 and B = ay + (21 . The geometric product off and B becomes

AB = (aq+ Bil) (o + fo1)
= ajag+ BBl + arfBel + azfBil
= (12 — 162) + (12 + 1)

Comparing this with the multiplication rules for complex numbers, it shows that the multi-
vectors A, B in conjunction with the geometric product behave just like complex numbers.
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Let us now return to the properties of basis blades. Here are some examples to clarify
the third property.

E2E5 =€ (6263) = Eg
EsEg = (ege3) (ese1) = ez(ese3)e; = —ejep = —Ey (1.52)
EsEs = (egeq) (exe3) = ej(eze3)ey = ejeg = Ey

The last two equations show that basis blades do not necessarily commute. Hence, multi-
vectors may not commute.

Even though every basis blade is invertible, multivectors may not be. Consider for ex-
ample A € (/, defined asA := (1 +eq).

A? = 1(1+e)(l+e)

(1+e1+e +eep)

|
IS

(2 -+ 261)

|
NI

(1 -+ 61)

|
I

I
N

That is, A squares to itself. It can be shown that this implies tAalhas no inverse. There-
fore, if we talk about multivectors in general we cannot assume that they always have an
inverse. It can also be shown that if a multivector has no inverse there exists another mul-
tivector that multiplied with the first gives zero. For example, iete /> be defined as
B:=1(1-e;). Then

AB = ll+4e)(1-e)

NI

(1 —e1+e — e1e1)

|
W=

=0

Also note the following "curiosity”. For theosetof multivectorsClo A := {XA : X €
Cly}, A is arightidempotent, sinceX A)A = X(AA) = X A. In other words, right mul-
tiplying an element ot A with A leaves the initial multivector unchanged. Furthermore,
forall Y e C/hbA, YB = (XA)B=X(AB)=0.

1.2.3 Inverting Multivectors

So far we have mainly dealt with vectors and blades. This is mainly because they offer a nice
way to deal with subspaces. However, we have not done much with general multivectors.
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General multivectors are linear combinations of subspaces. Therefore, simple operations
like increasing or decreasing a grade are not immediately useful. Nevertheless, we may
still be interested in solving multivector equations of the typ& = B for X given A

and B, where A, B, X € (/,,. The solution is obviouslyX = A~'B. However, can

we always invert the multivectod ? And what if X has to satisfy a number of equation
simultaneously? In order to solve these problems in general, we need to look at multivectors
from a more general point of view.

Earlier we denoted the basis of a Clifford algebra by a set of basis blades. That is, the
basisB,, of (/,, is given byB,, = {E;}. Let us repeat the basic properties of &} .

1. There exists an identity element denotedmy such that
ErE; = E By = Ei,
2. E;E; = )\; E1,where); € {—1, 1},

3. E;E; = g;;* Ei,, whereg;;* € {~1,0,1} and for any giveni and 5, g;;* is non
zero for exactly one value of. Recall thatgl-j"f Ej,. implies a summation over the
range ofk whichis {1,2,...,2"}.

The last property ensures that thé&,;} are invertible. It is also the key to inverting multi-
vectors. The point is, that we can regard multivector@'aslimensional vectors, and the
geometric product is evaluated by contraction with the te@@&r.

For example, letd, B € /,, be given byA = o’E; and B = 'E;, wherea?, 3* €
R. Given the basigs, we can therefore represert and B by (a',a?,...,0*") and
(8L, 82%,...,3%"), respectively. Then the resultant multivectore ¢/, , with C = 'E;,
of the geometric product ofi and B is given by

" =a'B gi". (1.53)
Recall again that there is an implicit summation over indicesd ;. Now suppose mul-

tivectors B and C' are given, and we would like to evaluaté. We can do this by first
contracting/3’ with gijk and then inverting the resultant matrix. That s, first define

hi* = 3 gii, (1.54)
and then solve fofa?) via
i -1 7i
ol = f (h*) T =t R, (1.55)

k

where 1Y, := (h;*)~'. In future we will write the inverse of any tensar;;, " as

L par. -
Clearly, the problem with equation (1.55) is thaf* does not necessarily have an in-

verse. However, if we apply a singular value decompositiofo, we can see whether

a multivector is invertible (if no singular value is zero), if yes invert it and otherwise find

a pseudo-inverse. If a multivector is not invertible we also call siregular multivector.

With regard to the matrix:;* from above, it may be shown that the rank/of’ is always

a power of two. Sincéy;* is a 2™ x 2" matrix, also the dimension of the null spacelgf

is a power of two.
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1.2.4 Solving for a Versor

In the last section we saw how to invert multivectors if they are invertible and how to solve
multivector equations of the typelX = B. Another type of equation which we will
encounter quite frequently, is that of a versor equation. That is, we are looking for the
versorV e (¢, , which solvesV AV = B, given A4, B € (/,,. At first it might seem that

this is not a linear equation anymore, siriceappears twice on the left hand side. However,
since a versor is always invertible and its inverse is its reverse, we can write

VAV=B <= VA=BV <= VA-BV =0, (1.56)

which is again a linear equation. Unfortunately, we cannot write this equation in the form
XV =Y . Nevertheless, we can still solve this equation numerically. Before we show how
to do this, let us first see whether the solution Toris unique.

Let Up C , be a set of invertible, linearly independent multivectors that commute
with B, i.e.

Ug:={Xel,: XB=BX,3X 'el®, = XX 1=1}.
For X € Ug we therefore have
X(VA-BV)=0 < (XV)A—-B(XV)=0. (1.57)

That s, if V' is a solution toVVA — BV = 0, then so is the cosélizpV = {XV : X €
Ug}. Again we have that ifX;, Xy € Up, then (X, X3) € Ug. Hence,Ugp is the basis
of a subalgebra?(Up) C &, . Therefore, the number of elementslif is a power of
two. The following example should clarify this.

Let a,b € (/3 be two unit vectors in Euclidean 3d-spaké. We are looking for the
rotor R such thatRaR = b. We will denote the solution rotor aB,; . However, we find
that a basis set of the subalgebra that commutes with given by

U, = {1,b,b* I}, (1.58)

where I is the pseudoscalar @¥;. Note that inC/; the pseudoscalar commutes with all
multivectors. Therefore, the solution set Bfthat solvesRA — BR = 0, is the coset

UpRap = {Rap, bRap, b* Rap, I Rop }- (1.59)

The solution of RA — BR = 0 is thus not unique. If we introduce a second vector pair
{a’, b’} thatis also related byz,,a’ R, = b’, and demand thaR is a solution of RaR =

b and Ra’R = b’ simultaneously, then the solution setBfis { R, IR} . Even if we
introduce a third vector pair related by,;, as before, we cannot constrain the solution set

for R further. Instead we have to demand that the solutiorfdies in the even subalgebra

of (/5. The even subalgebra 6f3; contains all linear combinations of blades of even grade.

It is indeed a subalgebra, since the geometric product of two even grade elements results
again in an even grade element.
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We want R to lie in the even subalgebra @¥3, since this is how we usually express
a rotor: a scalar plus a bivector component. This then reduces the solution dettfor
{Ra}, sincelR,;, contains only odd grade blades: a vector and a trivector.

In fact, it is possible to evaluate a rotor from two vectors, so this analysis might seem
somewhat superfluous. However, in applications we typically have vector estimates that
contain noise and we want to find the best rotor from a set of noisy vector pairs. This can
be achieved through a numerical method.

Let us consider again the general problem, We have two multiveetois € /,, which
are related by a versdr e (/,, via VAV = B. In order to solve this problem numerically,
we again expressl, B and V as 2" -dimensional vectorsA = o'E;, B = $'E; and
V = n'E;. Then the equatio’V’ A — AV = 0 becomes

VA-BV = n'dg;j* — @’ g;i*

= ' (od gl — B g}y) (1.60)

= it
wheret;” := o/ gf; — 37 g%;. That s, in order to solve fol” we have to solve;'t;" = 0
for 7. In other words, we are looking for the null-space of the matytx ¢;* is a 2" x 2"
matrix. From the above analysis it also follows that the dimension of the solution space of
V' is a power of two. We can constrain the solution space by introducing more multivector
pairs X, Y € /, such that X — YV = 0. However, at some point we will probably
want to restrain the solution space to some subalgeb£g,0br even to certain basis blades.
This can be done quite easily by reducing the matytxin the index: appropriately.

For example, if we are looking for a rotd® , we know that it only contains a scalar and
a bivector component. Accordingly we could reduce the respective mafrix index i to
those indices that refer to the scalar and the bivector components.

This will not be discussed further here. However, a C++ implementation of this algo-
rithm is part of the CLU library. It is also used to invert multivectors in CLUCalc.
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1.3 Relation to other Geometric Algebras

Clearly, Clifford (or Geometric) algebra is not the only algebra describing geometry. In this
section we will take a look at other algebras that relate to geometry and see how they are
related to Clifford algebra.

1.3.1 Gibbs’ Vector Algebra

Basically, the inner product between vectors in Clifford algebra is equivalent to the scalar
product of vectors in Gibbs’ vector algebra. Furthermore, since the dual of the outer product
of two vectorsa, b € R3 gives the vector perpendicular to the plane spanned bgnd

b, it should be no surprise that the outer product is related to the cross product in the
following way.

axb=(aNb)". (1.61)

We can also translate identities of Gibbs vector algebra into Clifford algebra. For example,
the triple scalar product of three vectoss, b, ¢ € R3.

a-(bxe) = a-(bre)
= a- ((bre)-I7Y)
= (aAbAe)-I7} (1.62)
= (aAbAc)

= det([a,b,]).

Recall that the magnitude ofi A b A ¢ is the volume of the parallelepiped spanned by
a, b and ¢. This shows again that the outer product of three vectors spans a volume
element. Another often used identity is the triple vector prodack (b x ¢). This is
usually expanded as

ax(bxc)=b(a-b)—c(a-b).

Translating this expression into Clifford algebra gives,
ax(bxe) = (a/\((b/\c)]‘l)>l_1
= a- (((b/\c)[‘l)l_l)

= —a-(bAc)

(1.63)

= b(a-c)—c(a-b).

The expansion in Clifford algebra is valid in any dimension, whereas the vector cross prod-
uct is only defined in a 3d-vector space.
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1.3.2 Complex Numbers

Complex numbers may also be regarded as a geometric algebra, if we interpret the real and
imaginary part of a complex number as the two coordinates of a point in a 2d-space. A
complex number: € C can be expressed in two equivalent ways.

z=a+i = pexp(if),

wherei = /-1 denotes the imaginary unit, and 3, 0,/ € R. The relation between,

B andg andf is o = \/a? + 32 and § = tan—'(3/a). When we discussed rotors we
argued that since a unit bivector @, squares to minus one, it may replace the imaginary
unit i. Accordingly, we extended the definition of the exponential function to multivectors,
in order to write a rotor in exponential form. We can also use the exponential function to
write any multivectorA € CZ,, which is defined asi = a + Uy 8, whereU,y € Cly, is a

unit bivector, as

A= g exp(Up 0).

Note that A is an element of a subalgebd, C /,, n > 2. More precisely, it is an
element of the even subalgel& C (/- , which consists of the linear combinations of the

even grade elements @¥>. The even subalgebr@é; of Cfy has basis{1, Uy}, where

Uy is also the pseudoscalar 6f; . Cly is indeed a subalgebra, since it is closed under

the geometric product. Therefore, we have found an isomorphism between the complex
numbersC and the geometric algebi&; , where the product between complex numbers
becomes the geometric product. Note that the complex conjugate becomes the reverse, since
the reverse ofd is

A= gexp(Up 0) = 0 exp(—=Upy 0),
which is equivalent to

2" = p exp(—ib).

We will not go any deeper into complex analysis at this point. In any case, since there
is an isomorphism betwee@ and C/; , everything from complex analysis carries over.
However, simply replacing by a bivector is in itself not particularly interesting, since it
does not give us anything we did not have before. Nevertheless, it shows that we can regard
the complex number geometric algebra as part of Clifford algebra.

1.3.3 Quaternions

n

The interesting aspect of the isomorphism betw€eand /3 is, thatC/,, has () bivec-

tors and thus the same number of different even subalgeffias That is, in Clifford
algebra we can combine different complex spaces. One effect of this is that there is an
isomorphism between quaterniond f and C/; . Before we show this isomorphism, we
should probably recapitulate quaternions.
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The name ’quaternion’ literally means a combination of four parts. The quaternions
we are talking about here consist of a scalar component and three imaginary components.
The imaginary components are typically denotediliyk and they satisfy the following
relations.

2= 2= k2= -1,

i =k, jk=1i, ki =],
(1.64)
i = —ji, jk = —kj, ki = —ik,

ijk = —1.
A general quaternion is then given by
a = ag + aii + agj + ask,

with {a;} C R. A purequaternion is one with no scalar component, ae= a;i + asoj +
ask is a pure quaternion. The square of a pure quaternion gives

a® = (i + agj + a3k)® = —((1)* + (2)* + (a3)?).

The complex conjugate of a quaternianis denoted bya* . It negates all imaginary com-
ponents. Therefore,

*

aa* = (oo + a1i+ agj + ask) (g — agi — agj — ask)
= (a0)? + (1)? + (a2)* + (a3)?.

A unit pure quaternior: satisfiesaa* = 1 and thusaa = —1. We can therefore write the
quaterniona also as

a = (op+ aqi+ agj+ ask)
= p(cosf+ asinb),

where o = Vaa*, 6 = tan"!(aa*/ag), @ = a1i + asj + azk anda = a/v/aa* . Since

a squares to minus one, we have again an isomorphism between the complex n@mbers
and a subalgebra dfl. We can also extent the definition of the exponential function to
quaternions to find

a = (ap + a1i + azj + ask) = o exp(f a),

where o, # anda are given as before. It can be shown that the operatiofi between a
unit quaternions = exp(%&?) and a pure quaterniof, represents a rotation af. That is,
if we regarda = «a1i + asj + ask as a vector(ag, ag, as), then#ar* rotates this vector
by an anglef) about the vector represented by

Let us take a look at two simple examples of this. We asst(imgk) to form the basis of
aright-handed coordinate system. The pure quaterkiocan be written in exponential form
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ask = exp(%ﬂ' k). Therefore, it should rotate the pure quaternicebout 180 degrees, if
applied askik* .

kik* = —ikk* = —i.

Note that this example also shows that operators and elements we operate on can be of the
same type. Let us consider now this somewhat more complex example.

Consider the rotation operator for a rotation about khaxis, r = exp(%Hk). We can
expandr to readr = cos %0+k sin %9. If we apply r to i it should rotate in the ij-plane
by an anglef.

rir* = (cos30+ksin30)i(cos 0 — k sin 36)
= cos? %Gi — oS %0 sin %9 ik 4+ cos %9 sin %0 ki — sin? %9 kik
= (cos® 260 —sin? 20)i + 2 cos 30 sin 36

= cosfi+sinf].

This shows thatr = exp(%@ k) is indeed a rotation operator about a mathematically
positive anglef . If we compare this with rotors in Clifford algebra, we see that there is a
difference in sign. Recall that a rotor for a rotation about a mathematically positive angle
0 is given by exp(—%QU@). This difference in sign stems from the way in which we
interpreted bivectors. This will become clear once we have given the isomorphism between
quaternions and a Clifford algebra.

What we have discussed so far about quaternions already shows how similar they are to
rotors, which we discussed earlier. This also gives us a hint on how to find an isomorphism.
Basically, we need to find multivectors in a Clifford algebra which have the same properties
asi, j andk, and form together with the unit scalar the basis of a Clifford subalgebra. To
cut a long story short, we can identify the imaginary unit§ and k with the following
bivectors in(/s .

i — eges, j—ejes, k— egeq, (1.65)

where the{ei, ez, e3} € R? are an orthonormal basis @&3. Therefore, the Clifford
aIgebraCé;f with basis{1, eses, e1e2, ese1 }, is isomorph to the quaternioris, if we make

the above identifications. Note that this is only one possible isomorphism. Let us check one
property of the quaternions.

ij — €9€3 €19 = €361 — k,
jk — e1eg eze; = egez — i, (1.66)

ki — €3€1 €2€3 — €1€2 —>_]

We can now see where the sign difference in the rotation operators comes from. When we
work with vectors we usually assume that we are working in a right-handed system and the
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coordinates are given in order of the, y- and z-axis, e.g. (a1, as, a3). When we use
guaternions, we identify, j and k with the three coordinate axes in this order. In Clifford
algebra, on the other hand, we denote the three axes by, and es. Now, recall that
the rotation plane is given by a unit bivector, eldy,) € Cl5 . We have also seen that the
corresponding rotation axis in 3d is given b&(2> . Note that

(e2e3)" = e1, (e1€2)” = es3, (eze1)” = ea.

Therefore, the rotation axisw;i + asj + ask) corresponds to the rotation axisie; +

ages + ageq) in the Clifford algebra using the above identification forj and k. That is,

the y - and z -axes are exchanged. Therefore, if we embed quaternions into Clifford algebra,
we cannot apply them to vectors, only to other quaternions. If we translate the quaternions
to rotors, we need to make the appropriate exchange of axes, which also introduces the
minus sign into the rotor.

We have seen that quaternions are basically the space of rotgts,iwhich is the even
subalgebra’j c C/;. The main advantages of rotors in Clifford algebra over quaternions
are that rotors may be defined in any dimension and that a rotor can rotate blades of any
grade. That is, we can not only rotate vectors but also lines, planes and any other geometric
object that can be represented by a blade.

1.3.4 Grassmann Algebra

Today Grassmann algebra is usually taken as a synonymxterior algebra Although
Grassmann also developed exterior algebra, he looked at the whole subject from a much
more general point of view. In fact, he developed some fundamental results of what is today
known asuniversal algebra In his book "Die lineare Ausdehnungslehre dargestellt und
durch Anwendungen auf digbrigen Zweige der Mathematik, wie auch auf die Statistik,
Mechanik, die Lehre vom Magnetismus und die Krystallonomig@uért’, Grassmann basi-
cally developed linear algebra with the theory of basis and dimension for finite-dimensional
linear spaces. He called vectastensive quantitieand a basig e, ez, ..., e,} asystem

of units The vector space spanned by a basis he cadigidn He then introduced a very
general product on the extensive quantities (vectors). Given two veetots o'e; and

b = ('e;, a general product of the two is written as

ab =o' (e;ej).

Recall that there is an implicit sum here oveand j . He makes no additional assumptions
at first about the elements;e; ) , apart from noting that they are extensive quantities them-
selves. The set of products that can be formed with extensive quantities he gaibetliat
structure For example, for a vector bas{g;, e2} the set of products is

{61, €9, (6161), (6162), (6261), (6262), €1 (6161), 61(6162), . }

This product structure may then be constrained lofetermining equationThat is, if we
denote the elements of the product structure] By} , a determining equation is’E; = 0,
o' € R. For example, we could use as determining equatiamy) + (eze;) = 0. Then
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(ere2) is linearly dependent ofeze1) . Or, more generally(e;e;) + (eje;) = 0, for all
and j . This also implies that;e; = 0. If we also assume associativity of the product, then
the basis for the algebra generated{y, e2} becomes

{61, €9, (6162)}.

Grassmann found that the only determining equations that stay invariant under a change
of basis are, for two vectores and b, ab =0, ab—-—ba =0andab + ba =

0. He then considered in some length the algebra generated by the determining equation
a b+ ba =0. This algebrais today called exterior algebra and the product which satisfies
this determining equation is called the exterior product. In the following we will denote the
exterior product byA, just like the outer product. In fact, "outer product” is just another
name for exterior product.

Today exterior algebra is introduced in much the same way, albeit more generally and
rigorously. The general product Grassmann introduced is replaced Bniber product

Grassmann also introduced an inner product between extensive quantities of the same
grade. He did this in a very interesting way, by first defining what is essentially the dual.
For an extensive quantityy the dual is denoted by* and is defined such thal* A E
is an extensive quantity of highest grade, i.e. a pseudoscalar. Since the pseudoscalars span
a one dimensional subspace he equated the extensive quantity, A ... A e, with the
scalarl . With this definition E* A E is indeed a scalar. The inner product of two extensive
quantitiesE, F' of same grade is then defined as

<E,F>=E"M\F.

1.3.5 Grassmann-Cayley Algebra

The main difference between Grassmann and Grassmann-Cayley algebra is that there is also
a grade reducing inner product defined between blades of different grade. This product may
also be called the shuffle or the regressive product. Sometimes this product is also called
the meet and the exterior product is called the join. This should not be confused with the
meet and join defined previously in this text. Another source of confusion is the meaning
of the symbolsA and Vv, which is exactly the opposite to what they mean in Clifford
algebra. The symboh usually stands for the meet (inner product) and thetands for

the join (outer product). This is actually somewhat more logical than the use in Clifford
algebra, since it compares with the use of the symbols for unigrafid intersection).
Unfortunately, not all authors that use Grassmann-Cayley algebra follow this convention.
Sometimes Grassmann algebra is also taken to mean Grassmann-Cayley algebra. At times
even completely different symbols/(, /) are used for meet and join.

Despite these notational differences Grassmann-Cayley algebra and Clifford algebra are
equivalent in the sense that anything expressed in one of them can also be expressed in the
other. Which one you prefer is probably a matter of taste.

The shuffle product is defined with respect to the bracket opefatorhe bracket op-
erator is defined for elements of highest grade in an algebra (pseudoscalars), for which it
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evaluates their magnitude. In the following we will use the Clifford algebra notation. If
Ay, By € Cl, are givenbyAyy = AL, a; andByy = AL_; b;, with k+1>n and

k > 1, then the shuffle product ol 4,y and By, which we will temporarily denote by,

is defined as

A(k) ®B<l> = Z sgn(o) [aa(l)aa(g) e Qg (n—]) bin... bl] Ao(n—i+1) N\ - - - Qg (k)-
(1.67)

The sum is taken over all permutations of {1,...,k}, such thato(1) < o(2) <
..om=1)ando(n —1l+1) <o(n—101+2) <...0(n). These type of permutations
are calledshufflesof the (n — I, k — (n — 1)) split of A, . If o is an even permutation
of {1,...,k} thensgn(o) = +1, otherwisesgn(c) = —1. For example, the shuffles of a
(2,1) splitof {1,2,3} are

({12}, {3)), ({13}, {2)). (2.3}, {1}).
where
sgn({1,2,3}) = +1, sgn({1,3,2}) = —1, sgn({2,3,1}) = +1.
Therefore, for{ a1, as, a3} C R? and b € R? we find
(a1 Aag Aag) ®b=[ajasb]las — [ajasb] as + [azasb] a;.
If {e1,e2,e3} is an orthonormal basis &3, and b = 3'e;, then we find
(e Nea ANeg) ©b = [ereab]es — [eresb] ex + [ezesb] eq
= [erez BPes]es — [eres FPea] €2 + [eaes Bler] e
= b,

since [ejege3] = 1. This shows that the pseudoscalar is the unit element with respect to
the shuffle product. We have seen this before when we introduced the regressive product in
definition 1.24 (page 15). In fact, it can be shown that the regressive product as we defined
it is the shuffle product. That s,

Ay © Byy = Ay VByy = (Ajy A Byy) L.

The shuffle product is usually used to evaluate the intersection of subspaces. As we have
seen in the discussion of the meet and join, this is only the case if the join of the two
subspaces is the whole space. The shuffle product also cannot fully replace the Clifford
algebra inner product, since it is defined to be zero for two bladgs, By € /), if

k + 1 < n. Itis nonetheless possible to recover the inner product from the shuffle product
through the definition of the Hodge dual. This is basically the same as the dual we defined
here. The only difference is that the Hodge dual of the Hodge dual of a blade is again the
blade in any space. The dual of the dual of blade in Clifford algebra is either the blade or
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the negated blade. The Clifford algebra inner product may then be expressed in terms of the
shuffle product as

This follows right away from the definition of the regressive product. If we translate the
Hodge dual ofA;y as Ay, I then

Grassmann-Cayley algebra is probably most widely used in the area of computer vision
[12, 13] and robotics [39, 40]. There is still a lively, ongoing discussion within the research
community, whether Grassmann-Cayley or Clifford algebra is better suited for these fields.
To a large extend this is probably a matter of personal preference, and we will leave this
decision to the reader’s intuition.



Chapter 2

Geometries

by Dr. Christian Perwass

In the previous chapter we first talked about Geometric algebra and how elements of that
algebra are taken to represent geometric entities. We also saw how we can operate on such
entities in order to reflect or rotate them. In the second part of the previous chapter we then
looked at Geometric algebra from an algebraic point of view, ie we introduced the axioms
of Clifford algebra. In this chapter we would like to return to the geometric interpretation
of the algebra.

Although we will talk in the following about spaces which embed Euclidean space in
some way, the basic meaning of blades as linear subspaces and the reflection operator re-
main the same within these spaces. However, their effect on the embedded Euclidean space,
or rather their interpretation in terms of the embedded Euclidean space may change quite
substantially.

2.1 Projective Space

We will denote the homogeneous embedding of Euclidean sBadey PE™. PE"™ is also
called a projective space. The propertiesPdt™ basically derive from the way Euclidean
space is embedded in it. The projective sp&i&* will be represented bR+ \ 0, ie a

(n + 1) -dimensional vector space without the origin. The canonical (orthonormal) basis of
R will be denoted by{e, ..., e,, e,+1}. The basis vectoe,,,; is also called the
homogeneousomponent or dimension.

41
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2.1.1 The Setup

The transformation operator from Euclidean to the corresponding projective space will be
denoted byP and its inverse byP—! . The operatorP is defined as

P:xeE” — x+e,41 € PE". (2.1)

Thatis, Euclidean space is embedded as a particular hyperpigife) in projective space.
Avector in PE™ will also be called &omogeneougector. Note that the origin of Euclidean
space becomes,; in projective space. This means that the origin of Euclidean space, as
represented in projective space is not a special point any more. For example, while the
scalar product of a vector with the origin in Euclidean space is always identically zero, this
is not necessarily the case in projective space.

€3 A =7P(a)

EZ

Figure 2.1: Embedding of Euclidean vectoe E? in projective spac®E? as A = P(a).

Figure 2.1 illustrates the embedding of Euclidean vectors in projective space for the case
of E2. A vectora € E? from Euclidean space is embedded in projective spziEé by
adding the homogeneous dimensien The homogeneous representationaoin PE? is
then denoted byA = P(a).

Although Euclidean vectors are mapped to a hyperplane in projective space, a general
homogeneous vector may lie anywherePie™ = R"*1\ 0. Therefore, the question is how
homogeneous vectors that do not lie BE™) are projected back t&™ . This projection
is in fact the key to the power of the homogeneous representation.

The transformation fronPE™ to E” is denoted byP~! and is defined as

1 n
Pl:AEPE" — —— ) (A-e)e €E" (2.2)
“en41 i—1
Clearly, this transformation is only valid for homogeneous vectors that have a non-zero
homogeneous component. Those homogeneous vectors that do have a zero homogeneous
component would map to infinity and are accordingly called points at infinityirection
vectors.
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Using the transformatior®~! the whole of PE" apart from the plane,,; = 0 is
mapped toE™. What does this mean for a particular homogeneous vector? Well, the ho-
mogeneous vector is first scaled such that its homogeneous component is unity, and then its
first n components are taken as thecomponents of the corresponding Euclidean vector.
This is illustrated in figure 2.2.

A
eév A-e/

y
4

_ (Ae)er+(Aer) e
- A-e3

EZ

Figure 2.2: Projections of a homogeneous vectorc PE? into the corresponding Eu-
clidean spac&? asa =P (A).

The effect of P~! is that the overall scale of a homogeneous vector in projective space
is of no importance. For example, given a vectoe E™ and a scalex € R\ 0, then

77_1<a77(a)> =a.

Hence, the name "projective space”: homogeneous vectors are projected onto the hyper-
planeP(E™) before they are "orthographically” projected in¥ . The hyperplané”(E™)
is also called thaffineplane.

Aside. Affine transformations are in fact just those that when applied to a point
on P(E™) leave the point on that plane. Projective transformations on the other
may move points through the whole spdég” .

2.1.2 Geometric Algebra onPE"

Recall that elements of Geometric algebra are given geometric meaning by looking at their
OPNS or IPNS, the outer or inner product null space. When we write down a blade, its
OPNS always represents a linear subspace. For example, a biveBi®? iis a two dimen-
sional subspace, since we represBBf by R?T!. However, we are not really interested

in what this bivector represents iFE2. We would like to know what it represents in the
correspondingE?. How do we do that? Well, we need to be more precise about which null
space we are actually interested in.
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Given a bivectorA ) € C/(PE?), we are only interested in those vectorshi? that
lie in one of its null spaces, which we can also map back to Euclidean space. The other
way around: we ask which vectors I when transformed t&E? lie in the null space
of A . We therefore introduce the concept of theclideanouter and inner product null
space, denoted bl Oy and NI, respectively. FoC/(PE™) they are defined as follows.

NOg(Ay) € C(PE™)) :={ ac E" : P(a) A Ayy =0 € C/(PE") },
and NIg(Agy € C(PE™) :={acE" : P(a) Ay =0 e C/(PE") }.
(2.3)

2.1.3 The Euclidean OPNS

So how can we evaluate the Euclidean IPNS or OPNS of a blade in projective space? Con-
sider, for example, a vectar € E" with homogeneous representatidgn= P(a) € PE".
The OPNS ofA is simply given by

NO(A)={aA€PE" : « €R\0},

a projective line inPE™. The factorae must not be zero since the origin &"*! is not
an element ofPE” . Since all elements odNO(A) can be mapped t&" by P!, we find
that

NOp(A) =Pt (N@(A))
={ e Xin ((aA)'ei>ei ca€eR\O}

={PYA) : a€R\0}

= a.

This shows that even though the OPNSAfis a (projective) line inPE™, the Euclidean
OPNS of A is only the vectora € E™. This is great, since it enables us to represent a
zero-dimensional object, ie a point, Ei* by a line in PE™.

An example of this has already been shown for the cagé®oin figure 2.2. All points
in PE? along the line from, but excluding, the origin #E? to the homogeneous vector
A, represent the same poiatin E2.

Figure 2.3 illustrates the OPNS and Euclidean OPNS of a bivectBiih. The OPNS
of the outer product of two homogeneous vectasB € PE? is a plane inPE?. The
orthographic projection of the intersection BIO(A A B) with the planeP(E?), then
gives the Euclidean OPNS oA A B: a line in E2. Note that this line does not pass
through the origin. This shows one of the advantages of working/{f?E?) instead of
C/(E?). In C/(E?) we could only represent lines through the origin, wherea&/{fPE?)
we can represent arbitrary lines in the correspondifg
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NOg(A AB)

P(E?)

Figure 2.3: Representation of line i2? through bivector inC/(PE?) .

Without going into any more detail, it may be shown that the Euclidean OPNS of the
outer product of three homogeneous vector€i(PE?) represents a plane . That is,
given vectorsa, b, c € E? and A, B, C € PE? with

A ="P(a) and B=7P(b) and C =7P(c),

it may be shown thaNOz(A A B A C) is a plane inE? which passes through the points
a, b and c. To summarize, we have

N@E(A) Point a
NOg(A AB) Line througha andb
NOg(A ABAC) Planethrougha, b andc

2.1.4 The Euclidean IPNS

We can also consider the Euclidean IPNS of bladeg/¢E?®). We will do this in some
detail for a homogeneous vector. LAt € PE? be given by

A=a—ae,,

wherea € E? and ||a]| = 1. Furthermore,a« € R and e, denotes the homogeneous
dimensiones { , in order to emphasize its meaning as the vectdPli? representing the
origin of E™. Let us now try to evaluate the Euclidean IPNSAf That is, we are looking
for all those vectorsc € E? that satisfyA - P(x) = 0.

A -Px)=0 <= (a—ae) (x+e)=0
— ax—a=0
— a-xl—a=0
— xl=aa,
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wherex! is the component ok parallel toa. If we write the component ok perpendic-
ular to a asx', then it follows that any vectox € E? of the form

X =aa+xt,

lies in the Euclidean IPNS oA . Hence, A represents a plane with normaland distance
a fromthe origin inE? . As for Euclidean space it may also be shown that for homogeneous
vectorsA, B, C € PE3, we have

Plane: NIg(A)
Line: NIp(A AB)=NIg(A) N NIg(B)
Point: NIg(AABAC)=NIg(4A) N NIg(B) N NIg(C)

2.1.5 The Pinhole Camera Model

L=A;A"X

Ay

Figure 2.4: Model of a pinhole camera FE3 .

The Geometric algebra of projective space is very useful to represent projections in the
pinhole camera model. Figure 2.4 show such a setup. Homogeneous &¢tos, A3, Ay €
PE? form a basis ofPE?. The homogeneous vectdx, represents the optical center of the
pinhole camera, whild®> = A1 A As A A3 represents the image plane. In order to project a
homogeneous vectaX onto the image plane, we simply have to intersect the image plane
P with the line L connectingX with the optical centeA4, ie L = A4 A X. We can do
this with the meet operation,

Y=LVP=(A;AX) V (A1 ANA3 A A3).

Since the join of L and P is the whole spac®E?, we can also use the regressive product
instead of the meet, which simplifies the evaluation of the meet.

By using such simple geometric constructions, which can be readily translated into Ge-
ometric algebra equations, also the relations between two, three or more cameras can be
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analyzed. This then leads, for example, to the fundamental matrix and the trifocal tensor as
was shown in [22, 29, 30, 28].

2.1.6 Reflections in Projective Space

By going from Euclidean to projective space, an additional dimension, the homogeneous
dimension, is introduced. We may therefore wonder what effect this has when using the
reflection operator as introduced earlier. First of all consider a vestar E? and its
homogeneous representation

A =7P(a)=a+e, € PE?
where e, denotes again the homogeneous dimensipre PE2. A reflection aboute,
gives
e, Ae, =e,ae, te,e,6,
= —aey e, + €,

= —a+ e,
where we used the fact thay is perpendicular to all vectors iB? . Therefore,
epoa=¢e, Na=—a/Ne, = —ae,.
We thus have
Pt (eOP(a) eo> = —a,
which shows that a reflection A& aboute, represents a reflection about the originaaf

Next consider a vecton € E?, with |n|| = 1. Although this is mathematically not
quite rigorous, we can regard the vectorlso as a direction vector &E?, since it has no
e, component. If we take\ as given above, we can ask what a reflection of a homogeneous
vector A on a direction vecton in PE? means.

nAn =n(a+e)n
—nan-+neyn
2

=nan-—e,n

=nan — e,.

For convenience, let us at this point introduce an operdtdhat projects homogeneous
vectors inPE™ onto the affine plané?(E™) C PE™. The operator is therefore defined as

A: A€EPE" — € PE", (2.4)

-eo
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wheree, is again the homogeneous dimension. We may also say4aheansforms homo-
geneous vectors to affine vectors. This operator is also useful, since homogeneous vectors
on P(E™) can be immediately identified with their corresponding Euclidean vectdg$ in
For our reflection example from above we find,
AnAn) = -nan-+e,
=—(al +at) +e,

=al —al + €o,

where al and al are the orthogonal and parallel componentsaofvith respect ton,
respectively. This shows that the component of the homogeneous \ctioat isparallel

to the reflection directiom, is reflected and not the part perpendicular to it. Figure 2.5
shows this setup.

—nan a

Figure 2.5: Effect inE? of reflection of homogeneous vector on direction vectoPEF .

This is not really what we wanted to achieve. However, we can remedy the situation by
reflectingn A n again through the origin. That s, in order to reflect a homogeneous vector
on a line with directiorn, we have to use as operat@iey) instead ofn.

(nep) A(epn) =n(—a+e)n
= -—nan-+mne,n
= —nan-—e,,

and thus

A((neo)A(eo n)) =nan+e,.

2.1.7 Rotations in projective space

In the last section we saw how a reflectionid has to be expressed in projective space
PE? when applied to homogeneous vectors. Since a rotation expressed by a rotor is nothing
else than two consecutive reflections, a rotor may also take on a different form in projective
space.

Suppose we want to rotate the vectore E? by reflecting it first onn € E? and then
on m € E2. However, we want to do this in projective space whére= P(a) € PE2.
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Since a reflection om has to be expressed &se,) and a reflection ol as (me,), the
rotation of A has to look like this

(me,) (ne,) A (e,n)(e,m) = RAR, R:=(me,)(ne,).

Such a double reflection is illustrated in figure 2.6. Here veatar E? is represented in
PE? by A. A first reflection of A on ne, gives B. A further reflection ofB on me,
givesC.

Figure 2.6: Double reflection of homogenous vectomon reflection planesie, andme,
in PE2.

However, the expression fadk can be simplified.

R = (me,)(ne,)
= -—mne,e,
= —mn.

That is, compared to the expression of the rotoif, a minus sign is introduced. This,
however, cancels out when the rotor is applied.

RAR=(-mn) A (-nm) = (mn) A (nm).

We may also argue that since an overall scalar factor is of no importance for homogeneous
vectors with respect to their projection into Euclidean space, the minus sign of the rotor in
projective space may be neglected. Hemgecan use the same representation of a rotor

in Euclidean and projective space

2.1.8 A Strange Reflection in Projective Space

We have so far looked at reflections of homogeneous vector on the homogeneous dimension
e, and on direction vectors, ie homogeneous vectors with a ggmmmponent. However,
what does a reflection of a homogeneous vector on another homogeneous vector look like?
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Figure 2.7: Effect inE? and PE? of the reflection of a homogeneous vectaron another
homogeneous vectaX .

The answer to this question is illustrated in figure 2.7. Veeiar E? is embedded in
projective space ad = P(a) € PE?. Instead of reflecting: on n in E2?, A is reflected

on N in PE2. In this examplen = e; and N = \/% (n+e,), ie N is of unit "length”,

if we regardPE? = R? as a three dimensional Euclidean space for a moment. A reflection
of A on N will thus negate the component & perpendicular taN, which results in

B. This vector however lies off the affine plafi®[E?) . A projection of B into Euclidean
spaceE? then results irb, which is not the reflection oh on n.

Figure 2.8: Effect inE? of reflection of homogeneous vector on another homogeneous
vector in PE2.

Analytically we find the following equation for this type of reflection.

Pt (NP(a) N) =p! <\/A§ (n+e,) (a+e,) \% (n+ eo)>
= ... exercise :-)

= (al)=! —tan@at,

whereall and al are again the parallel and perpendicular components with respect



51

ton, a- = a'/||lal| andd = Z(a, n). A geometrically more informative expansion of
the above equation is the following

a—n

P—l(NP(a) N) —n-—

a-n’
This latter formula is illustrated in figure 2.8.

Figure 2.9 shows the effect of this type of reflection on the points of the unit circle
centered on the origin. The non-central point moving from left to right is the projection
into E2 of the homogeneous vector about which the points on the unit circle were reflected.
The reflection of the unit circle becomes an ellipse, a hyperbola or the unit circle if the
homogeneous reflection vector becomes the origin.
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Figure 2.9: Effect of reflecting points on a circle centered on the origi%ron varying
homogeneous vectors FE? .
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2.2 Conformal Space

In this introduction to conformal space we use many of the concepts introduced in the dis-
cussion of the projective space. We use again the same trick of embedding Euclidean space
in a higher dimensional space, where the extra dimensions have particular meanings (in-
terpretations), such that linear subspaces in conformal space represent particular objects in
Euclidean space we are interested in. In projective space the simple "trick” of adding one di-
mension and giving it a particular meaning, already enabled us to represent null-dimensional
spaces, ie points, in Euclidean space by one dimensional subspaces in projective space. In
this way we could also distinguish actual points from directions, which were represented in
projective space as elements that project to infinity in Euclidean space.

To introduce conformal space we initially also only add one dimension. However, this
time Euclidean space is embedded in a non-linear way in this higher dimensional space.
The actual conformal space we will be working with is in fact a special homogenization of
the initial conformal space we introduce. That is, when people usually mention the con-
formal Geometric algebra they actually mean the Geometric algebra over a homogeneous
conformal space. We will not break with this tradition here and simply talk of conformal
space.

Before we delve into the embedding of Euclidean space in conformal space, we should
probably say what conformal actually means. A conformal transformation is one that is
locally angle preserving. It turns out that all conformal transformations can be expressed
by combinations of inversions. What is an inversion? WellEih= R an inversion of a
vectorx € R on the unit, one-dimensional sphere centered on the origin is sigiply In
E3 the inversion of a plane on the unit sphere centered on the origin is a sphere, as shown
in figure 2.10.

Figure 2.10: Inversion of plane and line on spheré&in

Note that inversions are closely related to reflections in that a reflection is a special case
of an inversion. In fact, an inversion on a sphere with infinite radius, ie a plane, is a re-
flection. Note that all Euclidean transformations can be represented by combinations of
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reflections. We have already seen this for rotations, which are combinations of two reflec-
tions. A translation may be represented by the reflection on two parallel reflection planes.
Since all Euclidean transformations can be represented by combinations of reflections and
all conformal transformations by combinations of inversions, we see that Euclidean trans-
formations form a subset of conformal transformations.

The actual trick behind the particular embedding of Euclidean space in conformal space
is, that a reflection in conformal space represents an inversion in Euclidean space. Here we
have to be careful with what we mean when we say reflection. Do we mean a reflection
in the space in which the Euclidean space is embedded, or a reflection in Euclidean space
itself. In section 2.1.8 we already came across this distinction. A reflecti@® taken
asR? represented something very unlike a reflection in the corresporifing

2.2.1 Embedding Euclidean Space

We will denote conformal space ™ and representitifR™*!. The additional dimension,
however, is this time not a homogeneous dimension. For reasons that will become apparent
later on, we will also denote the additional dimensiondgy= e,,.; . Euclidean spac&”

is embedded iK™ via a stereographic projection. The embedding function will be denoted
by K and is defined as

2 +x2—1
X
x24+1 x2+1

K:xecE" — e, € KP =R (2.5)

All embedded points lie on a hypersphere of unit radius centered on the origif of
Therefore,

IK(x € E")|| =1. (2.6)

Kl €
K(EY)
IC(x)

E! y

Figure 2.11: Stereographic projection of pointsy € E! onto unit circle inK! .

Figure 2.11 illustrates this embedding f&f . Note that the point, € K' represents
+o00 € E! and —e, represents the origin oE'. Figure 2.12 shows the stereographic
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projection of a line and a circle frorfi? into K2. We can see that a line is mapped to a
circle on K(IE?) that passes through, and a circle inE? maps to a circle oriC(E?) that
does not pass through, .

E2

Figure 2.12: Stereographic projection of a line and a circlE4ninto K?2.

The conformal embedding operathi transforms the whole oE™ to a n-dimensional
subspace oK™ . This implies that an inverse transformation will only be able to transform
points from that subspace & back toE™. Recall that for the projective space we also
had such a restriction: the plane of homogeneous vectors with aezezomponent could
not be transformed back to Euclidean space.

Mathematically we can express this restriction on the back projection by saying that
only vectorsx € K" that satisfy|x|| = 1 can be projected int&" . For those vectors the
inverse operatokC~! is given by

n

_ 1
Kt xeK |x]|=1 — Txo ; (x- &) e (2.7)

2.2.2 Homogenizing the Embedding of Euclidean Space

Similar to the homogenization of Euclidean space, we will now homogenize conformal
space. Specifically, we embédf” in a projective space denoted K™, which we will
represent byR" 11 \ 0. The spaceR"*!:! \ 0 is of dimensionn + 2, whereby its or-
thonormal basis contains + 1 basis vectors that square #1 and one basis vector that
squares to—1. This type of space is also callddinkowskispace. The effect of using a
negatively squaring homogeneous dimension is quite substantial, as we will see throughout
the rest of this text.
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We will again use the symbdP to denote the transformation from conformidl® to
projective conformalPK™ space. The transformation is defined as

P:xeK'— X=x+e_ €PK", (2.8)

where we denoted the homogeneous dimension_bysincee_ - e = —1 by definition.
Now it is also clear why we denoted the extra dimension introducel’byas e, . Figure
2.13 illustrates this embedding for a vectorfin .

Figure 2.13: Embedding of a vectarc E! firstin K! and then inPK! .

One immediate result that follows from the use of a homogeneous dimension with neg-
ative signature is that

(aP(IC(X € ]E")))2 =o? (K(x) + e_)2

wherea € R\ 0 is some scale. That s, all vectorsfiK™ that resulted from an embedding
of a Euclidean vector fron” , square to zero. FdE! the set of points ifPK! that satisfy
this condition lie on a cone. Hence, all null vectordfiK"™ , ie all vectors that square to zero
in PK™, are said to lie on thaull cone This set of vectors will be denoted "™ C PK"
and is defined as

H":={ X ePK" : X*=0}. (2.9)
From our previous considerations it follows that

H" = { aP(K(E") : a €R\0 }.
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The inverse transformatio® ! from PK" into K" is defined for all elementX € PK"
that satisfyX - e_ # 0 as

n+1

> (X-e)e €K (2.10)
=1

1
e

P~ . X ePK"®
X

To summarize, the embedding of a Euclidean vestar E™ in (homogeneous) confor-
mal spacePK" is given by

2 x2 -1

7)(,C(X)):ﬂ—klx—i_ x2+1

e. + e_ € PK". (2.11)

Since this is an element of a projective space, an overall scale is not important. We may
therefore scale the above equation without changing the veciért i represents. We will

in fact do this, in order to get rid of the fractions. Since we repre®adt by Rt the
expressionk? + 1 can never be zeto

X+ P(K(x) =x + s(x2—1)ep + s(x2+1)e_
—x b 1o te) 4 ble —ep) 212)
2

:X+%X €co T+ €0,

where we defined

€x :=€e_+er and e,: =z (e —eq). (2.13)

N[

The embedding of a Euclidean vectorliK"™ will from now on always be given in the form
of equation (2.12). We will therefore define a homogeneous conformal embedding operator
C as

C:xeE" — ix*+1)P(K(x)) €PK", (2.14)
such that
Cx)=x + %X2 €x + €o. (2.15)

Figure 2.14 illustrates this type of embedding. The vestas embedded ifPK' just as in
figure 2.13. Thenitis scaled such thatétscomponent is unity. It then lies on the parabola
H! . The inverse operata ! is only defined for vectors on the null corfi&® .

cl:xeH" — K (P '(x) €eE™ (2.16)
The properties ok, ande, are quite important, so we should state them here. They
are easily derived from the propertiesef ande_ .

e2 eg =0 and ey -e, = —1. (2.17)

oo T

1This would be possible if were to regaffK™ as a vector space over the complex numh@rs
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Figure 2.14: Embedding of a vectarc E! firstin K! and then inH_. .

In projective spaceP’E™ we introduced an operatod that maps vectors oPE™ onto
the affine planeP(E™). That is, it scales a homogeneous vector such that its component
along the homogeneous dimension is unity. The vectof®lt whose component along
e, is unity have a number of useful properties, as will be seen later. Even thguigmot
the homogeneous dimensionBK” , we will call the set of null vectors that have a unijt
component thaffinenull cone. The affine null cone is denoted By, and defined as

Hg::{XEHnCPK":X-eoo:—I}. (2.18)

2.2.3 Geometric Algebra onPK"

Just as for projective space we can form a Geometric algebrd@/denoted byC/(PK") .
Blades inC/(PK™) again represent linear subspaces through their IPNS and OPNS with re-
spect toPK"™ itself. However, we are only interested in the setoiclideanvectors that
embedded in conformal space lie in the IPNS or OPNS of a bladé(®K™). Hence, the
Euclidean IPNS and OPNS fd@K"™ are defined as

NOg(A € U(PK")) :=={x€E" : C(x)ANA=0},

(2.19)
NIp(A € CH(PK™) = { x €E" : C(x)-A=0}.

Since we know that all vectors on the null coneRiK™ can be projected int&"™, these
sets can also be expressed as

NOg (A € CPK™)) =C7L({ X e H" : XAA=0}),
NIp(A € CPK™) =C}({ X € H" : X-A=0}).
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In other words, the vectors IBK" we are interested in are those that lie on the intersection
of the null space represented By C/(PK"™) and the null conéd™. That s,

NOg(A € CU(PK")) =1 (N@(A) N H“),
NIg (A € CL(PK™)) = C~L <N]I(A) N ]HI”),
with
NO(A € C(PK") ={ X ePK" : XANA=0},
NI(A € C(PK") = { X €PK" : X-A=0}.
An example of the OPNS of a bivector i#(PK') is shown in figure 2.15. Vectors
X,Y € H! span a 2d-subspace PK!, the planeNO(X A Y). However, the Euclidean

OPNS of X A Y is the set of points offl} that lie in NO(X A Y). These are simply the
points X andY . Hence,NOx (X AY) is the point pairC~(X) andC~1(Y).

Hl

Figure 2.15: OPNS of the outer product of two vect®sY € PK'.

2.2.4 Representation of Geometric Entities inPK?

It is initially easier to look at the Euclidean IPNS of bladesB&?. For a start, we will

consider a Euclidean vectar € E? with its conformal embedding
A=C(a)=a+ia’ex +e, € H.

Before we look at the Euclidean IPNS of this vector, we look at the general inner product
of A with another vectoB € H3, given by

B=C(b)=b+ ib’es +e, € H}.
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Using the properties of,, ande, we find

A-B =(a+ia%ex+e,) (b+1ib%eq +e,)

—a-b—1a2 - 1lp?
2 2 (2.20)

That s, the inner product of two conformal vectorsHlj gives a measure of the Euclidean
distance of their corresponding Euclidean vectors. That's pretty neat and is the fundamental
feature of conformal space we will use over and over again.

2.2.4.1 The Representation of Points

The IPNS of a vectoA € H? is given as usual by
NI(Ael’)={XePK®: X-A=0}

However, we know that vectors on the null cone are null vectors and thus
NI(A eH*)={aA : aeR\0},

and the corresponding Euclidean IPNS is
NIp(A € H3) = ¢! (NH(A)) ~a.

Just as for the projective space, we have again the feature that we can represent null dimen-
sional entities in Euclidean space by one dimensional subspaces in (homogeneous) confor-
mal space.

2.2.4.2 The Representation of Spheres

Now we know that vectors on the null cone BK?3 represent points in Euclidean space
E2. However, what to vectors if?K? off the null cone represent? We will initially only
discuss their IPNS representation. Consider the veAtar H3 on the affine null cone and
the vectorS € PK? off the null cone, given by

S=A-1p*er, peRr (2.21)
Let X € H2, then

S'X =A-X-1p’e X (2.22)
=—3(a—x)*+ 30"

Hence,

S-X=0 < (a—x)?=p%
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That is, the inner product & and X is zero if and only ifx = C~!(X) lies on a sphere
centered om = C~!(A) with radius p. Therefore, the Euclidean IPNS 6f is a sphere.
NIg(S=A—-1p’ex)={x€E’ : [x—a|*=p* }. (2.23)

Note that since we are working in a homogeneous conformal space, also every scaled ver-
sion of S represents the same sphere. However, if we use the "affine” form as in equation
(2.21), we can also evaluate the radius of the sphere representedbie easily.

S2=A%2—p?A ey =p (2.24)
For an arbitrarily scaled version & we can evaluate the radius via
S\
= p°. 2.25
< S o > p (2.25)

We can also easily tell whether a point lies inside, on or outside the sphere represented by
S. From equation (2.22) it follows that

>0 : xinside sphere
S-X

(S-ex) (X ex)

=0 : xonsphere (2.26)
< 0 : xoutside sphere

This feature also forms that basic idea behind the hypersphere neuron [4, 3]. It may be
represented as a perceptron with two "bias” components and allows the separation of the
input space of a multi-layer perceptron in terms of hyperspheres and not hyperplanes.

So what about vectors of the form
S=A+1p%es. (2.27)
The inner product oS with someX € H? gives
S X =-3(a-x°- 3

such that

S-X=0 < (a—x)*>=—p*

Since we assumefl® to be a vector space ovéR, this condition is never satisfied for
p # 0. However, had we regardell® as a vector space over the complex numb@&rs
then, together with an appropriate definition of the norm, the solution would be

la—x| =ip.

wherei = y/—1 is the imaginary unit. We may thus say thatas defined in equation
(2.27) represents a sphere withaginaryradius in[E3 .

Note that any vector iPK? may be brought into the form

S=A=1pen,
where A is a vector on the null cone. From a visual point of view, we can say that vectors of
the typeS = A — %pQ e lie outside the null cone and vectors of the type- A + %pQ oo
lie inside the null cone. We may thus say that any vectd?li&? either represents a sphere
with positive, zero or imaginary radius. In terms of the Euclidean IPNS, the basic "building

blocks” of homogeneous conformal space are therefore spheres.
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2.2.4.3 The Representation of Planes

We mentioned earlier that a plane can be regarded as a sphere with infinite radius. Since we
are working in a homogeneous space, we can represent infinity by setting the homogeneous
component of a vector to zero. And this is also all it takes to make a sphere into a plane,
which also becomes clear from equation (2.25). Consider the v@&toiH? given by

P=A—¢ — %p2eoo :a—i—%aQeoo — %p2eoo.
The inner product of? with some vectorX € H? gives
P-X :a'x—%a2+%p2
= [lafl [x"]| - 5(a® = p?),

wherex!! is the component ok parallel toa. Therefore,

a2 — p?
2|l

P-X=0 < |xI|=

Hence, all vectors whose component along has a fixed length lie in the Euclidean IPNS
of P, which thus represents a plane with orthogonal distaaée- p?)/(2||a||) from the
origin and normala..

A particularly nice representation of planes is the difference of two vectors on the affine
null cone. That s, forA, B € H?, we defineP = A — B. The inner product oP with a
vector X € H3 then gives

P-X =A-X-B-X

= —%(a — x)2 + %(b — X)Q.
It follows that

P X=0 «<— la-x?=1%b-x)>

1 1
2 — 2

This is the case ik lies on the plane half way betweenand b, with normala — b.

2.2.4.4 The Other Entities

We have seen in section 1.1.9 (eqn. (1.23), p. 13), that in terms of the IPNS, the outer prod-
uct of two vectors represents the intersection of their respective inner product null spaces.
This is, of course, still valid here. Hence, the Euclidean IPNS of the outer product of two
spheres is their intersection circle or point. If the spheres do not intersect we obtain an
intersection circle of imaginary radius. The Euclidean IPNS of the outer product of three
spheres is accordingly the intersection of three spheres. This may be a point pair, a single
point or an imaginary point pair. The Euclidean IPNS of the intersection of four spheres
can at most give a single point. This also works for spheres with infinite radius, ie planes.
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Since the OPNS is dual to the IPNS, we find the following representations for blades
in terms of their OPNS inPK?. In the following let A, B,C,D,E € H? be mutually
linearly independent vectors.

NOg(A
NOg(AANB
NOg(A A ex
NOg(AABAC

) : Pointa

)

)

)
NOg(A AB Aey) : Linethrough a, b

)

)

)

. Point pair (a, b)

. Point pair (a, )

: Circle through a, b, ¢ (2.28)
NOg(AABACAD
NOp(AABACAey

NOg(AANBACADAE

: Sphere througha, b, c,d
: Plane througha, b, c

: The whole spacet3.

It may seem strange that there is a "point pair” object. It clearly has to be there, since
otherwise the intersection of, for example, a sphere with a circle could not be expressed.
However, a somewhat better explanation is that a point pair is nothing else but a one di-
mensional sphere: a point pair has a center from which all points on the point pair (the
pair itself) have the same distance. This is simply the definition of a sphere applied to one
dimension. A circle is thus a two dimensional sphere and a point may in fact be interpreted
as a zero dimensional sphere. This shows again that the basic entities of conformal space
are spheres.

In equation (2.28) you may have wondered why there is a point pair of a finite point in
E3 and infinity. If we recall the stereographic projection of linesin, it becomes clear
that two lines that intersect in a point I? intersect in two points when stereographically
projected: the north pole, and another point (see figure 2.16). Two parallel line&En
only intersect ine . Sincee, maps toe,, in the homogenization oK?, it is now clear
why we need point pairs of the typ& A e .

2.2.5 DiscoveringC/(E?) and C/(PE?) in C/(PK3)

When we look again at equation (2.28), it is interesting to see that those geometric entities
that can also be representeddf(PE?) are represented by the outer product of a blade of
null vectors ande. . It therefore seems as @ (PPE?) is a subalgebra of/(PK?). Even
though the operators do not carry over immediately, there is an isomorphism between the
algebraic entities of the two spaces. We will not give a proof here but a motivation.

Consider again a vectoA € H3 with
A=a+ %azeoo + e,.
If we take the outer product oA with e, we obtain

ANeyw =aNey+ e, A ex.
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E2

Figure 2.16: Stereographic projection of two intersecting lines.

If we identify e, A e, With the homogeneous dimension and the bivectes;s/A e<,<>}§’:1
with the orthonormal basis vectors of a vector space, then we do obtain an eleni.of
This also carries over to blades of the tyfg.y A e , where A,y is a blade of null vectors
excludinges .

In a similar way we can also rediscovéf(E?) . This time we take the outer product of
A with e A ey,

ANesgNe, =aNex Ae,.

Now we could identify the{e; A ex A eo}f’:1 with the orthonormal basis of a Euclidean
spaceE?. In fact, NOg(a A e A e,) is a line through the origin with the direction eaf,
that is exactly the same &80 (a € C/(E?)) . Similarly NOg(aAb Aex Ae,) is the same
plane through the origin a0(a A b € C/(E?)).

This shows that when we are working in conformal space, we have all the features of
Euclidean and projective space combined. This also carries over to the operators, as we will
see in the next section. This embedding of Euclidean and projective space in a single frame-
work, offers immediately the possibility to implement the ideas laid out in the well known
paper "Stratification of Three Dimensional Vision: Projective, Affine and Metric Represen-
tations” by Olivier Faugeras [11], without changing spaces or representations. This has, for
example, been used quite successfully in [33, 34].

2.2.6 Inversions inPK"

When we introduced conformal space initially, we said that it takes its name from the con-
formal mappings that are possible within it. We carried on to say that a conformal trans-
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formation can be expressed by a combination of inversions. However, so far we have not
shown how an inversion may be expresse@®®"” .

Before we go for the full monty, let us take a look what effect an inversion h&§"in

Recall that the embedding of a vectorc E™ in K™ was a stereographic projection defined
as

2 x2 -1

S e P N

ey.

The inverse ofx can be written as

1 X
X = ;,
which is the same as the inversion &f on the unit sphere centered at the origin. The
embedding ofx—! in K" gives

2 X I
Kx1H =—"—— 5+ e
( ) §+1X2 x72_|_1 +

1+x2 x2 1 1+x2 e+

2 x2—1
= X — e .
x2+1 x2 41

This shows that in order to invert a vectoriif , we only have to negate its, component

in its embedding inK™ . That’s quite neat. Especially since we can express this negation
by a reflection inK™ on the Euclidean subspace. For exampleKih, vector x = ae;
becomes

2a a?—1

a2+1e1+ er.

K(x) = a?+1

The inverse ofx is then given by

x ! =K He1 K(x)er)

|
- ( 2+1e+>
1
[0

2

14+ zﬁ a?+1

€1

_ 2
(@24 1)+ (a2 -1)

€1

= Oé_l €1,
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Kl
K(EY)

El

Figure 2.17: Inversion of vectax in K!.

where we used equation (2.7) to evaluate! . Figure 2.17 illustrates this example.

Let us now return taPK™. Here it turns out that an inversion of a vector on the unit
sphere centered at the origin is given by a reflectioreon Mathematically we find for a
vectorX € H”,

er Xep =eq(x+3x%ex +e5)ey

= ... exercise :-)
=-1(x+x%e,+ 3ex)
=—x?(x 1+ 3x%ex + &)
Projecting this vector back int&®” then clearly gives
C ey C(x)ey) =x1.

This is visualized in figure 2.18. VectdX € H} on the affine null cone is reflected en
which givese, X e, . However, if we scale the latter vector such thatefscomponent is
unity, we obtain’Y’ which lies again on the affine null cone. Projectifg back into E!
then gives the inverse af—*(X).

Note that using the definitions ef,, = e_ +e; ande, = (e — e, ), we find for the
unit sphereS centered at the origin

S = e -— %eoo
ongin  radius 1

= %(e, —eq)— %(e, +ey)

= —€4.

Hence, we seem to be able to use vector®i* representing spheres in their Euclidean
IPNS to invert vectors inH™ on them. In fact, it turns out that we can indeed use any
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Figure 2.18: Inversion of vectaX € H via reflection one .

sphere vector to invedny other bladen PK"™. In this way we can invert points, lines,
circles, planes and spheres on spheres. Note that inversions on circles and point pairs are
also possible, but we will not discuss this any further here.

2.2.7 Rotations inPK"

We said before that the group of Euclidean transformation is a subgroup of the conformal
group. Since the conformal group can be created by combinations of inversions and we can
express inversion irt/(PK"™), we should also be able to find operators for the group of
Euclidean transformations.

It turns out that inC/(PK™) we can not just express reflections on planes that pass
through the origin but on arbitrary planes. Therefore, we can also reflect consecutively on
two arbitrary planes. The intersection line of two such planes then gives the rotation axis. If
the two planes are parallel, ie the rotation axis lies at infinity, we obtain a translation. This,
however, will be discussed in the next section.

It is interesting to see how, by enlarging the embedding space of Euclidean space, we
get more and more freedom of expression. In Euclidean space we could only express planes
that pass through the origin and reflections on planes through the origin. In projective space
PE™, we managed to "free” planes from the origin and place them anywhere. Reflections,
however, were still confined to planes through the origin. In conformal s@péce we
finally also managed to place reflection planes arbitrarily in space.

In order to achieve the reflection of a vectorc E™ on a line with directionn € E™,
in PK" we have to reflect(x) on

nAecNe,=nANey Ne_.
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This is similar to what we found for the projective space and is also in accordance with what
we said about the embedding 6f(E") in C/(PK"™) in section 2.2.5. A rotorR expressed
as two consecutive reflections anc E” and m € E™, will thus take the following form
in C/(PK™).
R=(mnANetNe_)(mAerANe_)=nmeye_e;e_ =nm. (2.29)

Therefore, a rotor irC/(PK"™) expressing a rotation about an axis through the origin, takes
again the same form as fa¥(E") .

2.2.8 Translations in PK"

It may be shown that a translation if* can also be expressed by two consecutive reflec-
tions on two parallel lines. IPK™ the appropriate operator does take on a similar form as
that of a rotor. To cut a long story short, the translation operator, also ¢edleslator, for

a translation by a Euclidean vector is given by

T=1-lte. (2.30)

That is, a translator also has a scalar and a bivector part, just like a rotor. In fact, in terms
of the representation dPK” as R"th! | a translator expresses a rotation. However, the
rotation plane does not lie in the Euclidean subspace but in a mixed subspace.

It may be shown that since
(teoo)2 =tejte, = —ttesges =0,
the operatorI’ can be expressed in exponential form as
T = exp ( — %t eoo). (2.31)

Furthermore'T = 1. If we apply T' to the origine, we get

Te I =(1—3tex)e,(1+itesy)
= ... difficult exercise :-(
=t+ 1t?es +e,

If we translate the point at infinitye , it remains the point at infinity. That is,

TewT = ex.

With a translator we can again translate any bladé&/{i®K") . That is, we can use the
operator to translate points, lines, planes, circles and spheres. We can even translate a rotor
with a translator, which then results in a rotation about an arbitrary axis in space. Such a
general rotation operator may simply be given by

M =TRT. (2.32)
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If we apply M to a vectorX € PK"™ we get
rotation
MXM=TR TXT RT.
\.,—/
translation by—t

translation byt

One very nice effect of having a translator available is that for many properties it is
enough to show that they are valid at the origin. Applying the translation operator it is
then possible to show that this property holds everywhere in space. A simple example may
elucidate this. For a sphere centered at the origin of ragdijuse know that the expression
in PK™ is

S=¢ey— %p2 €so-
It is easily shown that
S-S =y’

in this case. But is this true for any sphere? Suppose B6vis a sphere with center
t in Euclidean space and |6t denote a translator representing a translationt byhen
S"=TST,if S denotes a sphere of the same radiu$aat the origin. We then find that

S'S'=TSTTST=TSST =p*TT = p°

Thus we can relate a property that is valid at the origin to any point in space.
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Chapter 3

An Interactive Introduction to
Geometric Algebra

by Dietmar Hildenbrand

3.1 Motivation

Geometric Algebra promises to stimulate new methods and insights in all areas of science
dealing with geometric properties.

It has a lot of advantages, e. g. it allows simple, compact, coordinate-free and dimensionally
fluid formulations.

3.1.1 Unification
Geometric Algebra comprises a lot of mathematical systems like

¢ Clifford Algebra

Vector Algebra

Grassmann Algebra

Complex Numbers

Quaternions

Tensor Algebra

Spinor Algebra

71
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3.1.2 Low Symbolic Complexity

Expressions in Geometric Algebra normally have low complexity. For instance in section
3.6.5 we will see that the inner product of two vectdts S is used for different tasks like

e the Euclidean distance between two points
¢ the distance between one point and one plane

¢ the decision whether a point is inside or outside of a sphere

3.1.3 Robustness
One reason for the robustness of Geometric Algebra is its natural dealing with infinity. For

example the intersection of two parallel lines delivers a well-defined result.

3.2 Introduction to this interactive Tutorial

In this tutorial we use th€LUCalc software tocalculate with Geometric Algebraand to
visualize the resultsof these calculations. CluCalc is available for download at [27]. With
help of the CLUCalc Software you are able to edit and run Scripts c@lladiScripts.

CluCalc offers the following three windows
e editor window

e visualization window ( results can be arranged with help of the left mouse button )

e output window

Figure 3.1: Screenshot of the CLUCalc windows
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The following CLUScript example "BaseVectorsE3.clu” draws the 3 base vectors of the
3-dimensional Euclidean space.

DefVarseE3();
_BGColor = Color(1,1,1); /I Background white

‘Red;

:a=el;
b=e2;
.c=e3;

Figure 3.2: BaseVectorsE3.clu

DefVarsk3(); in this CLUScript indicates that we are working in the 3-dimensional Eu-
clidean space E3.

:Red; means that the succeeding geometric objects will be drawn in red.

:a=el; assigns the base vectey to the variablea and visualize it ( Note : without the
leading colon it would not be visualized ).

Figures generated by CLUScripts are labeled by the name of the script.
All the CLUScripts of this tutorial can be downloaded at

http://www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

Formatting information like setting of background colors or annotations are not explained
in this tutorial.
For details regarding CLUScript please refer to the CLUCalc online help [27].
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3.3 Blades and Vectors

Bladesare the basic computational elements of the Geometric Algebra.

The Geometric Algebra of the Euclidean 3D space consists of blades with dimension ( usu-
ally called grade ) 0, 1, 2 and 3.

A scalar is &-blade ( blade of grade 0).

1-bladesare the 3 base vectors, es, e3.

2-bladesare plane elements spanned by 2 base vectors.

In the following CLUScript "planeelement.clu” the 2-blade; Ae; ( spanned by the 2 base
vectorse; andes ) is drawn in red.

DefVarsg3(); // 3D Euclidean space

:Blue;
:a=el;
b=e2;
.c=e3;

‘Red;
‘PE = el'e2;

Figure 3.3: planeslement.clu

The Geometric Algebra of the Euclidean 3D space also consist8dfiade e; A ex A e3
spanned by all the 3 base vectors.

A linear combination of k-blades is callekavector ( also called vectors, bivectors, trivec-
tors ...).

Table 3.1 lists the 8 blades of the Geometric Algebra of the Euclidean 3D space.



75

Table 3.1: list of blades of the 3D Euclidean space

blade grade | abbreviation

1.1 0 1

2. | e 1 el

3. | ey 1 e2

4, | e3 1 e3

5. exAeg 2 e23

6. | esNeg 2 e3l

7.| e Nea 2 el2

8. |egNegNeg | 3 I

3.4 The products of the Geometric Algebra

The Geometric Algebra offers 3 products
e outer product
e inner product
e geometric product

3.4.1 The Outer Product and Parallelness

Geometric Algebra provides an outer producwith the following properties

Property Meaning

1. | anti-symmetry| a Ab= —(bAa)

2. | linearity aN(b+c)=aAb+aNc

3. | associativity | aA(bAc)=(aNb)Ac

What isa A a then ?

As you can easily see, the outer product of a vector with itself is always 0.
aNa=—(aNa)=0.

The outer product of parallel vectors is 0. This is why the outer product can be used as a
measure foparallelness
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3.4.1.1 Bivectors

A bivector is a plane element spanned by two vectors. It is the result of the outer product
of the vectors.

The following CLUScript bivectorE3.clu computes and draws a simple bivector

DefVarsg3();
:Blue;

a =el + ez
b = el - ez;

c =a"b
a = el

Figure 3.4: bivectorE3.clu

The 2 vectorsa = e; +e9 andb = e; — ey are drawn in blue. The resudt of their outer
productc is a bivector. It is visualized as a plane element in red color.

?c; /I output in separate window

The algebraic representation of the bivectois shown in a separate window ( see the
question mark in front of the variable ¢ ) as

c = -2 el2

According to table 3.1 this is the same a8 (e; A eg).
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?reverse = 7C;

Thereverseof ¢ is computed.
It results in

reverse = 2 el2

since the reverse of a blade simply reverses its order.

We compute the above mentioned example in order to better understand its geometrical
meaning.

c=aAlNb

= (e1 +e2) A (e1 —e)

because of linearity

c=(egNep)—(e1 Nea) + (ea Aep) — (e2 Aeg)
sinceaAa =0

c=—(e1 Nez)+ (e2 Nep)
because of anti-symmetry

c=—(e1 Ney) — (e1 Nea)

= —2(61 AN eg)

because of anti-symmetry
c=2(exNep)

We see that the resulting plane element is

¢ twice the plane element spanned by the base veetoende; , or

¢ twice the plane element spanned by the base veetoend e; and invertedorien-
tation

Note : ¢ (the reverse ot ) is equal to

c= 2(61 A eg)
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3.4.1.2 Trivectors

A trivector is a volume element resulting from the outer product of three vectors. The
following CLUScript computes and draws a simple trivector in E3

DefVarseE3();
:Blue;

a = el + e2;
b = el - e2;
‘c = e3;

‘Red;
d=a"b " " c
?d;

Figure 3.5: trivectorE3.clu
The 3 vectorsa, b, ¢ are drawn in blue and their outer produtin red color.

We compute the above mentioned example in order to better understand its geometrical
meaning.

d=aNbAhc= (61+62)/\(el —62)/\63
because of linearity

d=1( (e1Nep)—(e1Nex)+(e2Nep) —(eaNex) )Aes
0 0
= (—(er Nez) + (e2Ner)) Nes

because of anti-symmetry

d=(—(e1 Nea) —(e1 Nez)) ANes
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= (—2(61 A 62)) N e3
= —2(61 N ey N\ e3)
= -2]

This means, the resulting geometric object b A ¢ is equal to -2 multiplied by the volume
element spanned by the 3 base vectars,, e;. This is often denoted a8, the so-called
pseudoscalar

3.4.2 The Inner Product and Perpendicularity

Geometric Algebra offers a so-called inner product denoted by3
(in CLUSCcript A.B).

3.4.2.1 The Inner Product of vectors

For Euclidean spaces, the inner product of 2 vectors is the same as the well known Euclidean
scalar product of 2 vectors.

The result of the following CLUScript
DefVarsg3();

B = el+e2;
? length = sqrt(B.B);

length = 1.41421,

the length of the vectog; + e5.
For perpendicular vectors the inner product i8.

The result of the following CLUScript

DefVarsE3();
? norm = el.e2;

norm = O,

since the two base vectors are perpendicular.
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3.4.2.2 The general Inner Product
In Geometric Algebra, the inner product is not only defined for vectors.

The following CLUScript innerProductE3.clu computes and draws inner product calcula-
tions of

- 2 bivectors

- a vector and a bivector

DefVarseE3();
‘Red;
B = el " e2;

? norm = B.B;

:Green;
X = el+e3;

:Blue;
/[ xiB is a vector in the B-plane perpendicular to x
XiB = x.B;

The surprising result of the square produ#t of the bivectorB = e; Aey is —1.

The result of the inner product of the vecter= e; + e3 and the bivector B is a vector in
the plane ( represented by the bivector B).
The resulting vector iperpendicular to .

Remark : the inner product is grade decreasing, e. g. in the previous example the result of
the inner product of an element with grade 2 and grade 1 is an element of grade 2-1 =1.

Figure 3.6: innerProductE3.clu
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3.4.3 The Geometric Product and Duality

The geometric product is a combination of the outer product and the inner product. The
Geometric Product ofi and v is denoted byuv (in CLUScript u*v ).
As we will see, it is an amazingly powerful operation.

3.4.3.1 The Geometric Product of Vectors

For vectorsu and v the geometric productv is defined as
U =uANv+u-v (3.1)

We derive for the inner and the outer product

u-v= %(uv—i—’uu) (3.2)

1
uAv= §(UU —vu) (3.3)

Example 1: What is thesquare of a vector?

a2:aa:a/\a+a-a:a'a

for example

e1e1:e1-e1:1

Example 2: What is (e; + e2)(e1 +e2) ?

DefVarseE3();
?(el+e2)*(el+e2);

results in
Constant = 2

(e1+e2)(e1+e2) = (e1+e2)-(e1+e2) = ej-e1+ej-exteg-e1+ez-ex = ej-e1+egy-ep =2

Example 3: Whatisejey ?

DefVarsg3();
?el*e2;
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results in
Constant = el?2

ejeo =e1Nex+ey1-ep=e; ANeg

Example 4: Whatise;(e; +e2) ?

DefVarseE3();
?el*(el+e2);

results in
Constant = el12 +1

er(e;1 +ex) =eje; +ejea =1+4+¢e; Aeg

Note : The result of this calculation is a linear combination of different types of blades (in
this example of a scalar and a bivector ). These kind of expressions areroalagctors.

3.4.3.2 Extension of the Geometric Product to general multivectors

The geometric product is not only defined for vectors but also for all kind of multivectors.
Let us for example calculate the geometric product of 2 bivectors:

DefVarseE3();
?(el’e2)*((el+e2)"e3);

The result is
Constant = - e23 - e31

Proof

(e1 Nea)((e1 +e2) Aes)

= (e1e2)(e1 A ez +ex Aes)
= ejex(eje3 + eze3)

= e1eg€e1€e3 + e1€2€9e3

= —egejeje3 + e1e3

= —ege3 + ej€e3

= —(eg/\eg)—i—el/\eg



3.4.3.3 Invertibility

Theinvertibility of a bladeA is defined by
AAT =1

The inverse of a vectov is

Example 1: What is the inverse of the vectar= 2e;
DefVarsE3();
v=2*el;

? 1,

results in0.5el

Example 2: What is theinverse of the pseudoscala?

DefVarseE3();
? 1/

results in the negative of the pseudoscalarl()
Constant = - I;

Proof

II = (61 A ey A 63)(61 A ey A 63) = (616263)(616263)

= €1€2 €3€1€2€3 = —€2€1€3€1€2€3 = €2€3 €1€] €2€3
~—~ ~—~
—ege] 1

= €9€3€9€3 — —€3€9€9€3 = —€3€3 — -1

— Il =-1

—II(I ") =-1"1
— I t=—7
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3.4.3.4 Duality

Since the geometric productiisvertible, divisions by geometric objects are possible.
Thedual of a geometric object is calculated by its division by the pseudosdalar

In the following CLUScript DualE3.clu the dual of the plaakis calculated.
DefVarsg3();

‘Blue;
A= e2 7 (el+el);

:Green;
b= A/l;
?b;

Figure 3.7: DualE3.clu

The resulting vectob
b =-el-e3

corresponds to the normal vector of the plane.
Let us verify the result.
A superscript "*” means the dual operator. In CLUScript this is denoted by a leading "*”.

(62 A\ (e1 + 63))* = (62 A (61 + e3))(e1e2e3)’1

= (e2 A (e1 +e3))(—ereze3) = —(ea(e1 + e3))erezes
= —egeje] exe3 — €9€3 €1€2€3 = —€g€2€3 + €3ege1€9€e3
~—~ ~—~
1 —eze2
= —€3 — €3€1€9€9€3 = —€3 — €3€1€3

= —e3 + ejeze3 = —e3 + €1
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3.5 Geometric Properties

The products of the Geometric Algebra already have some geometric meaning. We will
now see some additional geometric properties.

3.5.1 Projection and Rejection

In the following example ProjectE3.clu we compute and draw the projection and rejection
of a vectorv to a planeB.
The projection is calculated with help of

Upar = (v B)/B
and the rejection with help of

Uperp = (VA B)/B

Figure 3.8: ProjectE3.clu

DefVarsE3();

‘Red;

‘B = el*(el+e2);

v = 1.5%1 + e2/3 +e3;

The planeB and the vectow are computed. The planB is drawn in red color.
Remark : the vectop is only computed but not drawn because of the missing colon.

:Blue;
vpar = (v.B)/B;
?vpar;
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Upar 1S COMputed as,,, = (v - B)/B and drawn in blue color.
Itis the part of v parallel to B .

Yellow;
:vperp= (v " B)/B;
?vperp;

Uperp 1S COMputed as,e, = (v A B)/B and drawn in yellow color.
Itis the part of v perpendicularto B .

:Magenta,;
:Sum = vpar + vperp;
?2Sum;

Sum ( as the sum of the 2 vectors,,,, andv,.,, ) results in the original vector, since
vB =wv- B+ v A B and therefore
(vB)/B=(v-B)/B+(vAB)/B=v
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3.5.2 Reflection

The reflection of a vectov from a planeM is defined by
Urefl = MvM

In the following example ReflectE3.clu we reflect a vector from a plane.

Figure 3.9: ReflectE3.clu

DefVarsE3();
‘Blue;
v=el+2*e3;
:Green;

M = el ~ e2;

The vectorv is drawn in blue color, the plan&/ in green.
‘Red;
wvrefl = M*v*M;

? vrefl;

With help of the geometric produc/vM the reflected vector,.s; is calculated, drawn
and printed.
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3.5.3 Rotationin 2d

In geometric algebra, the geometric prodiitt= b a of two normalized vectors describes
the rotation between these two vectors ( by twice the angle between a and b ). In the
following exampleRotor2d.clu  we rotate the vectoa with help of

c=RaR.

R is called a rotor,R is the reverse of?.
DefVarsg3();

Blue;
a = el;

:Green;
b = 1/sqrt(2)*(el+e2);

20

A :

Figure 3.10: Rotor2d.clu

The vectora is drawn in blue color, the vectdr in green.
?R = b*a;
The rotation operatoR is calculated as product of the vectiprand the vectow .

‘Red;
:c = R*a*R;

The rotated vectoe is calculated and drawn in red color. We see tRatotatesa by twice
the angle between andb.
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The rotation operator can also be calculated with help of an exponential function.

DefVarsE3();
:Green;
0= el " e2;

The planei is drawn in green.
R=exp( -i * (Pi/4)/2 );

The rotation operator is calculated with helpio&nd the specific angi/4 ( w/4 ).
:Blue;
a = el;

‘Red;
b = R*a*R;

Figure 3.11: Rotate EXP _E3.clu

The operatork = e~i% with i = el A €2 can be decomposed as follows :
With help of the Taylor series and the fact that= —1 (see 3.4.2.2)

—ig | (Fi9)? | (=8 (i)t (mi9)° | (ig)°
1! 2! 3! 4! 5! 6!

B TR TR T
[ (Q)?» (9)5
2 2

+—’LF+—’LT——Z 5'
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3.5.4 Rotationin 3d

The operatorkR = e3P describes a rotor in 3d witlp being a normalized plane. The
normal vector ( or the dual ) of this plane is used as rotation axis. .
In the following exampld&otor3d.clu  we rotate the vectoa with help ofrot = Ra R.

DefVarsE3();
:Blue;
:a=el+e?;

:Green;

axis = -3*el + 6*e2 - 2*e3;
:axis = axis/sgrt(axis.axis);
p = *axis;

angle = Pi/3;
?R=exp(-0.5*angle*p);
‘Red;

rot=R*a*"'R;

Figure 3.12: Rotor3d.clu

The vectora is drawn in blue color.
The rotated vector is calculated and drawn in red color.
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3.5.5 Intersection

In the geometric algebra, there is a powerful meet operation to calculate the intersection
between geometric objects.
The meet operation between two bladésand B is given by

AV B=A" B,

if the direct sum of the OPNS ofi and B is the whole vector space. In the following
examplemeetE3.clu  we intersect two planes.

DefVarseE3();

Blue;

A = e2 " (el + e3);
:Green,;

B = el “(e2 + e3/2),

The two planesA and B are calculated and drawn in blue and green color.

‘Red;
‘mMAB = *A.B;

ntersection mAB

Figure 3.13: meetE3.clu

The result of the intersectiomAB = A* - B is drawn in red.
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3.6 The Conformal Geometric Algebra

Up to now we have dealt with the well known Euclidean space.

In this section we will extend our investigations to one specific non-Euclidean space, the
so-called conformal space.

The Conformal Geometric Algebra is a 5-dimensional Geometric Algebra. For details
please refer to [38]. In this Algebra, points, spheres and planes are easily represented as
vectors ( grade 1 blades).

3.6.1 The two additional base vectors

The Conformal Geometric Algebra uses 2 additional base vecters€_ ) with the fol-
lowing properties.

ei =1 e =1 er-e_=0 (3.4)
Another base €, e, ) can be defined with the following relations
1
eozﬁ(e,—eg €co = €_ + et

The reader is encouraged to verify the following equations.
e2 =e2 =0, €0 € = —1
1 1
e_:eo—i—§eOo e+:§eoo—eo
The outer product,, A e, is often abbreviated by .

3.6.2 Vectors in Conformal Geometric Algebra

A vector can be written as
S = s1e1 + $9€9 + S3€3 + Sg€s0 + S5€0 (35)

The points = s1e1 + s9e2 4 s3eg is denoted as inhomogenous point of the Euclidean space.
Note : bold pointss in this document meas € R3.

The meaning of the two additional coordinates of the Conformal Geometric Algebra is as
follows :

8520 85#0

s4 = 0 || plane through origin sphere/point through origin

s4 # 0 || plane sphere/point
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3.6.2.1 Spheres

A sphereS with inhomogenous center poistand radiusr is represented as
S =8+ 84800 + € (3.6)
with

1 1
Sq = 5(8% +s3+s2—rh) = 5(32 —r?)

The radius of the sphere results in

r2:52—234:3%+s%+s§—234

/\‘

Figure 3.14: OneSphereN3.clu

In the example OneSphereN3.clu

DefVarsN3();

JIPNS;

:N3_SOLID;

'S = e2 +e3 - e +e(;

the radius the radius of the sphefe= ey + e3 — e + €, results in
PP=14+1-2x(-1)=4

:DefVarsN3(); is needed in order to indicate conformal space calculations.

:IPNS; means that we describe the sphere with help of the inner product null space ( IPNS
). OPNS would be used if we would like to describe the sphere with help of its dual repre-
sentation ( quadvector instead of vector ).

:N3_SOLID; is needed in order to visualize the sphere solid instead of a wired\NRED).
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3.6.2.2 Points

Points are degenerate spheres with raaies0. The inhomogenous poini is represented
as

1
X=p+ §p2eOo + e, 3.7)

3.6.2.3 Planes
Planes are degenerate spheres with infinite radius. They are represented as a vector with
s5 =0.
Plane = nie1 + noes + nges + des (3.8)
with the normal vecto(ni, na, n3)
n% + n% + n% =1
andd as the distance of the plane from the origin.

In the following CLUScript PlaneN3.clu the plarg + e, is drawn in red.
The point at infinitye, is indicated by the predefined value

DefVarsN3();
:N3_IPNS;

‘Red;
:a=VecN3(0,0,0);
:Plane=e2+n;
:Green;
:b=VecN3(0,1,0);

/N
\
4 \
/ \
V4 \
A N
// \ \
/\ N, b \
N N N \
/ a N \
/ \ - \
/ \

Figure 3.15: PlaneN3.clu

Its normal vector is(n1,n2,n3) = (0,1,0) and the distance i$ ( indicated in the picture
by the red pointz at the origin and the green poiht). The points in conformal space are
generated by the functioviecN3().
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3.6.3 Bivectors in Conformal Geometric Algebra

The representation of bivectors of Conformal Geometric Algebra are circles and lines.
Lines are degenerate circles with infinite radius.

3.6.3.1 Circles

A circle can be defined by 3 points. Its algebraic description in Conformal Geometric
Algebra is the dual of the outer product of these 3 points.

In the following CLUScript CircleN3.clu a circle is shown in green based on the red points
a,b,c.

DefVarsN3();
:IPNS;

‘Red,;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);
:c=VecN3(0.5, 0.5, 0.5);

:Green,;
:Circle=*(a"b"c);

?Circle;

Figure 3.16: CircleN3.clu

The resulting bivector is calculated and printed.
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3.6.3.2 Lines

A line as a degenerate circle with infinite radius can be defined by 2 points and the point at
infinity.

Its algebraic description in Conformal Geometric Algebra is the dual of the outer product
of these 3 points.

In the following CLUScript LineN3.clu a line is shown in green based on the red points
a,b.

DefVarsN3();
:IPNS;

‘Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
line=* (a " b " n);

?line;

Figure 3.17: LineN3.clu

The point at infinitye, is indicated by the predefined value The resulting bivector is
calculated and printed.
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3.6.4 Dual Vectors in Conformal Geometric Algebra

In the previous section we already saw circles and lines as the dual of trivectors based on
the outer product of three points.

In the same way we are able to define spheres and planes as the dual of the outer product of
four points ( IPNS ) or as the outer product of four points ( OPNS ).

The dual of vectors in conformal geometric algebra are 4-vectors ( or quadvectors ).

In the following CLUScript DualSphereN3.clu a sphere generated by four points is visual-
ized.

DefVarsN3();
:OPNS;
‘N3_SOLID;

‘Red;
:A=VecN3(-0.5,0,1);

:Blue;
:B=VecN3(1,-0.5,2);

:Green;
:C=VecN3(0,1.5,3);

:Black;
:D=VecN3(0,2,2);

Yellow;
:Sphere=A"B"C"D;

?Sphere;

The sphere is generated by the outer product of the four pain3, C, D. These points
are indicated by different colors. The resulting quadvector is shown in the output window.
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3.6.5 Distances

In the Conformal Geometric Algebra points, planes and spheres are represented as vectors.
The inner product of this kind of objects is a scalar and can be used as a measure for
distances.

In the following examples we will see that the inner prodirctS of two vectorsP and S
can be used for tasks like

¢ the Euclidean distance between two points

¢ the distance between one point and one plane

e the decision whether a point is inside or outside of a sphere

Let us first translate the inner product to an expression in Euclidean space.

The inner product between a vectbr and a vectorS is defined by
P-S= (p + Pa€oo +p5eo) : (S + S4€00 + 3560)
=pP-S+S4P-€xt+S5P" €

\_\0/_/ \T

2
+D4 €00+ S+PaS4 €7 +P4S5 €00 - €
—— \0/-/ ——
0 -1

2
+D5 €0 - S+P554 €0 - €0 +P555 €
~—— N—— N~
0 -1 0
It results in

P-S=p-s—pssq—pass (3.9)
or

P - S =pis1 + pasa + p3s3 — p5sa — pass

3.6.5.1 Distances between points

In the case ofP and S being points we get

_12 -1
p4_2p yP5 =

1
S4 = §S2,85 =1
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The inner product of these points is according to equation 3.9

L o

1
P-S=p-s—-s*>—_p

2 2

1 1
= p151 + p2s2 + P3s3 — 5(8% + 554 83) — 5(1?% +p3 +p3)

1
= —5(3% + 83 + 83+ P + p3 + P35 — 2p151 — 2pas2 — 2p3s3)

1

= 5 ((s1 = p1)” + (s2. = p2)” + (53— p3)?)
= —%(s —p)?

We recognize that the square of the Euclidean distance of the inhomogenous points corre-
sponds to the inner product of the homogenous points multiplied by

(s—p)°=-2(P-9)

3.6.5.2 Distance between points and planes

For a vectorP representing a point we get

1
pa=-p*,ps =1

2
For a vectorS representing a plane with normal vecterand distancel we get
s=mn,s4=d,s5=0
The inner product of point and plane is according to equation 3.9

P-S=p-n—-d

representing the Euclidean distance of a point and a plane.
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3.6.5.3 is apointinside or outside of a sphere ?

We will see now that the inner product of a point and a sphere can be used for the decision
of whether a point is inside of a sphere or not.

For a vectorP representing a point we get

_12 -1
p4_2p7 b5 =

For a vectorS representing a sphere we get

S4=%(S%—|—8%+S§—T2), s5 =1
The inner product of point and sphere is according to equation 3.9
P-S:p-s—%(sg—rg)—%p2
=p-s— 2524-%7“2 %p2
(s p)
= %TZ - %(S -p)°

We get
2AP-8) =1~ (s —p)’
In terms of the Euclidean distanekwith
(d+7)? = (s — p)*> = d® + 2dr + r*
we get
2(P-8) =r*— (d* 4 2dr + r?)
2(P-8) = —d* - 2dr
or

Dd)=P-S= —g(d+2r)
With help of curve sketching we see that this is a parabola with
D(0)=0 D(-2r)=0

and a maximum at

we can see that

P -S> 0: pisinside of the sphere
P-S=0: pisonthe sphere
P-S <0 : pisoutside of the sphere
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3.6.5.4 is apointinside or outside of a circumcircle of a triangle ?

The reader is encouraged to verify that the following CLUScript PointinsideCircleN3.clu is
able to decide whether a point is inside or outside of a circumcircle of a triangle.

DefVarsN3();

JIPNS;
:N3_SOLID;

‘Red;
:A=VecN3(-0.5,0,1);
:Blue;
:B=VecN3(1,-0.5,2);
:Green;
:C=VecN3(0,1.5,3);
:Black;
:X=VecN3(0,4,4);

:Magenta;
:Circle=*(A"B"C);
Plane=*(A"B"C’e);

‘Yellow;
:Sphere=Circle*Plane;
?Distance=Sphere.X;

Figure 3.18: PointinsideCircleN3.clu
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3.6.6 Intersections

As already mentioned for the 3D Euclidean space the meet operation between two blades
A and B may be given by

AV B=A" B,

In the following examples we will compute intersections between different objects like
spheres, lines and planes.

3.6.6.1 Intersection of two spheres

In the following CLUScript meetSphereSphereN3.clu the intersection of two spheres is
calculated with help of the meet operation.

DefVarsN3();
:OPNS;
:N3_SOLID;

‘Red;
:a=*(VecN3(0,-0.5,-0.5)-0.5%¢);
:b=*(VecN3(0,0.5,0.5)-0.5%¢);

:Blue;
:M=*a.b;
?M;

Figure 3.19: meetSphereSphereN3.clu

Two spheres, defined as dual vectors in OPNS are drawn in red color. The intersection of
theses spheres is calculated with help of the meet operation. The resulting circle is drawn
in blue.
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3.6.6.2 Intersection of a line and a sphere

In the following CLUScript meetSphereLineN3.clu the intersection of one sphexad
one line! is calculated with help of the meet operatieh- [ .

DefVarsN3();
:OPNS;
:N3_SOLID;

‘Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
1=a"b™n;
?l;

Yellow;
s=VecN3(0,1,1) -0.1%e;
:S=*s;

:Magenta;
r=*s.l;

Figure 3.20: meetSphereLineN3.clu

The intersection of the liné ( defined by the pointg and b ) and the sphere is apoint
pair.

This geometric object is visualized in magenta.

A point pair is a trivector in Conformal Geometric Algebra.
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3.6.6.3 Intersection of a line and a plane

In the following CLUScript meetPlaneLineN3.clu the intersection of one plared one
line [ is calculated with help of the meet operatiph- [.

DefVarsN3();
:OPNS;

‘Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
d=a"b"n;
?l;

:c=VecN3(2,1,2);
:d=VecN3(1,-1,1);
:e=VecN3(-1,-2,-1);

‘Yellow;
p=c"d’e’n;

:Magenta,;
r=*p.l;
?r;

Figure 3.21: meetPlaneLineN3.clu

The planep is defined with help of the three poinisd, e and the point at infinityn. The
intersection point- with the line ! ( defined with help ofa, b, n ) is visualized in magenta.
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3.6.7 Reflection

In the following CLUScript ReflectN3.clu we visualize the reflection of one lirieom one
plane p with help of the operatiomplp.

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
1=a"b™n;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

Yellow;
p=c"d’e™n;
:Magenta,;

r=p**p;
?r;

Figure 3.22: ReflectN3.clu

The result is one reflected line drawn in magenta.
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3.6.8 Projection

In the following CLUScript ProjectN3.clu we visualize the projection of one line to one
plane with help of the operatiofip'ﬁ1

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
1=a"b™n;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

Yellow;
p=c’d’e™n;

:Magenta,;

:r=(p.1)/p;
?r;

Figure 3.23: ProjectN3.clu

The result is the projected line drawn in magenta.
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Anti-commutator product
definition of, 25
of vectors, 26

Basis blade
definition of, 26
grade of, 28

Bivector
magnitude of, 5

Blade
definition of, 3
grade of, 3
inverse of, 7
magnitude of, 5
reverse of, 7

Clifford algebra
axioms of, 23
basis of C/(R?) , 27
isomorphism toC, 28, 34
isomorphism to Quaternions, 36
relation to Grassmann algebra, 37
relation to Grassmann-Cayley alge-
bra, 38
vs. Geometric algebra, 1
Commutator product
definition of, 25
of vectors, 26
Conformal transformation
definition of, 53

Direct subtraction
definition of, 10
Direct sum
definition of, 9
of subspaces, 10
Dual
definition of, 10
geometric meaning, 12, 84, 95-97
relation between OPNS and IPNS, 11
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Einstein summation convention, 27

Geometric algebra

vs. Clifford algebra, 1
Geometric product

of vectors, 17
Grade

of basis blade, 28

of blade, 3, 74, 92
Grassmann algebra

relation to Clifford algebra, 37
Grassmann-Cayley algebra

relation to Clifford algebra, 38

Homogeneous
component, 41
dimension, 41
space, 41
vector, 42

Inner product
metric property, 6
of blades, 6
relation to shuffle product, 40
with scalar, 17

Inner product null space
definition of, 9
Euclidean inPE™, 44
Euclidean inPK", 58
intersection of, 13
relation to OPNS, 11

Inverse
of blade, 7
of multivector, 30

Inversion
in conformal space, 66

Join
definition of, 16

Magnitude
of bivector, 5



of blade, 5

of pseudoscalar, 5
Meet

definition of, 16
Multivector

definition of, 27

in s, 27

inverse of, 30
Operator

grade preserving, 18

inversion inPK"™, 66

reflection inE™, 18

reflection inPE™, 48

rotor in E", 21

rotor in PE”™, 49

rotor in PK", 68
Outer product

properties, 2

relation to vector cross product, 12
Outer product null space

definition of, 3

Euclidean inPE", 44

Euclidean inPK", 58

relation to IPNS, 11
Outer-Morphism

of reflection, 19

of rotor, 22

Product
anti-commutator, 25
commutator, 25
geometric, 17
inner, 6
join, 16
meet, 16
outer, 2
regressive, 15
scalar, 2
shuffle, 39
triple scalar, 33
triple vector cross, 33
vector cross, 2

Pseudoscalar
magnitude of, 5
of R3, 11, 79, 83, 84

Quaternions
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isomorphism to Clifford algebra, 36

Reflection
in Euclidean space, 18, 87
in projective space, 48
outer-morphism, 19
Regressive Product
definition of, 15
Regressive product
relation to shuffle product, 39
Reverse
of blade, 7, 77
Rotor
definition of, 21
exponential form, 22
in conformal space, 68
in projective space, 49
outer-morphism, 22
Shuffle product
definition of, 39
relation to inner product, 40
relation to regressive product, 39
Stereographic projection
definition of, 54
inverse of, 55

Vector

of gradek, 28
Vector cross product

relation to outer product, 12
Versor

equation, 31



