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Preface
This text is meant to be a script of a tutorial on Clifford (or Geometric) algebra. It is

therefore not complete in the description of the algebra and neither completely rigorous.
The reader is also not likely to be able to perform arbitrary calculations with Clifford al-
gebra after reading this script. The goal of this text is to give the reader a feeling for what
Clifford algebra is about and how it may be used. It is attempted to convey the basic ideas
behind the use of Clifford algebra in the description of geometry in Euclidean, projective
and conformal space.

There are also many other introductions to Clifford and Geometric algebra and its appli-
cations in Euclidean, projective and conformal space. Some of these are [19, 18, 20, 16, 25,
32, 15, 31, 21, 10, 26, 28, 9]. A collection of papers discussing in particular the conformal
space in detail and applications of Geometric algebra in Computer Vision may be found in
the bookGeometric Computing with Clifford Algebra[38].

This text is separated into three main parts: ”Introductions to Clifford Algebra”, ”Ge-
ometries” and ”An Interactive Introduction to Geometric Algebra”. The plural ”Introduc-
tions” in the title of the first chapter is fully intentional, since two introductions will be
given. The first concentrates on the geometric interpretation of Clifford algebra elements
and the second on algebraic properties. The second chapter discusses the application of
Geometric algebra to projective and conformal spaces. Here we will see how Geometric
algebra can be used to represent points, lines, planes, circles and spheres. It will be shown
that intersections between any of these objects can be expressed by a single operation and
operations like reflections, rotations or inversions are equally expressed in a uniform way for
all geometric entities. The third chapter recapitulates some important aspects of Geometric
algebra in worked examples using the Geometric algebra visualization toolCLUCalc. This
chapter should be particularly helpful, since it shows you how to explore important aspects
of Geometric algebra interactively.

CLUCalc is of course not the only software available that deals with Clifford or Ge-
ometric algebra. Many software packages have been developed, because the numerical
evaluation of Clifford algebra equations becomes more and more important as Clifford al-
gebra becomes more prominent in applied fields like computer vision, computer graphics
and robotics [21, 35, 22, 30, 10, 38, 8]. There are packages for the symbolic computer al-
gebra systems Maple [1, 2] and Mathematica [5], a package for the numerical mathematics
program MatLab called GABLE [9], the C++ software library GluCat [23], the C++ soft-
ware library generator Gaigen [14], the Java library Clados [7] and a stand alone program
called CLICAL [24], to name just a few.

In 1996, one of the authors (C. Perwass), started developing a C++ library to implement
Clifford algebra operations. It has since grown to a whole suite of C++ libraries and stand
alone programs for the manipulation and visualisation of Clifford algebras. This suite is
called theCLU-Project[27]. ’CLU’ stands forClifford algebraL ibrary andUtilities. The
goal of the CLU-Project is to offer an easy to use and yet powerful interface to work with
and understand Clifford or Geometric algebra. All C++ libraries of the CLU-Project are
Open Source and thus available to everybody.
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CLUCalc is a user friendly frontend to these libraries. It is used in the ”Interactive In-
troduction . . . ” and is available for download from [27]. In CLUCalc you can type your
equations in a simple script language, calledCLUScript and visualize the results imme-
diately with OpenGL graphics. The program comes with a manual in HTML form and a
number of example scripts. There is also an online version of the manual under:

http://www.perwass.de/CLU/CLUCalcDoc/

CLUCalc should serve as a good accompaniment to this script, helping you to understand
the concepts behind Geometric algebra visually. TheCLUScript s used in chapter three can
also be downloaded through the following link:

www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

By the way, CLUCalc was also used to create all of the 2d and 3d graphics in this script.
You can use it for the same purpose, illustrating your publications or web-pages, from the
version 3.0 onwards, which is now available. Some other features of CLUCalc v3.0.0 are:

• render and display LaTeX text and formulas to annotate your graphics, or to create
slides for presentations,

• prepare presentations with user interactive 3D-graphics included in your slides,

• draw 2D-surfaces, including the surface generated by a set of circles,

• do structured programming with if-clauses and loops,

• do error propagation in Clifford algebra,

• and much more...

If you want to know more details, go towww.clucalc.info or simply send an email to
help@clucalc.info .

Christian Perwass
Kiel, January 2004
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Figure 1: A screenshot of CLUCalc v2.0.
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Chapter 1

Introductions to
Clifford Algebra

by Dr. Christian Perwass

This chapter is separated into two main parts: ”Introductions to Clifford Algebra” and
”Geometries”. The plural ”Introductions” is fully intentional, since two introductions will
be given. The first concentrates on the geometric interpretation of Clifford algebra elements
and the second on algebraic properties. These two introductions also reflect the two terms
mainly used for this algebra within the research community: ”Geometric Algebra” and
”Clifford Algebra”. Roughly speaking, if somebody talks about Clifford algebra, he is more
interested in the algebraic aspects. If someone talks about Geometric algebra, his interest
lies more in the geometric interpretation of algebraic entities. Here we will start with the
geometric interpretation of algebraic entities, since it is hoped that the reader’s geometric
intuition will further the understanding.

1.1 Geometric Algebra

In this introduction we will neglect many algebraic aspects and introduce Geometric al-
gebra as an extension of the standard vector algebra. The actual algebra product is called
”geometric product”, but we will not start this discourse by discussing this product. Instead,
we start by introducing the ”inner product” and ”outer product”, which can be regarded as
special ”parts” of the geometric product. This ”top-down” approach is hoped to show the
applicability of the mathematics before giving a lot of details that may confuse the reader. If
you prefer to first understand what the geometric product is, though, then read first section
1.1.11.

In the following the terms ”scalar product” and ”inner product” will be used quite often,
and it is important to understand that in this text these two terms refer to quite different

1
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operations. Depending on which books you have read before, you may be used to employing
these terms interchangeably. Here, a scalar product is a product which results in a scalar - no
more, no less. This scalar is in general an element ofR , in particular it may also be zero or
negative. This may, for example, occur if the basis of the vector space we are working in is
not Euclidean. This will in fact turn up in section 2.2. The operation termed ”inner product”
here, may coincide with the scalar product, but represents in general an algebraic operation
which does not result in a scalar. This will be explained further in section 1.1.4. One
may also say that the scalar product is a ”metric” operation, since it depends on a metric,
while the inner product is an algebraic operation, which can also be executed without the
knowledge of a metric.

So let’s start with a 3d Euclidean vector space denoted byE3 . We will use the coordinate
representationR3 for E3 . We assume that the standard scalar product is defined onE3 .
It will be denoted by∗ . Furthermore, the usual vector cross product exists onE3 and
will be written as× . Recall that the scalar product gives the length of the component two
vectors have in common. The vector cross product, on the other hand, results in a vector
perpendicular to both of the initial vectors. For example, leta,b, c ∈ E3 , then

a ∗ b ∈ R and a× b ∈ E3.

Furthermore,

c = a× b ⇒ c ⊥ a and c ⊥ b.

A plane inE3 is typically represented by its normal and an offset vector. Given two vectors
that are to span a plane, the vector cross product can be used to find the plane’s normal.
However, this only works in 3d. In higher dimensions the (standard) vector cross product
of two vectors is not defined1. Nevertheless, we may be interested in describing the two
dimensional subspace spanned by two vectors also in an -dimensional vector space.

1.1.1 The Outer Product

Without explaining exactly what it is, we can define a Clifford algebra onRn , C̀ (Rn) or
simply C̀ n if it is clear that we are forming the Clifford algebra over the reals. The latter
will in fact be the case for the whole of this text.

The outer product is an operation defined within this algebra and is denoted by∧ . Here
are the properties of the outer product of vectors. Leta,b, c ∈ En .

a ∧ b = −b ∧ a

(a ∧ b) ∧ c = a ∧ (b ∧ c)

a ∧ (b + c) = (a ∧ b) + (a ∧ c).

(1.1)

Another important property is

a ∧ b = 0 ⇐⇒ a andb are linearly dependent. (1.2)

1Note that in an -dimensional vector space, one can define a vector cross product betweenn− 1 vectors.
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Let {a1, . . . ,ak} ⊂ Rn be k ≤ n mutually linearly independent vectors. Then

(a1 ∧ a2 ∧ . . . ∧ ak) ∧ b = 0, (1.3)

if and only if b is linearly dependent on{a1, . . . ,ak} . The outer product ofk vectors is
called ak -bladeand is denoted by

A〈k〉 = a1 ∧ a2 ∧ . . . ∧ ak =:
k∧

i=1

ai.

The grade of a blade is simply the number of vectors that ”wedged” together give the
blade. Hence, the outer product ofk linearly independent vectors gives a blade of gradek ,
a k -blade.

1.1.2 The Outer Product Null Space

In Geometric algebra, blades, as defined above, are given a geometric interpretation. This
is based on their interpretation as linear subspaces. For example, given a vectora ∈ Rn ,
we can define a functionOa as

Oa : x ∈ Rn 7→ x ∧ a ∈ C̀ (Rn).

The kernel of this function is the set of vectors inRn that Oa maps to zero. This kernel
will be called theouter product null space(OPNS) ofa and denoted byNO(a) . That is,

kern Oa = NO(a) :=
{
x ∈ Rn : x ∧ a = 0 ∈ C̀ (Rn)

}
. (1.4)

We already know thatx∧ a is zero if and only ifx is linearly dependent ona . Therefore,
NO(a) can also be given in terms ofa as

NO(a) =
{
α a : α ∈ R

}
,

which means that the OPNS ofa is a line through the origin with the direction ofa . In
Geometric algebra it is therefore said that a vector inEn represents a line.

Given a2 -bladea ∧ b ∈ C̀ (Rn) , wherea,b ∈ Rn , a functionOa∧b can be defined
as

Oa∧b : x ∈ Rn 7→ x ∧ a ∧ b ∈ C̀ (Rn).

The kernel of this function is

kern Oa∧b = NO(a ∧ b) :=
{
x ∈ Rn : x ∧ a ∧ b = 0 ∈ C̀ (Rn)

}
. (1.5)

As before, it follows that the OPNS ofa ∧ b can be parameterized as follows

NO(a ∧ b) =
{
α a + β b : (α, β) ∈ R2

}
.
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Hence,a ∧ b is said to represent the two-dimensional subspace ofRn spanned bya and
b , ie a plane through the origin. In general the OPNS of somek -bladeA〈k〉 ∈ C̀ (Rn) is a
k -dimensional linear subspace ofRn .

NO(A〈k〉) :=
{
x ∈ Rn : x ∧A〈k〉 = 0

}
.

Consider again the three-dimensional Euclidean spaceE3 with a,b, c ∈ E3 three mu-
tually linearly independent vectors. Hence,{a,b, c} form a basis ofE3 . Then

NO(a ∧ b ∧ c) :=
{
x ∈ E3 : x ∧ a ∧ b ∧ c = 0 ∈ C̀ (R3)

}
=

{
α a + β b + γ c ∈ E3 : (α, β, γ) ∈ R3

}
.

Therefore, the OPNS ofa ∧ b ∧ c is the whole spaceE3 . Since the OPNS of the outer
product of any basis ofE3 is the whole spaceE3 , the blades created from different bases
have to be similar. In fact, they only differ by a scalar factor. A blade of graden in some
C̀ (Rn) is called apseudoscalar. ”Pseudoscalar” because all pseudoscalars only differ by a
scalar factor, just like the scalar element1 ∈ C̀ (Rn) .

Aside. Note that the fact thatNO
(
A〈n〉 ∈ C̀ (Rn)

)
= Rn , implies that no

blades of grade higher thann can exist inC̀ (Rn) .

1.1.3 Magnitude of Blades

On the Euclidean spaceEn the norm typically used is theL2 norm. This is defined in
terms of the scalar product. Leta ∈ En , then

‖a‖2 :=
√

a ∗ a. (1.6)

This norm can also be extended to blades inC̀ (En) . We will not give a proper derivation
here, but try to motivate the definition. In the following we will also use‖.‖ instead‖.‖2

for brevity. Let a,b ∈ R3 and denote byb⊥ and b‖ the parts ofb = b⊥ + b‖ that are
perpendicular and parallel toa , respectively. Then

a ∧ b = a ∧ (b⊥ + b‖)

= a ∧ b⊥ + a ∧ b‖︸ ︷︷ ︸
=0

= a ∧ b⊥.

(1.7)

Similarly, for anyk -bladeA〈k〉 =
∧k

i=1 ai , we can find a set ofk mutually orthogonal
vectors{a′1, . . . , a′k} , such that

A〈k〉 = A′
〈k〉 :=

k∧
i=1

a′i.



5

Now, it may be shown that2

‖A〈k〉‖ = ‖A′
〈k〉‖ =

√√√√ k∏
i=1

(a′i)2 =
k∏

i=1

‖a′i‖, (1.8)

with k > 0 . Since the{a′i} are mutually orthogonal, the norm or magnitude ofA〈k〉 is the
”volume” spanned by them. Fork = 1 this reduces to the norm of a vector.

Figure 1.1: Area of bivector.

An illustrative example is the norm of a2 -blade (also calledbivector). The bivector
a ∧ b ∈ C̀ (Rn) may also be written asa ∧ b⊥ , whereb⊥ is the component ofb that is
perpendicular toa . Then‖b⊥‖ = sin θ ‖b‖ , with θ = ∠(a,b) . Therefore,

‖a ∧ b‖ = ‖a ∧ b⊥‖ = ‖a‖ ‖b‖ sin θ,

which is the area of the parallelogram spanned bya andb .

Now consider an × k matrix A , whose columns are the{ai}k
i=1 ⊂ Rn . This will be

written asA = [a1, . . . , ak] . We could now define the norm of such a matrix to be the
”volume” of the parallelepiped spanned by its column vectors. This would then be in accor-
dance with the norm of a blade of these vectors. In fact, for a matrixB = [b1, . . . , bn] ,
where the{bi}n

i=1 ⊂ Rn are a basis ofRn , the determinant ofB , det(B) does give the
volume of the parallelepiped spanned by the{bi}n

i=1 . Therefore, in this case,

‖b1 ∧ . . . ∧ bn ‖ = det([b1, . . . , bn]).

The unit pseudoscalar of someC̀ (Rn) , is a blade of graden with magnitude1 and is
usually denoted byI . Therefore, for example,

b1 ∧ . . . ∧ bn = ‖b1 ∧ . . . ∧ bn ‖ I = det([b1, . . . , bn]) I.

2In order to show this, the definition of the inner product is needed, which will be discussed later.
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1.1.4 The Inner Product

Another important operation in Geometric algebra is theinner product. The inner product
will be denoted by· . For vectorsa,b ∈ Rn , their inner product is just the same as their
scalar product, ie

a · b = a ∗ b.

This may be called the ”metric” property of the inner product, since the result of the scalar
product of two vectors depends on the metric of the vector space they lie in. However,
the inner product also has some purely algebraic properties for elements inC̀ (Rn) , which
are independent of the metric of the vector spaceRn . In the following a number of these
properties are stated without proof.

Let a,b, c ∈ Rn , then the bivectorb ∧ c ∈ C̀ (Rn) . The inner product ofa with this
bivector gives,

a · (b ∧ c) = (a · b) c− (a · c)b. (1.9)

Since(a ·b) and (a ·c) are scalars, we see that the inner product of a vector with a bivector
results in a vector. More generally it may be shown that fork ≥ 1

x ·A〈k〉 = (x · a1) (a2 ∧ a3 ∧ a4 ∧ . . . ∧ ak)

− (x · a2) (a1 ∧ a3 ∧ a4 ∧ . . . ∧ ak)

+ (x · a3) (a1 ∧ a2 ∧ a4 ∧ . . . ∧ ak)

− etc.

=
k∑

i=1

(−1)(i+1) (x · ai)
[
A〈k〉 \ ai

]
,

(1.10)

where [A〈k〉 \ ai] denotes the bladeA〈k〉 without the vectorai . Here the inner product of
a vector with ak -blade results in a(k − 1) -blade. An example of another important rule
is this

(a ∧ b) ·A〈k〉 = a ·
(
b ·A〈k〉

)
, (1.11)

with k ≥ 2 . More generally, the inner product of bladesA〈k〉, B〈l〉 ∈ C̀ (Rn) , with 0 <
k ≤ l ≤ n , can be expanded as

A〈k〉 ·B〈l〉 = a1 ·
(
a2 ·

(
. . . · (ak ·B〈l〉)

))
. (1.12)

Hence, the result of this inner product is a(l − k) -blade.

In comparison to the outer product we see that the inner and the outer product are an-
tagonists: while the outer product increases the grade of a blade, the inner product reduces
it.



7

1.1.5 The Inverse of a Blade

Similar to the formula for vectors, the inverse of a bladeA〈k〉 ∈ C̀ (Rn) , k ≤ n , is in
general given by

A−1
〈k〉 :=

Ã〈k〉

‖A〈k〉‖2
,

as long as3 ‖A〈k〉‖ 6= 0 . Using this formula it may indeed be shown that

A〈k〉 ·A−1
〈k〉 = A−1

〈k〉 ·A〈k〉 = 1.

The symbolÃ〈k〉 denotes thereverseof a blade. The reverse is an operator that simply

reverses the order of vectors in a blade. For example, ifA〈k〉 =
∧k

i=1 ai then

Ã〈k〉 =
1∧

i=k

ai = ak ∧ ak−1 ∧ . . . ∧ a1. (1.13)

Since the outer product is associative and anti-commutative, the reordering of vectors in a
blade can only change the blade’s sign. For the reverse we find in particular

Ã〈k〉 = (−1)k(k−1)/2 A〈k〉. (1.14)

So, why do we need the reverse in the definition of the inverse of a blade? The answer
is, that the reverse takes care of a sign that is introduced due to the grade of a blade. As an
example consider the orthonormal basis{ei} of Rn . From equations (1.12) and (1.10) it
follows that

(e1 ∧ e2) · (e1 ∧ e2) = e1 ·
(
(e2 · e1)e2 − (e2 · e2)e1

)
= e1 ·

(
− e1

)
= −1.

On the other hand, obviouslye1 · e1 = 1 . That is, depending on the grade of a blade (a
vector being a blade of grade1 ), an additional sign is introduced or not. This is fixed by
the reverse. Given any bladeA〈k〉 ∈ C̀ (Rn) , then

A〈k〉 · Ã〈k〉 = ‖A〈k〉‖2,

whereas

A〈k〉 ·A〈k〉 = (−1)k(k−1)/2 ‖A〈k〉‖2. (1.15)

3The magnitude of a blade can in fact become zero in Minkowski spaces.
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1.1.6 Geometric Interpretation of Inner Product

We can already get an idea of what is happening by looking at the Clifford algebra ofR2 ,
C̀ (R2) with orthonormal basis{e1, e2} . The outer producte1 ∧ e2 spans the whole space,
ie a plane. Now let’s look at the inner product ofe1 with this bivector.

e1 · (e1 ∧ e2) = (e1 · e1) e2 − (e1 · e2) e1 = e2. (1.16)

This may be interpreted as ”subtracting” the subspace represented bye1 from the subspace
represented bye1 ∧ e2 . What is left after the subtraction is, of course, perpendicular toe1 .

More generally, letx,y,a,b ∈ Rn and let

y = x · (a ∧ b) = (x · a)b− (x · b)a.

Now we find that

x · y = x ·
[
(x · a)b− (x · b)a

]
= (x · a) (x · b)− (x · b) (x · a)

= 0.

That is, x is perpendicular toy , which again implies that the inner productx · (a ∧ b)
”subtracted” the subspace represented byx from the subspace represented bya ∧ b . This
can also be illustrated quite nicely inE3 .

Figure 1.2: Inner product of vector and bivector.

Let P denote the bivectora ∧ b ∈ C̀ (R3) . In E3 this bivector represents a plane
through the origin, as shown in figure 1.2. A vectorx ∈ R3 will in general have a compo-
nent parallel toP , x‖ , and a component perpendicular toP , x⊥ , such thatx = x‖+x⊥ .
Therefore,

y := x · P = (x‖ + x⊥) · P = x‖ · P.

The inner productx‖·P now ”subtracts” the subspace represented byx‖ from the subspace
represented byP , which results in a vector that lies inP and is perpendicular tox , as
shown in figure 1.2.
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1.1.7 The Inner Product Null Space

Just as for the outer product, we can also define the null space of blades with respect to the
inner product. Theinner product null space(IPNS) of a bladeA〈k〉 ∈ C̀ (Rn) , denoted by
NI(A〈k〉) , is the kernel of the functionIA〈k〉 defined as

IA〈k〉 : x ∈ Rn 7→ x ·A〈k〉 ∈ C̀ (Rn), (1.17)

and thus

NI(A〈k〉) :=
{

x ∈ Rn : IA〈k〉(x) = 0 ∈ C̀ (Rn)
}
. (1.18)

For example, consider a vectora ∈ R3 , thenNI(a) is given by

NI(a) :=
{

x ∈ R3 : x · a = 0
}
.

That is, all vectors that are perpendicular toa belong to its IPNS. InR3 the IPNS ofa
is therefore a plane of whicha is thenormal. Earlier we already saw that the OPNS of
a bivector represents a plane. This implies that there has to be some kind of relationship
between the IPNS of a vector inR3 and the OPNS of a bivector inC̀ (R3) .

1.1.8 The Dual

Let {e1, e2, e3} denote again an orthonormal basis ofR3 . The IPNS ofe1 is the set of all
vectors that are perpendicular toe1 . Hence,

NI(e1) =
{

α e2 + β e3 : (α, β) ∈ R2
}
,

the plane spanned bye2 and e3 . However, we know that this is also the OPNS ofe2 ∧ e3 ,

NO(e2 ∧ e3) =
{

α e2 + β e3 : (α, β) ∈ R2
}
.

We may therefore ask whether there is a relation between the concepts of the IPNS and the
OPNS. Such a relation does indeed exist and it is calledduality. In the following we will
see how this comes about.

Before we start with the actual calculations, we will introduce two set operations for sets
of vectors that will become quite useful. The first is the direct sum of two sets of vectors
denoted by⊕ . Given two setsA := {ai}k

i=1 ⊂ Rn and B := {bi}l
i=1 ⊂ Rn their direct

sum is

A⊕ B :=
{

ai + bj ∈ Rn : 0 < i ≤ k, 0 < j ≤ l
}
. (1.19)

In particular this means for two infinite sets, ie one dimensional subspaces

A :=
{

α a ∈ Rn : α ∈ R
}
, and B :=

{
β b ∈ Rn : β ∈ R

}
,
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that their direct sum is the set of all linear combinations of the elements ofA and B . That
is,

A⊕ B =
{

α a + β b ∈ Rn : (α, β) ∈ R2
}
.

In this spirit it makes sense also to define a ”direct subtraction” between two such sets as

A	 B :=
{

x ∈ A : x ∗ y = 0 ∀y ∈ B
}
, (1.20)

where we assume that a scalar product is defined on the elements ofA and B . Hence, the
direct subtraction removes the linear dependence on elements ofB from the elements of
A . Note that this is more than just to remove the elements ofB from A .

Now let us return to the question of duality. First of all note that the OPNS ofe1 is
simply

NO(e1) =
{

α e1 : α ∈ R
}
,

a line through the origin with directione1 . The direct sum ofNO(e1) and NO(e2 ∧ e3) is
the whole spaceR3 ,

NO(e1)⊕ NO(e2 ∧ e3) =
{

α e1 + β e2 + γ e3 : (α, β, γ) ∈ R3
}
≡ R3.

and, in particular, ”removing” the linear dependence onNO(e1) from R3 gives
NO(e2 ∧ e3) ,

NO(e2 ∧ e3) = R3 	 NO(e1).

With respect toR3 , NO(e1) may therefore be called thecomplementset toNO(e2 ∧ e3) .
Furthermore,

NI(e1) = R3 	 NO(e1).

The question now is: can we find an operation inC̀ (Rn) which transforms any blade
A〈k〉 ∈ C̀ (Rn) into a complementary bladeB〈n−k〉 ∈ C̀ (Rn) , such that

NO(A〈k〉) = Rn 	 NO(B〈n−k〉).

Such an operation does indeed exist and is called thedual. The dual of a multivectorA ∈
C̀ (Rn) is written A∗ and is defined as

A∗ := A · I−1, (1.21)

where I−1 is the inverse unit pseudoscalar ofC̀ (Rn) . It is a nice feature of Geometric
algebra that the dual can be given as a standard product with a particular element of the
algebra. However, this has also the drawback that the dual of the dual of a multivector may
introduce an additional sign. That is,(

A∗)∗ =
(
A · I−1

)
· I−1 = A

(
I−1 · I−1

)
.
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Why the last step in this equation works will be shown later on in equation (1.31), page
18. If we believe this equation for the moment, then it shows that an additional sign is
introduced wheneverI−1 · I−1 = −1 . SinceI−1 is a n -blade in C̀ (Rn) we know from
equations (1.14) and (1.15) that

I−1 · I−1 = (−1)k(k−1)/2 ‖I−1‖2 = (−1)k(k−1)/2.

With respect to the orthonormal basis{e1, e2, e3} of R3 , the dual operation has the
following effect. Consider again the bivectore2 ∧ e3 which represents the plane spanned
by e1 and e2 in its OPNS. The unit pseudoscalar ofR3 and its inverse may be given as

I = e1 ∧ e2 ∧ e3 and I−1 = Ĩ = e3 ∧ e2 ∧ e1 = −I.

Now, the dual ofe2 ∧ e3 is

(e2 ∧ e3)
∗ = (e2 ∧ e3) · I−1

= (e2 ∧ e3) · (e3 ∧ e2 ∧ e1)

= e2 ·
(
e3 · (e3 ∧ e2 ∧ e1)

)
,

where we used equation (1.12). We first evaluate the term within the outer brackets using
equation (1.10).

e3 · (e3 ∧ e2 ∧ e1) = (e3 · e3) (e2 ∧ e1)− (e3 · e2) (e3 ∧ e1) + (e3 · e1) (e3 ∧ e2)

= e2 ∧ e1.

Therefore,

(e2 ∧ e3)
∗ = e2 · (e2 ∧ e1)

= (e2 · e2)e1 − (e2 · e1)e2

= e1.

This is a nice example to see that the dual of a blade gives a blade complementing the whole
space. In this case

(e2 ∧ e3) ∧ (e2 ∧ e3)
∗ = I,

the unit pseudoscalar. With respect to the OPNS we have

NO
(
e2 ∧ e3

)
⊕ NO

(
(e2 ∧ e3)

∗) = R3.

It is now also clear that the relation between the OPNS and IPNS is the duality. For
example, we have seen before that

NO
(
e2 ∧ e3

)
= R3 	 NO

(
e1

)
= NI

(
e1

)
.

Sincee1 = (e2 ∧ e3)
∗ we have

NO
(
e2 ∧ e3

)
= NI

(
(e2 ∧ e3)

∗).
In general we have for some bladeA〈k〉 ∈ C̀ (Rn)

NO
(
A〈k〉

)
= NI

(
A∗
〈k〉

)
. (1.22)
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1.1.9 Geometric Interpretation of the IPNS

Figure 1.3: Dual of plane represented by bivectora ∧ b .

We have already seen that the IPNS of some vectorn ∈ R3 is a plane through the origin,
wherebyn is the plane’s normal. With respect to the dual operation, it was shown in the
previous section that the normal of a plane spanned bya,b ∈ R3 , is given by (a ∧ b)∗ .
Suppose thatn = (a ∧ b)∗ . The side of the planea ∧ b from which the normaln sticks
out from is usually regarded as the ”front”-side of the plane. Thus, a bivector represents a
sidedplane. For example, the normalm of b ∧ a is given by

m = (b ∧ a)∗ = −(a ∧ b)∗ = −n.

Hence, the plane represented byb ∧ a consists of the same subspace inR3 as the plane
represented bya ∧ b , but their front-sides point in opposite directions. This situation is
shown in figure 1.3. This also shows the relation between the vector cross product and the
outer product:

a× b = (a ∧ b)∗.

Aside. Note that the idea of a plane normal vector does only work inR3 . In
any dimension higher than three the set of vectors perpendicular to one vector
spans a higher dimensional space than a plane. Nevertheless, a bivector always
describes a plane, independent of the dimension it is embedded in.

Now that we are happy that a vector inR3 represents a plane with respect to its IPNS,
we can ask what the IPNS of blades of higher grade is. Consider the non-zero bivector
a ∧ b ∈ C̀ (R3) . In order to give its IPNS we have to find which vectorsx ∈ R3 satisfy
x · (a ∧ b) = 0 . With the help of equation (1.10) we find

x · (a ∧ b) = (x · a)b− (x · b)a.
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Since we assumed thata ∧ b 6= 0 , a and b have to be linearly independent. Therefore,
the above expression can only become zero if and only if

x · a = 0 and x · b = 0.

Geometrically this means thatx has to lie on the plane represented bya andon the plane
represented byb , in their IPNS. Hence,x lies on the intersection of the two planes rep-
resented bya and b . This shows that the outer product of two vectors represents the
intersection of their separately represented geometric entities. In terms of sets this reads

NI(a ∧ b) = NI(a) ∩ NI(b). (1.23)

Such an intersection line also has an orientation, which in this case is given by(b ∧ a)∗ .

Figure 1.4: Intersection of two planes in terms of IPNS.

Aside. Note that in R3 we cannot represent two parallel but not identical
planes through the IPNS of two vectors, since all such planes go through the
origin.

The last type of blade we can discuss inR3 with respect to its IPNS is a3 -blade, or
trivector. As we have seen already a trivectorA〈3〉 ∈ C̀ (R3) is a pseudoscalar and thus

A〈3〉 = ‖A〈3〉‖ I,

whereI is the unit-pseudoscalar ofC̀ (R3) . Let A〈3〉 be given by

A〈3〉 := a ∧ b ∧ c.

If A〈3〉 6= 0 then a , b and c are linearly independent. In order to find the IPNS ofA〈3〉 ,
we need to find which vectorsx satisfyx·A〈3〉 = 0 . Using again equation (1.10) it follows

x ·A〈3〉 = (x · a) (b ∧ c)

− (x · b) (a ∧ c)

+ (x · c) (a ∧ b).
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The bivectors(b∧ c) , (a∧ c) and (a∧b) are linearly independent and thusx ·A〈3〉 = 0
if and only if

x · a = 0 and x · b = 0 and x · c = 0.

Geometrically this means thatx · A〈3〉 = 0 if and only if x lies on the intersection of the
three planes represented bya , b and c . Since all planes represented through the IPNS
of vectors pass through the origin, the only point all three planes can meet in is the origin.
Hence, the only solution forx to x · A〈3〉 = 0 is the trivial solutionx = 0 ∈ R3 . Figure
1.5 illustrates this.

Figure 1.5: Intersection of three planes in terms of IPNS.

1.1.10 The Meet Operation

We have seen that we can intersect subspaces quite easily, if they are represented through
the IPNS of blades. For example, two vectorsa,b ∈ R3 represent two planes in their IPNS.
The intersection of these two planes is simply represented bya∧b . (Recall figure 1.4) The
question we would like to answer in this section is:is there an operation that evaluates the
intersection of subspaces represented through the OPNS of blades?

The short answer is:yes. The longer answer will follow now. First we need to remember
how the OPNS and IPNS are connected. Given a bivectora ∧ b ∈ C̀ (R3) representing
a plane in its OPNS, we can find the respective representation of the plane in term of the
IPNS by taking the dual of the bivector. Suppose thatc ∈ R3 is given byc = (a ∧ b)∗ ,
then

NI
(
c
)

= NI
(
(a ∧ b)∗

)
= NO

(
a ∧ b

)
.
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Using a so far unproven property of the inner product (equation (1.31)), we can also write

c · I = (a ∧ b)∗ · I

=
(
(a ∧ b) · I−1

)
· I

= (a ∧ b) (I−1 · I)

= a ∧ b,

where I is again the unit pseudoscalar ofC̀ (R3) . That means, in order to transform an
IPNS representation into an OPNS representation, we have to multiply with the unit pseu-
doscalar, a kind of ”inverse” dual. In terms of sets,

NO
(
a ∧ b

)
= NO

(
c · I

)
= NI

(
c
)
.

Now we can see how to express the intersection of two subspaces in terms of the OPNS
of two blades. Supposea1 ∧ a2, b1 ∧ b2 ∈ C̀ (R3) represent two planes in terms of their
OPNS. Let their respective normals be denoted byna = (a1 ∧ a2)

∗ andnb = (b1 ∧ b2)
∗ .

Then in terms of the IPNS the intersection of the two planes is given byna ∧ nb . As we
have seen above, the corresponding expression of the intersection line in terms of the OPNS
is simply (na ∧ nb) · I . Substituting now forna andnb gives,[

(a1 ∧ a2)
∗ ∧ (b1 ∧ b2)

∗] · I.

This is actually not quite the general intersection operation we were looking for, but it is
already pretty good and is thus given its own name: theregressiveproduct. Here is the
proper definition.

Let A,B ∈ C̀ (Rn) be two arbitrary multivectors and letI denote the unit pseudoscalar
of C̀ (Rn) . Theregressiveproduct is denoted byO and is defined as

AOB :=
[
A∗ ∧ B∗] · I. (1.24)

For the above example this means that given the bivectorsa1 ∧ a2 and b1 ∧ b2 , rep-
resenting two planes in their OPNS, the intersection of these planes in the OPNS is given
by

(a1 ∧ a2) O (b1 ∧ b2).

Unfortunately, their is a problem. Let{e1, e2, e3} again denote an orthonormal basis
of R3 . Now suppose we wanted to find the intersection of a line represented bye2 and a
plane represented bye2∧e3 , through their OPNS. We see immediately that sincee2 is also
contained in the bivectore2∧ e3 , the line is completely contained within the plane and thus
their intersection should be the linee2 itself. However, the regressive product gives

e2 O (e2 ∧ e3) =
[
e∗2 ∧ (e2 ∧ e3)

∗] · I
=

[
(e1 ∧ e3) ∧ e1

]
· I

=
[
− (e1 ∧ e1) ∧ e3

]
· I

= 0,
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whereI is the pseudoscalar ofC̀ (R3) . The problem is that the lineNO(e2) and the plane
NO(e2 ∧ e3) live in a 2d-subspace ofR3 spanned bye2 and e3 . The dimensione1 is
of no importance for the evaluation of their intersection. Suppose now that we work in the
subalgebraC̀ (R2) ⊂ C̀ (R3) , where{e2, e3} give an orthonormal basis ofR2 . Then the
respective unit pseudoscalar isI = e2 ∧ e3 and I−1 = e3 ∧ e2 , and we obtain

e∗2 = −e3 and (e2 ∧ e3)
∗ = 1.

Hence, the regressive product now gives

e2 O (e2 ∧ e3) =
[
e∗2 ∧ (e2 ∧ e3)

∗] · I
=

[
− e3 ∧ 1

]
· I

= −e3 · I

= e2,

which is what we want. This shows that the regressive product works, if we evaluate it in
the correct subalgebra. This notion is captured in the general intersection operation: the
meet.

The meet is basically the regressive product where the pseudoscalar is chosen appro-
priately. ”Appropriately” means that instead of the pseudoscalar of the whole space, the
pseudoscalar of the space spanned by the two blades of which the meet is to be evaluated,
is used. This introduces the concept of thejoin.

Given two bladesA〈k〉, B〈l〉 ∈ C̀ (Rn) , then their join is aunit bladeJ ∈ C̀ (Rn) such
that

NO(J) = NO(A〈k〉) ⊕ NO(B〈l〉).

The join is sometimes also written as an operator, denoted by∧̇ . For example, the join of
e2 and e2 ∧ e3 is simply

e2 ∧̇ (e2 ∧ e3) = e2 ∧ e3,

since‖e2 ∧ e3‖ = 1 and

NO(e2 ∧ e3) = NO(e2) ⊕ NO(e2 ∧ e3).

Aside. Note that this definition of the join does not fix the sign ofJ . This is
just as for the unit pseudoscalarI , where we only demanded that its magnitude
is unity, but we did not say anything about its sign. We will not discuss this
problem further apart from noting that it becomes irrelevant when working in
projective spaces.

We can now define the meet in terms of the join. LetA〈k〉, B〈l〉 ∈ C̀ (Rn) and let
J = A〈k〉∧̇B〈l〉 be their join. Then themeetof A〈k〉 andB〈l〉 is denoted by∨ and defined
as

A〈k〉 ∨B〈l〉 :=
[(

A〈k〉 · J−1
)
∧

(
B〈l〉 · J−1

)]
· J. (1.25)
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In terms of sets this is

NO
(
A〈k〉 ∨B〈l〉

)
= NO

(
A〈k〉

)
∩ NO

(
B〈l〉

)
.

Note that the meet is only defined for blades and it becomes the regressive product, if
the join is the pseudoscalar. Equation (1.25) can also be simplified to read

A〈k〉 ∨B〈l〉 =
(
A〈k〉 · J−1

)
· B〈l〉. (1.26)

1.1.11 The Geometric Product

We have already seen a lot of features of Geometric algebra. However, so far, we managed
to avoid the actual algebra product, thegeometric product. This product will be discussed
in more detail in the Clifford algebra introduction later on. At this point only some basic
features are introduced.

The formula most often shown right in the beginning of a Geometric algebra introduction
is

ab = a · b + a ∧ b, (1.27)

wherea,b ∈ Rn are two vectors, and juxtaposition of two vectors, as inab , denotes the
geometric product.It is important to note that this equation isonly valid for vectors,not
for blades or multivectors in general. It might at first seem strange to add a scalar(a · b)
and a bivector(a ∧ b) , but they are just different elements of the Geometric algebra. This
is just like for complex numbers, where a real and an imaginary part are added.

A somewhat more general form of equation (1.27) is

aB〈l〉 = a ·B〈l〉 + a ∧B〈l〉, (1.28)

with B〈l〉 ∈ C̀ (Rn) and l > 0 . For l = 0 , ie B〈l〉 a scalar, we have

aB〈0〉 = a ∧B〈0〉.

In general we always have for a scalarα ∈ R and a multivectorA ∈ C̀ (Rn) that their
inner product isidentically zero,

α ·A ≡ 0.

This turns out to be a necessary definition to keep the system of operations in Geometric
algebra self-consistent.

The geometric product is associative and distributive but in general not commutative.
That is, for multivectorsA,B, C ∈ C̀ (Rn)

(A B) C = A (B C),

A (B + C) = (A B) + (A C),

(B + C) A = (B A) + (C A),

A B 6= B A, in general.

(1.29)
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Two further useful properties of the geometric product are the following. Given two
bladesA〈k〉, B〈l〉 ∈ C̀ (Rn) , then

NO(A〈k〉) ∩ NO(B〈l〉) = ∅ ⇐⇒ A〈k〉 B〈l〉 = A〈k〉 ∧B〈l〉, (1.30)

and

NO(A〈k〉) ⊆ NO(B〈l〉)

or NO(B〈l〉) ⊆ NO(A〈k〉)

 ⇐⇒ A〈k〉 B〈l〉 = A〈k〉 ·B〈l〉. (1.31)

Equation (1.31) for example implies that for some vectora ∈ Rn ,

a∗ · I = (a · I−1) · I = (a I−1) I = a (I−1 I) = a,

whereI is the pseudoscalar ofC̀ (Rn) .

1.1.12 Reflection

So far we have seen how to construct linear subspaces using the outer product and to subtract
linear subspaces from one another using the inner product. We also now know how to
intersect linear subspaces using the meet and how to form their union with the join. We
now would like to operate on subspaces while keeping their dimensionality unchanged. For
example, rotating a line results in another line, not in a point or a plane. An operation on a
blade that does not change its grade, is calledgrade preserving.

Without much further ado, we will look at such a grade preserving operation. Leta,n ∈
Rn denote two vectors, whereby‖n‖ = 1 . Also write a = a‖ + a⊥ , where a‖ is
the component ofa parallel anda⊥ the component perpendicular ton . Note that the
following calculation is valid for all dimensionsn ≥ 2 of the vector space.

nan = (na)n

= (n · a + n ∧ a)n

= (n · a)n + (n ∧ a) · n + (n ∧ a) ∧ n︸ ︷︷ ︸
=0

.

So far we only applied the associativity of the geometric product and equation (1.27). Using
equation (1.10) we see that

(n ∧ a) · n = (a · n)n− (n · n)a.

Hence,

nan = (n · a)n + (a · n)n− (n · n)︸ ︷︷ ︸
=1

a

= 2 (n · a)n− a.
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Clearly we haven · a = n · a‖ , and sincea‖ is the component ofa parallel ton , we can
also writea‖ = ‖a‖‖n . Thus,

nan = 2 (n · a‖)n− a

= 2 ‖a‖‖ n− a

= 2 a‖ − a‖ − a⊥

= a‖ − a⊥.

That is, the component ofa perpendicular ton has been negated, while the parallel com-
ponenta‖ remained unchanged. Geometrically this is areflectionof the vectora on the
line through the origin with directionn . This is illustrated in figure 1.6.

Figure 1.6: Reflection of vectora on vectorn .

The really nice thing about this reflection operation is that it can be applied to any blade.
For example, given a plane as bivectorA〈2〉 ∈ C̀ (R3) , it can be reflected in a normalized
vectorn ∈ R3 simply by evaluatingnA〈2〉 n . This is shown in figure 1.7.

Let A〈2〉 = a1 ∧ a2 with a1,a2 ∈ R3 , then it may in fact be shown that

nA〈2〉 n =
(
na1 n

)
∧

(
na2 n

)
.

That is, the reflection of the outer product of two vectors, is the outer product of the sepa-
rately reflected vectors. By the way, this property is also calledouter-morphism, not to be
confused with auto-morphism.

A blade may also be reflected on another blade. Figure 1.8 shows the reflection of a
vector a ∈ R3 on a bivectorN〈2〉 ∈ C̀ (R3) by evaluatingN〈2〉aN〈2〉 . This operation
again results in

N〈2〉aN〈2〉 = a‖ − a⊥,

wherea‖ anda⊥ are this time the parallel and perpendicular components ofa with respect
to N〈2〉 .
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Figure 1.7: Reflection of bivectorA〈2〉 on vectorn .

Figure 1.8: Reflection of vectora on bivectorN〈2〉 .

The reflection operation is in fact the only operation we will ever be using in Geometric
algebra. Any other operation needed will be obtained by combining a number of different
reflections. In Euclidean space this confines us in fact to reflections and rotations about
axes that pass through the origin, as will be shown in the next section. To extend the set of
available operations Euclidean space will have to be embedded in other spaces, which will
be discussed later on.

1.1.13 Rotation

Reflections with respect to a normalized vectorn are always reflections on a line with
direction n , passing through the origin. It may be shown that two consecutive reflections
on different, normalized vectorsn and m are equivalent to a rotation of twice the angle
betweenn andm .
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Figure 1.9: Rotation of vectora by consecutive reflections ofa on n andm .

Figure 1.9 shows such a setup in 3d-Euclidean space. The normalized vectorsn,m ∈
R3 enclose an angle∠(n,m) = θ and define a rotation plane through their outer product
n ∧m . Reflecting a vectora ∈ R3 first on n and then onm , rotates the component of
a that lies in the rotation plane by2θ . The component ofa perpendicular to the rotation
plane remains unchanged.

The rotation of vectora in the planen ∧m by an angle2θ may then be written as

b = mnanm. (1.32)

From the definition of the geometric product we find that

mn = m · n + m ∧ n

and also

nm = n ·m + n ∧m = n ·m + (m ∧ n)̃ .

Since the reverse of a scalar is still the same scalar it follows

mn = (nm)̃ .

Equation (1.32) may therefore also be written more succinctly as

b = R a R̃, with R := mn. (1.33)
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Since applyingR as above has the effect of a rotation,R is called arotor. Note that a rotor
has to satisfy the equation

R R̃ = 1,

because it would otherwise also scale the entity it is applied to. We can actually recognize
this as something familiar, by expandingR as

R = mn

= m · n + m ∧ n

= cos θ + sin θ U〈2〉,

(1.34)

whereθ = ∠(m,n) and U〈2〉 is the normalized version ofm ∧ n , ie

U〈2〉 :=
m ∧ n
‖m ∧ n‖

.

From equation (1.15) we know that

U〈2〉 · U〈2〉 = (−1)2(2−1)/2 ‖U〈2〉‖2 = −1.

Since U〈2〉 squares to−1 , the expression forR in equation (1.34) is similar to that of a
complex numberz in the polar representation

z = r (cos θ + i sin θ),

where i =
√
−1 represents the imaginary unit andr ∈ R is the radius. For complex

numbers it is well known that the above expression can also be written as

z = r exp(i θ).

The definition of the exponential function can be extended to Geometric algebra, and it can
be shown that the Taylor series ofexp(θ U〈2〉) does indeed converge to

exp
(
θ U〈2〉

)
= cos θ + sin θ U〈2〉 = R. (1.35)

It turns out thatR = exp(θU〈2〉) actually represents a clockwise rotation by an angle
2θ in the planeU〈2〉 . The term ”clockwise” only makes really sense in 3d-space. Here
it means clockwise relative to the rotation axis given byU∗

〈2〉 . If we want to represent
a mathematically positive, ieanti-clockwise, rotation about an angleθ , within the plane
U〈2〉 , we need to write the corresponding rotor as

R = exp
(
− θ

2 U〈2〉
)
. (1.36)

Just as for reflections, a rotor represents a rotation in any dimension. A rotor can also
rotate any blade. That is, with the same rotor we can rotate vectors, bivectors, etc. It
turns out that for a rotor we also have an outer-morphism. This means that given a blade
A〈k〉 =

∧k
i=1 ai , with {ai} ⊂ Rn , and a rotorR , we can expand the expressionRA〈k〉R̃

as

R A〈k〉 R̃ =
(
R a1 R̃

)
∧

(
R a2 R̃

)
∧ . . . ∧

(
R ak R̃

)
. (1.37)

Hence, the rotation of the outer product of a number of vectors is the same as the outer
product of a number of rotated vectors.
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1.2 Clifford Algebra

In the previous section we mainly discussed the geometric interpretation of elements of
Geometric algebra. However, we did not say very much about the algebra itself. We will
do this now, and since we are in the following mainly interested in algebraic aspects, we
will talk about Clifford algebra instead of Geometric algebra. Recall that these are just two
names for the same thing. The only difference is that when we talk about Geometric algebra
we would like to emphasize the geometric interpretation of the elements of that algebra.
Note that in the following we will not be a hundred percent mathematically rigorous. For
a ”proper”, pure mathematical introduction see for example [15, 31, 17, 32, 25]. An even
more abstract but very interesting approach to Clifford algebra can be found in [36, 37].

William K. Clifford (1845-1879) introduced what we now call Geometric or Clifford
Algebra, in a paper entitled ”On the classification of geometric algebras,” [6]. He realized
(as Grassmann did) that Grassmann’s exterior algebra and Hamilton’s quaternions can be
brought into the same algebra by a slight change of the exterior product. With this new prod-
uct, which we will call the geometric product, the multiplication rules of the quaternions
follow directly from combinations of basis vectors (more details later), while Grassmann’s
exterior algebra is not lost. Furthermore, complex numbers and the Pauli matrices, as used
in Quantum mechanics, have also a natural representation in Clifford algebra.

1.2.1 The Geometric Product Revisited

Let Vn be somen -dimensional vector space over a fieldF , wheren is finite4. Further-
more, let a scalar product, denoted by∗ , be defined onVn . That is, for two elements
a,b ∈ Vn ,

a ∗ b = b ∗ a ∈ F.

Note that a Hilbert space also satisfies these properties.

The Clifford algebra overVn , denoted byC̀ (Vn) or simply C̀ n , is an algebra that also
contains the elements ofVn and the fieldF . The algebra product is called theClifford
or geometricproduct and will for the moment be denoted by◦ . Later on the geometric
product will be represented by the juxtaposition of two elements. At the moment an explicit
symbol is hoped to further the reader’s understanding.

In order to clarify what we mean by algebra, here are all the axioms ofC̀ (Vn) . First of
all, the elements of someC̀ (Vn) , which will be calledmultivectors, satisfy the axioms of
a vector space over the fieldF .

1. Multivector addition. For any two elementsA,B ∈ C̀ (Vn) there exists an element
C = A + B ∈ C̀ (Vn) , their sum.

4We will only discuss finite dimensional Clifford algebras. Infinite dimensional Clifford algebras pose some
additional problems which we would like to avoid here.
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2. Scalar multiplication. For any elementA ∈ C̀ (Vn) and any scalarα ∈ F , there
exists an elementαA ∈ C̀ (Vn) , the α -multiple of A .

Now the axioms of the vector space. In the following letC̀ n denote C̀ (Vn) . Also let
A,B, C ∈ C̀ n and α, β ∈ F .

1. Associativity of multivector addition

(A + B) + C = A + (B + C).

2. Commutativity

A + B = B + A.

3. Identity element of addition. There exists an element0 ∈ C̀ n , the zero element,
such thatA + 0 = A .

4. Associativity of scalar multiplication

α(βA) = (αβ)A.

5. Commutativity of scalar multiplication

αA = Aα.

6. Identity element of scalar multiplication. The identity element1 ∈ F satisfies

1 A = A.

7. Distributivity of multivector sums.

α (A + B) = αA + αB.

8. Distributivity of scalar sums.

(α + β) A = α A + β A.

If we choose the fieldF to be the realsR , then it follows from these axioms that for each
A ∈ C̀ n there exists an element−A := (−1)A such that

A−A := A + (−A) = A + (−1)A =
(
1 + (−1)

)
A = 0A = 0.

Now we come to the axioms of the algebra product, the geometric product. Again let
A,B, C ∈ C̀ n and α, β ∈ F .

1. The algebra is closedunder the geometric product

(A ◦B) ∈ C̀ n.
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2. Associativity.

(A ◦B) ◦ C = A ◦ (B ◦ C).

3. Distributivity.

A ◦ (B + C) = A ◦B + A ◦ C and (B + C) ◦A = B ◦A + C ◦A.

4. Scalar multiplication.

α ◦A = A ◦ α = αA.

So far, all the axioms we gave simply define a fairly general algebra. What actually
separates Clifford algebra from other algebras is itsdefining equation. We said before that
Vn ⊂ C̀ (Vn) , which is mathematically not quite rigorous but good enough to understand
what is going on. The defining equation of Clifford algebra is that for all vectorsa ∈ Vn ⊂
C̀ (Vn) the following equation holds

a ◦ a = a ∗ a ∈ F. (1.38)

That is, the geometric product of a vector (notmultivector in general) with itself maps to an
element of the fieldF . From now we will only consider Clifford algebras over the reals, ie
we setF ≡ R .

In order to work with Clifford algebra we would also like to know whether the scalar
product of two different vectorsa,b ∈ Vn can also be expressed in terms of the geometric
product. Well, using the defining equation (1.38) we find

(a + b) ◦ (a + b) = (a + b) ∗ (a + b)

⇐⇒ a ◦ a + a ◦ b + b ◦ a + b ◦ b = (a ∗ a) + 2 a ∗ b + b ∗ b

⇐⇒ 1
2 (a ◦ b + b ◦ a) = a ∗ b.

(1.39)

The expression12 (a ◦b+b ◦ a) is also called theanti-commutator product. We will also
write this as

a×−b := 1
2 (a ◦ b + b ◦ a), anti-commutator product . (1.40)

Similarly we can also define thecommutator productas

a×−b := 1
2 (a ◦ b− b ◦ a), commutator product. (1.41)

In the literature the commutator product of two multivectorsA,B ∈ C̀ n would usually
be written as[A,B] and the anti-commutator product as{A,B} . In this text we will use the
symbols introduced above to emphasize the operator quality of these products. By applying
the properties of the geometric product we can see immediately that the geometric prod-
uct of two multivectors can be written as the sum of the commutator and anti-commutator
product.

A ◦B = A×−B + A×−B. (1.42)
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Usually vectors inVn are expressed as linear combinations of a set{e1, e2, . . .} of
orthonormal basis vectors ofVn . However, in this formal setting we havn’t even defined
what we mean by ”orthogonal”. So let’s do this now. Two vectors are said to beorthogonal
iff

a×−b = a ∗ b = 0.

A set of n orthonormal vectors{e1, e2, . . . , en} ⊂ Vn therefore has the properties,

ei×−ei = 1 and ei×−ej = 0 , i 6= j.

From this it also follows that fori 6= j ,

ei ◦ ej = ei×−ej + ei×−ej = ei×−ej ,

ej ◦ ei = ej×−ei + ej×−ei = ej×−ei ,

(1.43)

and sinceA×−B = −B×−A by definition, we haveei ◦ ej = −ej ◦ ei . This is also one
of the properties of the outer product which we introduced in equation (1.1). Now that we
know the properties of the{ei} , we can take a first look at the geometric product of two
general vectors. Leta,b ∈ C̀ (R2) be given bya = αiei andb = βiei , wherei ∈ {1, 2} .
Note that we use the Einstein summation convention here, which states that a superscript
index repeated as a subscript index, or vice versa, implies a summation over the range of
the index. In this caseαiei ≡

∑2
i=1 αiei .

a ◦ b = (α1e1 + α2e2) (β1e1 + β2e2)

=
(
α1β1 e1 ◦ e1 + α2β2 e2 ◦ e2

)
+

(
α1β2 e1 ◦ e2 + α2β1 e2 ◦ e1

)
=

(
α1β1 + α2β2

)
+

(
α1β2 − α2β1

)
e1 ◦ e2 ,

(1.44a)

b ◦ a = (β1e1 + β2e2) (α1e1 + α2e2)

=
(
β1α1 e1 ◦ e1 + β2α2 e2 ◦ e2

)
+

(
β1α2 e1 ◦ e2 + β2α1 e2 ◦ e1

)
=

(
α1β1 + α2β2

)
−

(
α1β2 − α2β1

)
e1 ◦ e2.

(1.44b)

We therefore see that

a×−b = 1
2(a ◦ b + b ◦ a) = α1β1 + α2β2 = a ∗ b , (1.45a)

a×−b = 1
2(a ◦ b− b ◦ a) =

(
α1β2 − α2β1

)
e1 ◦ e2 = a ∧ b. (1.45b)

1.2.2 The Basis ofC̀ n

The question still remains what the geometric algebra of a vector space is. Given a vector
spaceRn with an orthonormal basis{e1, e2, . . . , en} there are2n ways to combine the
{ei} with the geometric product such that no two of these products are linearly dependent.
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Each of these products is called abasis blade. Together they form the (algebraic) basis of
C̀ n(Rn) denoted byBn . This will become more clear in the following example.

From now on we will write the geometric product again by juxtaposition of two ele-
ments. For example, the geometric product ofA,B ∈ C̀ n will no longer be written as
A ◦B but asA B .

Consider the vector spaceR3 with orthonormal basis{e1, e2, e3} . A set of linearly in-
dependent combinations of these basis elements using the geometric product is for example
given by,

B3 := { 1︸︷︷︸
scalar

, e1, e2, e3︸ ︷︷ ︸
vectors

, e2e3, e3e1, e1e2︸ ︷︷ ︸
bivectors

, e1e2e3︸ ︷︷ ︸
trivector

} (1.46)

Recall that the geometric product is associative. Hence, we can write(e1e2)e3 simply as
e1e2e3 . Also recall thateiej = −ejei for i 6= j . Therefore, using a different order for the
{ei} in the basis blades can at most change the sign of the basis blades.

Given a basisBn := {Ei} of someC̀ n , we can write a multivector explicitly as

A = αiEi ; i ∈ {1, 2, . . . , 2n}, (1.47)

where we used the Einstein summation convention, which, as was already mentioned above,
says that a superscript index repeated as a subscript index, or vice versa, within a product
implies a sum over the range of the index. That is,

2n∑
i=1

αiEi ≡ αiEi ; i ∈ {1, 2, . . . , 2n}. (1.48)

In our C̀ 3 example the elements ofB3 may be defined as

E1 := 1,

E2 := e1, E3 := e2, E4 := e3,

E5 := e2e3, E6 := e3e1, E7 := e1e2,

E8 := e1e2e3.

(1.49)

Therefore, a general multivector inC̀ 3 looks like this.

A = αiEi

= α1+

α2 e1 + α3 e2 + α4 e3+

α5 e2e3 + α6 e3e1 + α7 e1e2+

α8 e1e2e3.

(1.50)
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Thegradeof a basis blade is defined as the number of differente -elements the basis blade
contains. Hence, the grade ofe1e2 is 2 and the grade ofe1e2e3 is 3 . Consequently the
grade of the scalar1 is zero. The basis blade of highest grade in a particular geometric
algebra is called thepseudoscalarof that algebra. It plays an important role in the context
of thedual operation, as we have already seen. A linear combination of basis blades all of
some gradek is called avector of gradek or a k -vector. Thus the namemultivectorfor
an arbitrary element of a geometric algebra: it is a linear combination of vectors of different
grades.

The basis blades{Ei} of some Clifford algebraC̀ n satisfy the following properties.

1. There exists an identity element denoted byE1 such that

E1Ei = EiE1 = Ei

2. EiEi = λi E1 , whereλi ∈ {−1, 1} .

3. EiEj = gij
k Ek , wheregij

k ∈ {−1, 0, 1} and for giveni and j , gij
k is non zero

for exactly one value ofk .

From these properties it follows that every basis blade of someC̀ n is invertible, that is for
all Ei there exists anE−1

i such thatEiE
−1
i = E−1

i Ei = E1 .

Let’s take a look at some examples. The following calculations employ the associativity
of the geometric product and the propertyeiej = −ejei for i 6= j .

E2E2 = e1e1 = 1;

E5E5 = (e2e3) (e2e3) = −e2(e3e3)e2 = −e2e2 = −1
(1.51)

This shows that there exist basis blades that square to−1 . This is an important property
that has far reaching consequences. It allows us for example to create multivectors that
behave like complex numbers, without using the imaginary uniti =

√
−1 .

For example, considerC̀ 2 with pseudoscalarI := e1e2 . From our previous considera-
tions it is clear thatI2 = −1 if e1e1 = e2e2 = 1 . Define two multivectorsA,B ∈ C̀ 2 as
A := α1 + β1I and B = α2 + β2I . The geometric product ofA and B becomes

AB = (α1 + β1I) (α2 + β2I)

= α1α2 + β1β2I
2 + α1β2I + α2β1I

= (α1α2 − β1β2) + (α1β2 + α2β1)I

Comparing this with the multiplication rules for complex numbers, it shows that the multi-
vectorsA,B in conjunction with the geometric product behave just like complex numbers.



29

Let us now return to the properties of basis blades. Here are some examples to clarify
the third property.

E2E5 = e1(e2e3) = E8

E5E6 = (e2e3) (e3e1) = e2(e3e3)e1 = −e1e2 = −E7

E6E5 = (e3e1) (e2e3) = e1(e3e3)e2 = e1e2 = E7

(1.52)

The last two equations show that basis blades do not necessarily commute. Hence, multi-
vectors may not commute.

Even though every basis blade is invertible, multivectors may not be. Consider for ex-
ampleA ∈ C̀ 2 defined asA := 1

2(1 + e1) .

A2 = 1
4(1 + e1)(1 + e1)

= 1
4(1 + e1 + e1 + e1e1)

= 1
4(2 + 2e1)

= 1
2(1 + e1)

= A

That is,A squares to itself. It can be shown that this implies thatA has no inverse. There-
fore, if we talk about multivectors in general we cannot assume that they always have an
inverse. It can also be shown that if a multivector has no inverse there exists another mul-
tivector that multiplied with the first gives zero. For example, letB ∈ C̀ 2 be defined as
B := 1

2(1− e1) . Then

AB = 1
4(1 + e1)(1− e1)

= 1
4(1− e1 + e1 − e1e1)

= 0

Also note the following ”curiosity”. For thecosetof multivectors C̀ 2A := {XA : X ∈
C̀ 2} , A is a right idempotent, since(XA)A = X(AA) = XA . In other words, right mul-
tiplying an element ofC̀ 2A with A leaves the initial multivector unchanged. Furthermore,
for all Y ∈ C̀ 2A , Y B = (XA)B = X(AB) = 0 .

1.2.3 Inverting Multivectors

So far we have mainly dealt with vectors and blades. This is mainly because they offer a nice
way to deal with subspaces. However, we have not done much with general multivectors.
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General multivectors are linear combinations of subspaces. Therefore, simple operations
like increasing or decreasing a grade are not immediately useful. Nevertheless, we may
still be interested in solving multivector equations of the typeAX = B for X given A
and B , where A,B, X ∈ C̀ p,q . The solution is obviouslyX = A−1B . However, can
we always invert the multivectorA? And what if X has to satisfy a number of equation
simultaneously? In order to solve these problems in general, we need to look at multivectors
from a more general point of view.

Earlier we denoted the basis of a Clifford algebra by a set of basis blades. That is, the
basisBn of C̀ n is given byBn = {Ei} . Let us repeat the basic properties of the{Ei} .

1. There exists an identity element denoted byE1 such that

E1Ei = EiE1 = Ei,

2. EiEi = λi E1 , whereλi ∈ {−1, 1} ,

3. EiEj = gij
k Ek , wheregij

k ∈ {−1, 0, 1} and for any giveni and j , gij
k is non

zero for exactly one value ofk . Recall thatgij
k Ek implies a summation over the

range ofk which is {1, 2, . . . , 2n} .

The last property ensures that the{Ei} are invertible. It is also the key to inverting multi-
vectors. The point is, that we can regard multivectors as2n dimensional vectors, and the
geometric product is evaluated by contraction with the tensorgij

k .

For example, letA,B ∈ C̀ n be given byA = αiEi and B = βiEi , whereαi, βi ∈
R . Given the basisBn we can therefore representA and B by (α1, α2, . . . , α2n

) and
(β1, β2, . . . , β2n

) , respectively. Then the resultant multivectorC ∈ C̀ n , with C = ηiEi ,
of the geometric product ofA and B is given by

ηk = αiβj gij
k. (1.53)

Recall again that there is an implicit summation over indicesi and j . Now suppose mul-
tivectors B and C are given, and we would like to evaluateA . We can do this by first
contractingβj with gij

k and then inverting the resultant matrix. That is, first define

hi
k := βj gij

k, (1.54)

and then solve for(αi) via

αi =
∑

k

ηk
(
hi

k
)−1 = ηk h̄i

k, (1.55)

where h̄i
k := (hi

k)−1 . In future we will write the inverse of any tensoraijk...
pqr... as

āijk...
pqr... .

Clearly, the problem with equation (1.55) is thathi
k does not necessarily have an in-

verse. However, if we apply a singular value decomposition tohi
k , we can see whether

a multivector is invertible (if no singular value is zero), if yes invert it and otherwise find
a pseudo-inverse. If a multivector is not invertible we also call it asingular multivector.
With regard to the matrixhi

k from above, it may be shown that the rank ofhi
k is always

a power of two. Sincehi
k is a 2n × 2n matrix, also the dimension of the null space ofhi

k

is a power of two.
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1.2.4 Solving for a Versor

In the last section we saw how to invert multivectors if they are invertible and how to solve
multivector equations of the typeAX = B . Another type of equation which we will
encounter quite frequently, is that of a versor equation. That is, we are looking for the
versorV ∈ C̀ n , which solvesV AṼ = B , given A,B ∈ C̀ n . At first it might seem that
this is not a linear equation anymore, sinceV appears twice on the left hand side. However,
since a versor is always invertible and its inverse is its reverse, we can write

V AṼ = B ⇐⇒ V A = BV ⇐⇒ V A−BV = 0, (1.56)

which is again a linear equation. Unfortunately, we cannot write this equation in the form
XV = Y . Nevertheless, we can still solve this equation numerically. Before we show how
to do this, let us first see whether the solution forV is unique.

Let UB ⊂ C̀ n be a set of invertible, linearly independent multivectors that commute
with B , i.e.

UB := {X ∈ C̀ n : XB = BX, ∃X−1 ∈ C̀ n ⇒ XX−1 = 1 }.

For X ∈ UB we therefore have

X(V A−BV ) = 0 ⇐⇒ (XV )A−B(XV ) = 0. (1.57)

That is, if V is a solution toV A − BV = 0 , then so is the cosetUBV = {XV : X ∈
UB} . Again we have that ifX1, X2 ∈ UB , then (X1X2) ∈ UB . Hence,UB is the basis
of a subalgebraC̀ (UB) ⊂ C̀ n . Therefore, the number of elements inUB is a power of
two. The following example should clarify this.

Let a,b ∈ C̀ 3 be two unit vectors in Euclidean 3d-spaceR3 . We are looking for the
rotor R such thatRaR̃ = b . We will denote the solution rotor asRab . However, we find
that a basis set of the subalgebra that commutes withb is given by

Ub = {1,b,b∗, I}, (1.58)

where I is the pseudoscalar ofC̀ 3 . Note that inC̀ 3 the pseudoscalar commutes with all
multivectors. Therefore, the solution set ofR that solvesRA−BR = 0 , is the coset

UbRab = {Rab,bRab,b∗Rab, IRab}. (1.59)

The solution ofRA − BR = 0 is thus not unique. If we introduce a second vector pair
{a′,b′} that is also related byRaba′R̃ab = b′ , and demand thatR is a solution ofRaR̃ =
b and Ra′R̃ = b′ simultaneously, then the solution set ofR is {Rab, IRab} . Even if we
introduce a third vector pair related byRab as before, we cannot constrain the solution set
for R further. Instead we have to demand that the solution forR lies in the even subalgebra
of C̀ 3 . The even subalgebra ofC̀ 3 contains all linear combinations of blades of even grade.
It is indeed a subalgebra, since the geometric product of two even grade elements results
again in an even grade element.
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We want R to lie in the even subalgebra ofC̀ 3 , since this is how we usually express
a rotor: a scalar plus a bivector component. This then reduces the solution set forR to
{Rab} , sinceIRab contains only odd grade blades: a vector and a trivector.

In fact, it is possible to evaluate a rotor from two vectors, so this analysis might seem
somewhat superfluous. However, in applications we typically have vector estimates that
contain noise and we want to find the best rotor from a set of noisy vector pairs. This can
be achieved through a numerical method.

Let us consider again the general problem, We have two multivectorsA,B ∈ C̀ n which
are related by a versorV ∈ C̀ n via V AṼ = B . In order to solve this problem numerically,
we again expressA , B and V as 2n -dimensional vectors,A = αiEi , B = βiEi and
V = ηiEi . Then the equationV A−AV = 0 becomes

V A−BV = ηiαj gij
k − βjηi gji

k

= ηi (αj gk
ij − βj gk

ji)

= ηi ti
k,

(1.60)

where ti
k := αj gk

ij − βj gk
ji . That is, in order to solve forV we have to solveηiti

k = 0
for ηi . In other words, we are looking for the null-space of the matrixti

k . ti
k is a 2n×2n

matrix. From the above analysis it also follows that the dimension of the solution space of
V is a power of two. We can constrain the solution space by introducing more multivector
pairs X, Y ∈ C̀ n such thatV X − Y V = 0 . However, at some point we will probably
want to restrain the solution space to some subalgebra ofC̀ n or even to certain basis blades.
This can be done quite easily by reducing the matrixti

k in the indexi appropriately.

For example, if we are looking for a rotorR , we know that it only contains a scalar and
a bivector component. Accordingly we could reduce the respective matrixti

k in index i to
those indices that refer to the scalar and the bivector components.

This will not be discussed further here. However, a C++ implementation of this algo-
rithm is part of the CLU library. It is also used to invert multivectors in CLUCalc.
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1.3 Relation to other Geometric Algebras

Clearly, Clifford (or Geometric) algebra is not the only algebra describing geometry. In this
section we will take a look at other algebras that relate to geometry and see how they are
related to Clifford algebra.

1.3.1 Gibbs’ Vector Algebra

Basically, the inner product between vectors in Clifford algebra is equivalent to the scalar
product of vectors in Gibbs’ vector algebra. Furthermore, since the dual of the outer product
of two vectors a , b ∈ R3 gives the vector perpendicular to the plane spanned bya and
b , it should be no surprise that the outer product is related to the cross product in the
following way.

a× b = (a ∧ b)∗. (1.61)

We can also translate identities of Gibbs vector algebra into Clifford algebra. For example,
the triple scalar product of three vectorsa , b , c ∈ R3 .

a · (b× c) = a · (b ∧ c)∗

= a ·
(
(b ∧ c) · I−1

)
= (a ∧ b ∧ c) · I−1

= (a ∧ b ∧ c)∗

= det([a, b, c]).

(1.62)

Recall that the magnitude ofa ∧ b ∧ c is the volume of the parallelepiped spanned by
a , b and c . This shows again that the outer product of three vectors spans a volume
element. Another often used identity is the triple vector producta × (b × c ) . This is
usually expanded as

a× (b× c) = b (a · b)− c (a · b).

Translating this expression into Clifford algebra gives,

a× (b× c) =
(
a ∧

(
(b ∧ c)I−1

))
I−1

= a ·
((

(b ∧ c)I−1
)
I−1

)
= −a · (b ∧ c)

= b (a · c)− c (a · b).

(1.63)

The expansion in Clifford algebra is valid in any dimension, whereas the vector cross prod-
uct is only defined in a 3d-vector space.
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1.3.2 Complex Numbers

Complex numbers may also be regarded as a geometric algebra, if we interpret the real and
imaginary part of a complex number as the two coordinates of a point in a 2d-space. A
complex numberz ∈ C can be expressed in two equivalent ways.

z = α + iβ = % exp(i θ),

where i =
√
−1 denotes the imaginary unit, andα, β, %, θ ∈ R . The relation betweenα ,

β and % and θ is % =
√

α2 + β2 and θ = tan−1(β/α) . When we discussed rotors we
argued that since a unit bivector inC̀ n squares to minus one, it may replace the imaginary
unit i . Accordingly, we extended the definition of the exponential function to multivectors,
in order to write a rotor in exponential form. We can also use the exponential function to
write any multivectorA ∈ C̀ n which is defined asA = α + U〈2〉β , whereU〈2〉 ∈ C̀ n is a
unit bivector, as

A = % exp(U〈2〉 θ).

Note thatA is an element of a subalgebraC̀ 2 ⊆ C̀ n , n ≥ 2 . More precisely, it is an
element of the even subalgebraC̀ +

2 ⊂ C̀ 2 , which consists of the linear combinations of the
even grade elements ofC̀ 2 . The even subalgebraC̀ +

2 of C̀ 2 has basis{1, U〈2〉} , where
U〈2〉 is also the pseudoscalar ofC̀ 2 . C̀ +

2 is indeed a subalgebra, since it is closed under
the geometric product. Therefore, we have found an isomorphism between the complex
numbersC and the geometric algebraC̀ +

2 , where the product between complex numbers
becomes the geometric product. Note that the complex conjugate becomes the reverse, since
the reverse ofA is

Ã = % exp(Ũ〈2〉 θ) = % exp(−U〈2〉 θ),

which is equivalent to

z∗ = % exp(−i θ).

We will not go any deeper into complex analysis at this point. In any case, since there
is an isomorphism betweenC and C̀ +

2 , everything from complex analysis carries over.
However, simply replacingi by a bivector is in itself not particularly interesting, since it
does not give us anything we did not have before. Nevertheless, it shows that we can regard
the complex number geometric algebra as part of Clifford algebra.

1.3.3 Quaternions

The interesting aspect of the isomorphism betweenC and C̀ +
2 is, that C̀ n has

(
n
k

)
bivec-

tors and thus the same number of different even subalgebrasC̀ +
2 . That is, in Clifford

algebra we can combine different complex spaces. One effect of this is that there is an
isomorphism between quaternions (H ) and C̀ +

3 . Before we show this isomorphism, we
should probably recapitulate quaternions.
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The name ’quaternion’ literally means a combination of four parts. The quaternions
we are talking about here consist of a scalar component and three imaginary components.
The imaginary components are typically denoted byi, j, k and they satisfy the following
relations.

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ij = −ji, jk = −kj, ki = −ik,

ijk = −1.

(1.64)

A general quaternion is then given by

a = α0 + α1i + α2j + α3k,

with {αi} ⊂ R . A purequaternion is one with no scalar component, i.e.ā = α1i + α2j +
α3k is a pure quaternion. The square of a pure quaternion gives

ā2 = (α1i + α2j + α3k)2 = −
(
(α1)2 + (α2)2 + (α3)2

)
.

The complex conjugate of a quaterniona is denoted bya∗ . It negates all imaginary com-
ponents. Therefore,

aa∗ = (α0 + α1i + α2j + α3k) (α0 − α1i− α2j− α3k)

= (α0)2 + (α1)2 + (α2)2 + (α3)2.

A unit pure quaternion̂̄a satisfiesˆ̄aˆ̄a∗ = 1 and thusˆ̄aˆ̄a = −1 . We can therefore write the
quaterniona also as

a = (α0 + α1i + α2j + α3k)

= % (cos θ + ˆ̄a sin θ),

where% =
√

aa∗ , θ = tan−1(āā∗/α0) , ā = α1i + α2j + α3k and ˆ̄a = ā/
√

āā∗ . Since
ˆ̄a squares to minus one, we have again an isomorphism between the complex numbersC
and a subalgebra ofH . We can also extent the definition of the exponential function to
quaternions to find

a = (α0 + α1i + α2j + α3k) = % exp(θ ˆ̄a),

where% , θ and ˆ̄a are given as before. It can be shown that the operationr̂ār̂∗ between a
unit quaternion̂r = exp(1

2θˆ̄r) and a pure quaternion̄a , represents a rotation of̄a . That is,
if we regard ā = α1i + α2j + α3k as a vector(α1, α2, α3) , then r̂ār̂∗ rotates this vector
by an angleθ about the vector represented byˆ̄r .

Let us take a look at two simple examples of this. We assume(i, j, k) to form the basis of
a right-handed coordinate system. The pure quaternionk can be written in exponential form
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as k = exp(1
2π k) . Therefore, it should rotate the pure quaternioni about 180 degrees, if

applied askik∗ .

kik∗ = −ikk∗ = −i.

Note that this example also shows that operators and elements we operate on can be of the
same type. Let us consider now this somewhat more complex example.

Consider the rotation operator for a rotation about thek -axis, r = exp(1
2θk) . We can

expandr to readr = cos 1
2θ+k sin 1

2θ . If we apply r to i it should rotatei in the ij -plane
by an angleθ .

r i r∗ = (cos 1
2θ + k sin 1

2θ) i (cos 1
2θ − k sin 1

2θ)

= cos2 1
2θ i− cos 1

2θ sin 1
2θ ik + cos 1

2θ sin 1
2θ ki− sin2 1

2θ kik

= (cos2 1
2θ − sin2 1

2θ)i + 2 cos 1
2θ sin 1

2θ j

= cos θ i + sin θ j.

This shows thatr = exp(1
2θ k) is indeed a rotation operator about a mathematically

positive angleθ . If we compare this with rotors in Clifford algebra, we see that there is a
difference in sign. Recall that a rotor for a rotation about a mathematically positive angle
θ is given by exp(−1

2θU〈2〉) . This difference in sign stems from the way in which we
interpreted bivectors. This will become clear once we have given the isomorphism between
quaternions and a Clifford algebra.

What we have discussed so far about quaternions already shows how similar they are to
rotors, which we discussed earlier. This also gives us a hint on how to find an isomorphism.
Basically, we need to find multivectors in a Clifford algebra which have the same properties
as i , j and k , and form together with the unit scalar the basis of a Clifford subalgebra. To
cut a long story short, we can identify the imaginary unitsi , j and k with the following
bivectors inC̀ 3 .

i → e2e3, j → e1e2, k → e3e1, (1.65)

where the{e1, e2, e3} ⊂ R3 are an orthonormal basis ofR3 . Therefore, the Clifford
algebraC̀ +

3 with basis{1, e2e3, e1e2, e3e1} , is isomorph to the quaternionsH , if we make
the above identifications. Note that this is only one possible isomorphism. Let us check one
property of the quaternions.

ij → e2e3 e1e2 = e3e1 → k,

jk → e1e2 e3e1 = e2e3 → i,

ki → e3e1 e2e3 = e1e2 → j.

(1.66)

We can now see where the sign difference in the rotation operators comes from. When we
work with vectors we usually assume that we are working in a right-handed system and the
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coordinates are given in order of thex -, y - and z -axis, e.g. (α1, α2, α3) . When we use
quaternions, we identifyi , j and k with the three coordinate axes in this order. In Clifford
algebra, on the other hand, we denote the three axes bye1 , e2 and e3 . Now, recall that
the rotation plane is given by a unit bivector, e.g.U〈2〉 ∈ C̀ +

3 . We have also seen that the
corresponding rotation axis in 3d is given byU∗

〈2〉 . Note that

(e2e3)
∗ = e1, (e1e2)

∗ = e3, (e3e1)
∗ = e2.

Therefore, the rotation axis(α1i + α2j + α3k) corresponds to the rotation axis(α1e1 +
α2e3 + α3e2) in the Clifford algebra using the above identification fori , j and k . That is,
the y - andz -axes are exchanged. Therefore, if we embed quaternions into Clifford algebra,
we cannot apply them to vectors, only to other quaternions. If we translate the quaternions
to rotors, we need to make the appropriate exchange of axes, which also introduces the
minus sign into the rotor.

We have seen that quaternions are basically the space of rotors inC̀ 3 , which is the even
subalgebraC̀ +

3 ⊂ C̀ 3 . The main advantages of rotors in Clifford algebra over quaternions
are that rotors may be defined in any dimension and that a rotor can rotate blades of any
grade. That is, we can not only rotate vectors but also lines, planes and any other geometric
object that can be represented by a blade.

1.3.4 Grassmann Algebra

Today Grassmann algebra is usually taken as a synonym forexterior algebra. Although
Grassmann also developed exterior algebra, he looked at the whole subject from a much
more general point of view. In fact, he developed some fundamental results of what is today
known asuniversal algebra. In his book ”Die lineare Ausdehnungslehre dargestellt und
durch Anwendungen auf diëubrigen Zweige der Mathematik, wie auch auf die Statistik,
Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert”, Grassmann basi-
cally developed linear algebra with the theory of basis and dimension for finite-dimensional
linear spaces. He called vectorsextensive quantitiesand a basis{e1, e2, . . . , en} a system
of units. The vector space spanned by a basis he calledregion. He then introduced a very
general product on the extensive quantities (vectors). Given two vectorsa = αiei and
b = βiei , a general product of the two is written as

ab = αiβj (eiej).

Recall that there is an implicit sum here overi and j . He makes no additional assumptions
at first about the elements(eiej) , apart from noting that they are extensive quantities them-
selves. The set of products that can be formed with extensive quantities he called aproduct
structure. For example, for a vector basis{e1, e2} the set of products is

{e1, e2, (e1e1), (e1e2), (e2e1), (e2e2), e1(e1e1), e1(e1e2), . . .}.

This product structure may then be constrained by adetermining equation. That is, if we
denote the elements of the product structure by{Ei} , a determining equation isαiEi = 0 ,
αi ∈ R . For example, we could use as determining equation(e1e2) + (e2e1) = 0 . Then
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(e1e2) is linearly dependent on(e2e1) . Or, more generally,(eiej) + (ejei) = 0 , for all i
and j . This also implies thateiei = 0 . If we also assume associativity of the product, then
the basis for the algebra generated by{e1, e2} becomes

{e1, e2, (e1e2)}.

Grassmann found that the only determining equations that stay invariant under a change
of basis are, for two vectorsa and b , a b = 0 , a b − b a = 0 and a b + b a =
0 . He then considered in some length the algebra generated by the determining equation
a b + b a = 0 . This algebra is today called exterior algebra and the product which satisfies
this determining equation is called the exterior product. In the following we will denote the
exterior product by∧ , just like the outer product. In fact, ”outer product” is just another
name for exterior product.

Today exterior algebra is introduced in much the same way, albeit more generally and
rigorously. The general product Grassmann introduced is replaced by thetensor product.

Grassmann also introduced an inner product between extensive quantities of the same
grade. He did this in a very interesting way, by first defining what is essentially the dual.
For an extensive quantityE the dual is denoted byE∗ and is defined such thatE∗ ∧ E
is an extensive quantity of highest grade, i.e. a pseudoscalar. Since the pseudoscalars span
a one dimensional subspace he equated the extensive quantitye1 ∧ e2 ∧ . . . ∧ en with the
scalar1 . With this definitionE∗∧E is indeed a scalar. The inner product of two extensive
quantitiesE,F of same grade is then defined as

< E, F >:= E∗ ∧ F.

1.3.5 Grassmann-Cayley Algebra

The main difference between Grassmann and Grassmann-Cayley algebra is that there is also
a grade reducing inner product defined between blades of different grade. This product may
also be called the shuffle or the regressive product. Sometimes this product is also called
the meet and the exterior product is called the join. This should not be confused with the
meet and join defined previously in this text. Another source of confusion is the meaning
of the symbols∧ and ∨ , which is exactly the opposite to what they mean in Clifford
algebra. The symbol∧ usually stands for the meet (inner product) and the∨ stands for
the join (outer product). This is actually somewhat more logical than the use in Clifford
algebra, since it compares with the use of the symbols for union (∪ ) and intersection (∩ ).
Unfortunately, not all authors that use Grassmann-Cayley algebra follow this convention.
Sometimes Grassmann algebra is also taken to mean Grassmann-Cayley algebra. At times
even completely different symbols (O , 4 ) are used for meet and join.

Despite these notational differences Grassmann-Cayley algebra and Clifford algebra are
equivalent in the sense that anything expressed in one of them can also be expressed in the
other. Which one you prefer is probably a matter of taste.

The shuffle product is defined with respect to the bracket operator[] . The bracket op-
erator is defined for elements of highest grade in an algebra (pseudoscalars), for which it
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evaluates their magnitude. In the following we will use the Clifford algebra notation. If
A〈k〉, B〈l〉 ∈ C̀ n are given byA〈k〉 =

∧k
i=1 a i and B〈l〉 =

∧l
i=1 b i , with k + l ≥ n and

k ≥ l , then the shuffle product ofA〈k〉 and B〈l〉 , which we will temporarily denote by� ,
is defined as

A〈k〉�B〈l〉 :=
∑

σ

sgn(σ)
[
aσ(1)aσ(2) . . .aσ(n−l) b1∧ . . . bl

]
aσ(n−l+1)∧ . . .aσ(k).

(1.67)

The sum is taken over all permutationsσ of {1, . . . , k} , such thatσ(1) < σ(2) <
. . . σ(n − l) and σ(n − l + 1) < σ(n − l + 2) < . . . σ(n) . These type of permutations
are calledshufflesof the (n − l, k − (n − l)) split of A〈k〉 . If σ is an even permutation
of {1, . . . , k} then sgn(σ) = +1 , otherwisesgn(σ) = −1 . For example, the shuffles of a
(2, 1) split of {1, 2, 3} are(

{1, 2}, {3}
)
,

(
{1, 3}, {2}

)
,

(
{2, 3}, {1}

)
,

where

sgn({1, 2, 3}) = +1, sgn({1, 3, 2}) = −1, sgn({2, 3, 1}) = +1.

Therefore, for{a 1, a 2, a 3} ⊂ R3 and b ∈ R3 we find

(a1 ∧ a2 ∧ a3)� b = [a1a2b]a3 − [a1a3b]a2 + [a2a3b]a1.

If {e1, e2, e3} is an orthonormal basis ofR3 , and b = βiei , then we find

(e1 ∧ e2 ∧ e3)� b = [e1e2b] e3 − [e1e3b] e2 + [e2e3b] e1

= [e1e2 β3e3] e3 − [e1e3 β2e2] e2 + [e2e3 β1e1] e1

= b,

since [e1e2e3] = 1 . This shows that the pseudoscalar is the unit element with respect to
the shuffle product. We have seen this before when we introduced the regressive product in
definition 1.24 (page 15). In fact, it can be shown that the regressive product as we defined
it is the shuffle product. That is,

A〈k〉 �B〈l〉 ≡ A〈k〉OB〈l〉 =
(
A∗
〈k〉 ∧B∗

〈l〉
)
I.

The shuffle product is usually used to evaluate the intersection of subspaces. As we have
seen in the discussion of the meet and join, this is only the case if the join of the two
subspaces is the whole space. The shuffle product also cannot fully replace the Clifford
algebra inner product, since it is defined to be zero for two bladesA〈k〉, B〈l〉 ∈ C̀ n if
k + l < n . It is nonetheless possible to recover the inner product from the shuffle product
through the definition of the Hodge dual. This is basically the same as the dual we defined
here. The only difference is that the Hodge dual of the Hodge dual of a blade is again the
blade in any space. The dual of the dual of blade in Clifford algebra is either the blade or
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the negated blade. The Clifford algebra inner product may then be expressed in terms of the
shuffle product as

A〈k〉 ·B〈l〉 ⇐⇒ A∗
〈k〉 �B〈l〉.

This follows right away from the definition of the regressive product. If we translate the
Hodge dual ofA〈k〉 as A〈k〉I then

A∗
〈k〉 �B〈l〉 ⇒ (A〈k〉I)OB〈l〉 = (A〈k〉 ∧B∗

〈l〉)I = A〈k〉 ·B〈l〉.

Grassmann-Cayley algebra is probably most widely used in the area of computer vision
[12, 13] and robotics [39, 40]. There is still a lively, ongoing discussion within the research
community, whether Grassmann-Cayley or Clifford algebra is better suited for these fields.
To a large extend this is probably a matter of personal preference, and we will leave this
decision to the reader’s intuition.



Chapter 2

Geometries

by Dr. Christian Perwass

In the previous chapter we first talked about Geometric algebra and how elements of that
algebra are taken to represent geometric entities. We also saw how we can operate on such
entities in order to reflect or rotate them. In the second part of the previous chapter we then
looked at Geometric algebra from an algebraic point of view, ie we introduced the axioms
of Clifford algebra. In this chapter we would like to return to the geometric interpretation
of the algebra.

Although we will talk in the following about spaces which embed Euclidean space in
some way, the basic meaning of blades as linear subspaces and the reflection operator re-
main the same within these spaces. However, their effect on the embedded Euclidean space,
or rather their interpretation in terms of the embedded Euclidean space may change quite
substantially.

2.1 Projective Space

We will denote the homogeneous embedding of Euclidean spaceEn by PEn . PEn is also
called a projective space. The properties ofPEn basically derive from the way Euclidean
space is embedded in it. The projective spacePEn will be represented byRn+1 \ 0 , ie a
(n + 1) -dimensional vector space without the origin. The canonical (orthonormal) basis of
Rn+1 will be denoted by{e1, . . . , en, en+1} . The basis vectoren+1 is also called the
homogeneouscomponent or dimension.

41
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2.1.1 The Setup

The transformation operator from Euclidean to the corresponding projective space will be
denoted byP and its inverse byP−1 . The operatorP is defined as

P : x ∈ En 7→ x + en+1 ∈ PEn. (2.1)

That is, Euclidean space is embedded as a particular hyperplaneP(En) in projective space.
A vector in PEn will also be called ahomogeneousvector. Note that the origin of Euclidean
space becomesen+1 in projective space. This means that the origin of Euclidean space, as
represented in projective space is not a special point any more. For example, while the
scalar product of a vector with the origin in Euclidean space is always identically zero, this
is not necessarily the case in projective space.

Figure 2.1: Embedding of Euclidean vectora ∈ E2 in projective spacePE2 asA = P(a) .

Figure 2.1 illustrates the embedding of Euclidean vectors in projective space for the case
of E2 . A vector a ∈ E2 from Euclidean space is embedded in projective spacePE2 by
adding the homogeneous dimensione3 . The homogeneous representation ofa in PE2 is
then denoted byA = P(a) .

Although Euclidean vectors are mapped to a hyperplane in projective space, a general
homogeneous vector may lie anywhere inPEn ≡ Rn+1 \0 . Therefore, the question is how
homogeneous vectors that do not lie onP(En) are projected back toEn . This projection
is in fact the key to the power of the homogeneous representation.

The transformation fromPEn to En is denoted byP−1 and is defined as

P−1 : A ∈ PEn 7→ 1
A · en+1

n∑
i=1

(
A · ei

)
ei ∈ En. (2.2)

Clearly, this transformation is only valid for homogeneous vectors that have a non-zero
homogeneous component. Those homogeneous vectors that do have a zero homogeneous
component would map to infinity and are accordingly called points at infinity ordirection
vectors.
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Using the transformationP−1 the whole of PEn apart from the planeen+1 = 0 is
mapped toEn . What does this mean for a particular homogeneous vector? Well, the ho-
mogeneous vector is first scaled such that its homogeneous component is unity, and then its
first n components are taken as then components of the corresponding Euclidean vector.
This is illustrated in figure 2.2.

Figure 2.2: Projections of a homogeneous vectorA ∈ PE2 into the corresponding Eu-
clidean spaceE2 asa = P−1(A) .

The effect ofP−1 is that the overall scale of a homogeneous vector in projective space
is of no importance. For example, given a vectora ∈ En and a scaleα ∈ R \ 0 , then

P−1
(

αP
(
a
) )

= a.

Hence, the name ”projective space”: homogeneous vectors are projected onto the hyper-
planeP(En) before they are ”orthographically” projected intoEn . The hyperplaneP(En)
is also called theaffineplane.

Aside. Affine transformations are in fact just those that when applied to a point
on P(En) leave the point on that plane. Projective transformations on the other
may move points through the whole spacePEn .

2.1.2 Geometric Algebra onPEn

Recall that elements of Geometric algebra are given geometric meaning by looking at their
OPNS or IPNS, the outer or inner product null space. When we write down a blade, its
OPNS always represents a linear subspace. For example, a bivector inPE2 is a two dimen-
sional subspace, since we representPE2 by R2+1 . However, we are not really interested
in what this bivector represents inPE2 . We would like to know what it represents in the
correspondingE2 . How do we do that? Well, we need to be more precise about which null
space we are actually interested in.
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Given a bivectorA〈2〉 ∈ C̀ (PE2) , we are only interested in those vectors inPE2 that
lie in one of its null spaces, which we can also map back to Euclidean space. The other
way around: we ask which vectors inE2 when transformed toPE2 lie in the null space
of A〈2〉 . We therefore introduce the concept of theEuclideanouter and inner product null
space, denoted byNOE and NIE , respectively. ForC̀ (PEn) they are defined as follows.

NOE(A〈k〉 ∈ C̀ (PEn)) :=
{

a ∈ En : P(a) ∧A〈k〉 = 0 ∈ C̀ (PEn)
}
,

and NIE(A〈k〉 ∈ C̀ (PEn)) :=
{

a ∈ En : P(a) ·A〈k〉 = 0 ∈ C̀ (PEn)
}
.

(2.3)

2.1.3 The Euclidean OPNS

So how can we evaluate the Euclidean IPNS or OPNS of a blade in projective space? Con-
sider, for example, a vectora ∈ En with homogeneous representationA = P(a) ∈ PEn .
The OPNS ofA is simply given by

NO(A) =
{

αA ∈ PEn : α ∈ R \ 0
}
,

a projective line inPEn . The factorα must not be zero since the origin ofRn+1 is not
an element ofPEn . Since all elements ofNO(A) can be mapped toEn by P−1 , we find
that

NOE(A) = P−1
(
NO(A)

)
=

{
1

(αA)·en+1

∑n
i=1

(
(αA) · ei

)
ei : α ∈ R \ 0

}
=

{
P−1(A) : α ∈ R \ 0

}
= a.

This shows that even though the OPNS ofA is a (projective) line inPEn , the Euclidean
OPNS of A is only the vectora ∈ En . This is great, since it enables us to represent a
zero-dimensional object, ie a point, inEn by a line in PEn .

An example of this has already been shown for the case ofE2 in figure 2.2. All points
in PE2 along the line from, but excluding, the origin ofPE2 to the homogeneous vector
A , represent the same pointa in E2 .

Figure 2.3 illustrates the OPNS and Euclidean OPNS of a bivector inPE2 . The OPNS
of the outer product of two homogeneous vectorsA,B ∈ PE2 is a plane inPE2 . The
orthographic projection of the intersection ofNO(A ∧ B) with the planeP(E2) , then
gives the Euclidean OPNS ofA ∧ B : a line in E2 . Note that this line does not pass
through the origin. This shows one of the advantages of working inC̀ (PE2) instead of
C̀ (E2) . In C̀ (E2) we could only represent lines through the origin, whereas inC̀ (PE2)
we can represent arbitrary lines in the correspondingE2 .
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Figure 2.3: Representation of line inE2 through bivector inC̀ (PE2) .

Without going into any more detail, it may be shown that the Euclidean OPNS of the
outer product of three homogeneous vectors inC̀ (PE3) represents a plane inE3 . That is,
given vectorsa,b, c ∈ E3 andA,B,C ∈ PE3 with

A = P(a) and B = P(b) and C = P(c),

it may be shown thatNOE(A ∧B ∧C) is a plane inE3 which passes through the points
a , b and c . To summarize, we have

NOE(A) Point a

NOE(A ∧B) Line througha andb

NOE(A ∧B ∧C) Planethrougha, b andc

2.1.4 The Euclidean IPNS

We can also consider the Euclidean IPNS of blades ofC̀ (E3) . We will do this in some
detail for a homogeneous vector. LetA ∈ PE3 be given by

A = â− α eo,

where â ∈ E3 and ‖â‖ = 1 . Furthermore,α ∈ R and eo denotes the homogeneous
dimensione3+1 , in order to emphasize its meaning as the vector inPE3 representing the
origin of En . Let us now try to evaluate the Euclidean IPNS ofA . That is, we are looking
for all those vectorsx ∈ E3 that satisfyA · P(x) = 0 .

A · P(x) = 0 ⇐⇒ (â− α eo) · (x + eo) = 0

⇐⇒ â · x− α = 0

⇐⇒ â · x‖ − α = 0

⇐⇒ x‖ = α â,
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wherex‖ is the component ofx parallel to â . If we write the component ofx perpendic-
ular to â asx⊥ , then it follows that any vectorx ∈ E3 of the form

x = α â + x⊥,

lies in the Euclidean IPNS ofA . Hence,A represents a plane with normalâ and distance
α from the origin inE3 . As for Euclidean space it may also be shown that for homogeneous
vectorsA,B,C ∈ PE3 , we have

Plane: NIE(A)

Line: NIE(A ∧B) = NIE(A) ∩ NIE(B)

Point: NIE(A ∧B ∧C) = NIE(A) ∩ NIE(B) ∩ NIE(C)

2.1.5 The Pinhole Camera Model

Figure 2.4: Model of a pinhole camera inPE3 .

The Geometric algebra of projective space is very useful to represent projections in the
pinhole camera model. Figure 2.4 show such a setup. Homogeneous vectorsA1,A2,A3,A4 ∈
PE3 form a basis ofPE3 . The homogeneous vectorA4 represents the optical center of the
pinhole camera, whileP = A1∧A2∧A3 represents the image plane. In order to project a
homogeneous vectorX onto the image plane, we simply have to intersect the image plane
P with the line L connectingX with the optical centerA4 , ie L = A4 ∧X . We can do
this with the meet operation,

Y = L ∨P = (A4 ∧X) ∨ (A1 ∧A2 ∧A3).

Since the join ofL and P is the whole spacePE3 , we can also use the regressive product
instead of the meet, which simplifies the evaluation of the meet.

By using such simple geometric constructions, which can be readily translated into Ge-
ometric algebra equations, also the relations between two, three or more cameras can be
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analyzed. This then leads, for example, to the fundamental matrix and the trifocal tensor as
was shown in [22, 29, 30, 28].

2.1.6 Reflections in Projective Space

By going from Euclidean to projective space, an additional dimension, the homogeneous
dimension, is introduced. We may therefore wonder what effect this has when using the
reflection operator as introduced earlier. First of all consider a vectora ∈ E2 and its
homogeneous representation

A = P(a) = a + eo ∈ PE2,

where eo denotes again the homogeneous dimensione3 ∈ PE2 . A reflection abouteo

gives

eo A eo = eo a eo + eo eo eo

= −a eo eo + eo

= −a + eo,

where we used the fact thateo is perpendicular to all vectors inE2 . Therefore,

eo a = eo ∧ a = −a ∧ eo = −aeo.

We thus have

P−1
(
eo P

(
a
)
eo

)
= −a,

which shows that a reflection ofA abouteo represents a reflection about the origin ofa .

Next consider a vectorn ∈ E2 , with ‖n‖ = 1 . Although this is mathematically not
quite rigorous, we can regard the vectorn also as a direction vector ofPE2 , since it has no
eo component. If we takeA as given above, we can ask what a reflection of a homogeneous
vectorA on a direction vectorn in PE2 means.

nAn = n (a + eo)n

= nan + n e0 n

= nan− eo n2

= nan− eo.

For convenience, let us at this point introduce an operatorA that projects homogeneous
vectors inPEn onto the affine planeP(En) ⊂ PEn . The operator is therefore defined as

A : A ∈ PEn 7→ A
A · eo

∈ PEn, (2.4)
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whereeo is again the homogeneous dimension. We may also say thatA transforms homo-
geneous vectors to affine vectors. This operator is also useful, since homogeneous vectors
on P(En) can be immediately identified with their corresponding Euclidean vectors inEn .
For our reflection example from above we find,

A(nAn) = −nan + eo

= −(a‖ + a⊥) + eo

= a⊥ − a‖ + eo,

where a‖ and a⊥ are the orthogonal and parallel components ofa with respect ton ,
respectively. This shows that the component of the homogeneous vectorA that isparallel
to the reflection directionn , is reflected and not the part perpendicular to it. Figure 2.5
shows this setup.

Figure 2.5: Effect inE2 of reflection of homogeneous vector on direction vector inPE2 .

This is not really what we wanted to achieve. However, we can remedy the situation by
reflectingnAn again through the origin. That is, in order to reflect a homogeneous vector
on a line with directionn , we have to use as operator(n e0) instead ofn .

(n e0)A (e0 n) = n (−a + e0)n

= −nan + n eo n

= −nan− eo,

and thus

A
(
(n e0)A (e0 n)

)
= nan + eo.

2.1.7 Rotations in projective space

In the last section we saw how a reflection inE2 has to be expressed in projective space
PE2 when applied to homogeneous vectors. Since a rotation expressed by a rotor is nothing
else than two consecutive reflections, a rotor may also take on a different form in projective
space.

Suppose we want to rotate the vectora ∈ E2 by reflecting it first onn ∈ E2 and then
on m ∈ E2 . However, we want to do this in projective space whereA = P(a) ∈ PE2 .



49

Since a reflection onn has to be expressed as(n eo) and a reflection onm as (m eo) , the
rotation ofA has to look like this

(m eo) (n eo)A (eo n) (eo m) = RA R̃, R := (m eo) (n eo).

Such a double reflection is illustrated in figure 2.6. Here vectora ∈ E2 is represented in
PE2 by A . A first reflection ofA on n eo gives B . A further reflection ofB on m eo

givesC .

Figure 2.6: Double reflection of homogenous vectorA on reflection planesn eo andm eo

in PE2 .

However, the expression forR can be simplified.

R = (m eo) (n eo)

= −mn eo eo

= −mn.

That is, compared to the expression of the rotor inE2 , a minus sign is introduced. This,
however, cancels out when the rotor is applied.

RA R̃ = (−mn) A (−nm) = (mn) A (nm).

We may also argue that since an overall scalar factor is of no importance for homogeneous
vectors with respect to their projection into Euclidean space, the minus sign of the rotor in
projective space may be neglected. Hence,we can use the same representation of a rotor
in Euclidean and projective space.

2.1.8 A Strange Reflection in Projective Space

We have so far looked at reflections of homogeneous vector on the homogeneous dimension
eo and on direction vectors, ie homogeneous vectors with a zeroeo component. However,
what does a reflection of a homogeneous vector on another homogeneous vector look like?
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Figure 2.7: Effect inE2 and PE2 of the reflection of a homogeneous vectorA on another
homogeneous vectorN .

The answer to this question is illustrated in figure 2.7. Vectora ∈ E2 is embedded in
projective space asA = P(a) ∈ PE2 . Instead of reflectinga on n in E2 , A is reflected
on N in PE2 . In this examplen = e1 and N = 1√

2
(n + eo) , ie N is of unit ”length”,

if we regardPE2 ≡ R3 as a three dimensional Euclidean space for a moment. A reflection
of A on N will thus negate the component ofA perpendicular toN , which results in
B . This vector however lies off the affine planeP(E2) . A projection ofB into Euclidean
spaceE2 then results inb , which is not the reflection ofa on n .

Figure 2.8: Effect inE2 of reflection of homogeneous vector on another homogeneous
vector in PE2 .

Analytically we find the following equation for this type of reflection.

P−1
(
NP

(
a
)
N

)
= P−1

(
1√
2
(n + eo) (a + eo) 1√

2
(n + eo)

)
= . . . exercise :-)

= (a‖)−1 − tan θ â⊥,

wherea‖ and a⊥ are again the parallel and perpendicular components ofa with respect
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to n , â⊥ = a⊥/‖a⊥‖ and θ = ∠(a, n) . A geometrically more informative expansion of
the above equation is the following

P−1
(
NP

(
a
)
N

)
= n− a− n

a · n
.

This latter formula is illustrated in figure 2.8.

Figure 2.9 shows the effect of this type of reflection on the points of the unit circle
centered on the origin. The non-central point moving from left to right is the projection
into E2 of the homogeneous vector about which the points on the unit circle were reflected.
The reflection of the unit circle becomes an ellipse, a hyperbola or the unit circle if the
homogeneous reflection vector becomes the origin.
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Figure 2.9: Effect of reflecting points on a circle centered on the origin inE2 on varying
homogeneous vectors inPE2 .
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2.2 Conformal Space

In this introduction to conformal space we use many of the concepts introduced in the dis-
cussion of the projective space. We use again the same trick of embedding Euclidean space
in a higher dimensional space, where the extra dimensions have particular meanings (in-
terpretations), such that linear subspaces in conformal space represent particular objects in
Euclidean space we are interested in. In projective space the simple ”trick” of adding one di-
mension and giving it a particular meaning, already enabled us to represent null-dimensional
spaces, ie points, in Euclidean space by one dimensional subspaces in projective space. In
this way we could also distinguish actual points from directions, which were represented in
projective space as elements that project to infinity in Euclidean space.

To introduce conformal space we initially also only add one dimension. However, this
time Euclidean space is embedded in a non-linear way in this higher dimensional space.
The actual conformal space we will be working with is in fact a special homogenization of
the initial conformal space we introduce. That is, when people usually mention the con-
formal Geometric algebra they actually mean the Geometric algebra over a homogeneous
conformal space. We will not break with this tradition here and simply talk of conformal
space.

Before we delve into the embedding of Euclidean space in conformal space, we should
probably say what conformal actually means. A conformal transformation is one that is
locally angle preserving. It turns out that all conformal transformations can be expressed
by combinations of inversions. What is an inversion? Well, inE1 ≡ R an inversion of a
vectorx ∈ R on the unit, one-dimensional sphere centered on the origin is simplyx−1 . In
E3 the inversion of a plane on the unit sphere centered on the origin is a sphere, as shown
in figure 2.10.

Figure 2.10: Inversion of plane and line on sphere inE3 .

Note that inversions are closely related to reflections in that a reflection is a special case
of an inversion. In fact, an inversion on a sphere with infinite radius, ie a plane, is a re-
flection. Note that all Euclidean transformations can be represented by combinations of
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reflections. We have already seen this for rotations, which are combinations of two reflec-
tions. A translation may be represented by the reflection on two parallel reflection planes.
Since all Euclidean transformations can be represented by combinations of reflections and
all conformal transformations by combinations of inversions, we see that Euclidean trans-
formations form a subset of conformal transformations.

The actual trick behind the particular embedding of Euclidean space in conformal space
is, that a reflection in conformal space represents an inversion in Euclidean space. Here we
have to be careful with what we mean when we say reflection. Do we mean a reflection
in the space in which the Euclidean space is embedded, or a reflection in Euclidean space
itself. In section 2.1.8 we already came across this distinction. A reflection inPE2 taken
as R3 represented something very unlike a reflection in the correspondingE2 .

2.2.1 Embedding Euclidean Space

We will denote conformal space byKn and represent it inRn+1 . The additional dimension,
however, is this time not a homogeneous dimension. For reasons that will become apparent
later on, we will also denote the additional dimension bye+ ≡ en+1 . Euclidean spaceEn

is embedded inKn via a stereographic projection. The embedding function will be denoted
by K and is defined as

K : x ∈ En 7→ 2
x2 + 1

x +
x2 − 1
x2 + 1

e+ ∈ Kn ≡ Rn+1. (2.5)

All embedded points lie on a hypersphere of unit radius centered on the origin ofKn .
Therefore,

‖K(x ∈ En)‖ = 1. (2.6)

Figure 2.11: Stereographic projection of pointsx,y ∈ E1 onto unit circle inK1 .

Figure 2.11 illustrates this embedding forE1 . Note that the pointe+ ∈ K1 represents
±∞ ∈ E1 and −e+ represents the origin ofE1 . Figure 2.12 shows the stereographic
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projection of a line and a circle fromE2 into K2 . We can see that a line is mapped to a
circle onK(E2) that passes throughe+ and a circle inE2 maps to a circle onK(E2) that
does not pass throughe+ .

Figure 2.12: Stereographic projection of a line and a circle inE2 into K2 .

The conformal embedding operatorK transforms the whole ofEn to a n -dimensional
subspace ofKn . This implies that an inverse transformation will only be able to transform
points from that subspace ofKn back toEn . Recall that for the projective space we also
had such a restriction: the plane of homogeneous vectors with a zeroeo component could
not be transformed back to Euclidean space.

Mathematically we can express this restriction on the back projection by saying that
only vectorsx ∈ Kn that satisfy‖x‖ = 1 can be projected intoEn . For those vectors the
inverse operatorK−1 is given by

K−1 : x ∈ Kn, ‖x‖ = 1 7→ 1
1− x · e+

n∑
i=1

(
x · ei

)
ei. (2.7)

2.2.2 Homogenizing the Embedding of Euclidean Space

Similar to the homogenization of Euclidean space, we will now homogenize conformal
space. Specifically, we embedKn in a projective space denoted byPKn , which we will
represent byRn+1,1 \ 0 . The spaceRn+1,1 \ 0 is of dimensionn + 2 , whereby its or-
thonormal basis containsn + 1 basis vectors that square to+1 and one basis vector that
squares to−1 . This type of space is also calledMinkowskispace. The effect of using a
negatively squaring homogeneous dimension is quite substantial, as we will see throughout
the rest of this text.
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We will again use the symbolP to denote the transformation from conformalKn to
projective conformalPKn space. The transformation is defined as

P : x ∈ Kn 7→ X = x + e− ∈ PKn, (2.8)

where we denoted the homogeneous dimension bye− , sincee− · e− = −1 by definition.
Now it is also clear why we denoted the extra dimension introduced byKn as e+ . Figure
2.13 illustrates this embedding for a vector inE1 .

Figure 2.13: Embedding of a vectorx ∈ E1 first in K1 and then inPK1 .

One immediate result that follows from the use of a homogeneous dimension with neg-
ative signature is that(

αP
(
K(x ∈ En)

))2
= α2

(
K(x) + e−

)2

= α2
((
K(x)

)2 +
(
e−

)2
)

= α2 (1− 1)

= 0,

whereα ∈ R\0 is some scale. That is, all vectors inPKn that resulted from an embedding
of a Euclidean vector fromEn , square to zero. ForE1 the set of points inPK1 that satisfy
this condition lie on a cone. Hence, all null vectors inPKn , ie all vectors that square to zero
in PKn , are said to lie on thenull cone. This set of vectors will be denoted byHn ⊂ PKn

and is defined as

Hn :=
{

X ∈ PKn : X2 = 0
}
. (2.9)

From our previous considerations it follows that

Hn =
{

αP
(
K(En)

)
: α ∈ R \ 0

}
.
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The inverse transformationP−1 from PKn into Kn is defined for all elementsX ∈ PKn

that satisfyX · e− 6= 0 as

P−1 : X ∈ PKn 7→ 1
X · e−

n+1∑
i=1

(X · ei) ei ∈ Kn. (2.10)

To summarize, the embedding of a Euclidean vectorx ∈ En in (homogeneous) confor-
mal spacePKn is given by

P
(
K(x)

)
=

2
x2 + 1

x +
x2 − 1
x2 + 1

e+ + e− ∈ PKn. (2.11)

Since this is an element of a projective space, an overall scale is not important. We may
therefore scale the above equation without changing the vector inEn it represents. We will
in fact do this, in order to get rid of the fractions. Since we representPKn by Rn+1,1 , the
expressionx2 + 1 can never be zero1.

1
2(x2 + 1) P

(
K(x)

)
= x + 1

2(x2 − 1) e+ + 1
2(x2 + 1) e−

= x + 1
2 x2 (e− + e+) + 1

2 (e− − e+)

= x + 1
2 x2 e∞ + eo,

(2.12)

where we defined

e∞ := e− + e+ and eo := 1
2 (e− − e+). (2.13)

The embedding of a Euclidean vector inPKn will from now on always be given in the form
of equation (2.12). We will therefore define a homogeneous conformal embedding operator
C as

C : x ∈ En 7→ 1
2(x2 + 1)P

(
K(x)

)
∈ PKn, (2.14)

such that

C(x) = x + 1
2 x2 e∞ + eo. (2.15)

Figure 2.14 illustrates this type of embedding. The vectorx is embedded inPK1 just as in
figure 2.13. Then it is scaled such that itseo component is unity. It then lies on the parabola
H1

a . The inverse operatorC−1 is only defined for vectors on the null coneHn .

C−1 : x ∈ Hn 7→ K−1
(
P−1(x)

)
∈ En. (2.16)

The properties ofe∞ and eo are quite important, so we should state them here. They
are easily derived from the properties ofe+ and e− .

e2
∞ = e2

o = 0 and e∞ · eo = −1. (2.17)

1This would be possible if were to regardPKn as a vector space over the complex numbersC
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Figure 2.14: Embedding of a vectorx ∈ E1 first in K1 and then inH1
a .

In projective spacePEn we introduced an operatorA that maps vectors ofPEn onto
the affine planeP(En) . That is, it scales a homogeneous vector such that its component
along the homogeneous dimension is unity. The vectors inPKn whose component along
eo is unity have a number of useful properties, as will be seen later. Even thougheo is not
the homogeneous dimension ofPKn , we will call the set of null vectors that have a uniteo

component theaffinenull cone. The affine null cone is denoted byHn
a and defined as

Hn
a :=

{
X ∈ Hn ⊂ PKn : X · e∞ = −1

}
. (2.18)

2.2.3 Geometric Algebra onPKn

Just as for projective space we can form a Geometric algebra overPKn denoted byC̀ (PKn) .
Blades inC̀ (PKn) again represent linear subspaces through their IPNS and OPNS with re-
spect toPKn itself. However, we are only interested in the set ofEuclideanvectors that
embedded in conformal space lie in the IPNS or OPNS of a blade ofC̀ (PKn) . Hence, the
Euclidean IPNS and OPNS forPKn are defined as

NOE

(
A ∈ C̀ (PKn)

)
:=

{
x ∈ En : C(x) ∧A = 0

}
,

NIE

(
A ∈ C̀ (PKn)

)
:=

{
x ∈ En : C(x) ·A = 0

}
.

(2.19)

Since we know that all vectors on the null cone inPKn can be projected intoEn , these
sets can also be expressed as

NOE

(
A ∈ C̀ (PKn)

)
= C−1

({
X ∈ Hn : X ∧A = 0

})
,

NIE

(
A ∈ C̀ (PKn)

)
= C−1

({
X ∈ Hn : X ·A = 0

})
.
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In other words, the vectors inPKn we are interested in are those that lie on the intersection
of the null space represented byA ∈ C̀ (PKn) and the null coneHn . That is,

NOE

(
A ∈ C̀ (PKn)

)
= C−1

(
NO(A) ∩Hn

)
,

NIE

(
A ∈ C̀ (PKn)

)
= C−1

(
NI(A) ∩Hn

)
,

with

NO
(
A ∈ C̀ (PKn)

)
=

{
X ∈ PKn : X ∧A = 0

}
,

NI
(
A ∈ C̀ (PKn)

)
=

{
X ∈ PKn : X ·A = 0

}
.

An example of the OPNS of a bivector inC̀ (PK1) is shown in figure 2.15. Vectors
X,Y ∈ H1

a span a 2d-subspace inPK1 , the planeNO(X ∧Y) . However, the Euclidean
OPNS ofX ∧Y is the set of points onH1

a that lie in NO(X ∧Y) . These are simply the
pointsX andY . Hence,NOE(X ∧Y) is the point pairC−1(X) and C−1(Y) .

Figure 2.15: OPNS of the outer product of two vectorsX,Y ∈ PK1 .

2.2.4 Representation of Geometric Entities inPK3

It is initially easier to look at the Euclidean IPNS of blades inPK3 . For a start, we will
consider a Euclidean vectora ∈ E3 with its conformal embedding

A = C(a) = a + 1
2a

2 e∞ + eo ∈ H3
a.

Before we look at the Euclidean IPNS of this vector, we look at the general inner product
of A with another vectorB ∈ H3

a , given by

B = C(b) = b + 1
2b

2 e∞ + eo ∈ H3
a.
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Using the properties ofe∞ and eo we find

A ·B = (a + 1
2a

2 e∞ + eo) · (b + 1
2b

2 e∞ + eo)

= a · b− 1
2a

2 − 1
2b

2

= −1
2(a− b)2

= −1
2‖a− b‖2.

(2.20)

That is, the inner product of two conformal vectors inH3
a gives a measure of the Euclidean

distance of their corresponding Euclidean vectors. That’s pretty neat and is the fundamental
feature of conformal space we will use over and over again.

2.2.4.1 The Representation of Points

The IPNS of a vectorA ∈ H3 is given as usual by

NI(A ∈ H3) :=
{

X ∈ PK3 : X ·A = 0
}

However, we know that vectors on the null cone are null vectors and thus

NI(A ∈ H3) =
{

αA : α ∈ R \ 0
}
,

and the corresponding Euclidean IPNS is

NIE(A ∈ H3) = C−1
(
NI(A)

)
= a.

Just as for the projective space, we have again the feature that we can represent null dimen-
sional entities in Euclidean space by one dimensional subspaces in (homogeneous) confor-
mal space.

2.2.4.2 The Representation of Spheres

Now we know that vectors on the null cone inPK3 represent points in Euclidean space
E3 . However, what to vectors inPK3 off the null cone represent? We will initially only
discuss their IPNS representation. Consider the vectorA ∈ H3

a on the affine null cone and
the vectorS ∈ PK3 off the null cone, given by

S = A− 1
2ρ2 e∞, ρ ∈ R. (2.21)

Let X ∈ H3
a , then

S ·X = A ·X− 1
2ρ2 e∞ ·X

= −1
2(a− x)2 + 1

2ρ2.
(2.22)

Hence,

S ·X = 0 ⇐⇒ (a− x)2 = ρ2.
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That is, the inner product ofS and X is zero if and only ifx = C−1(X) lies on a sphere
centered ona = C−1(A) with radiusρ . Therefore, the Euclidean IPNS ofS is a sphere.

NIE(S = A− 1
2ρ2 e∞) =

{
x ∈ E3 : ‖x− a‖2 = ρ2

}
. (2.23)

Note that since we are working in a homogeneous conformal space, also every scaled ver-
sion of S represents the same sphere. However, if we use the ”affine” form as in equation
(2.21), we can also evaluate the radius of the sphere represented byS quite easily.

S2 = A2 − ρ2 A · e∞ = ρ2. (2.24)

For an arbitrarily scaled version ofS we can evaluate the radius via(
S

−S · e∞

)2

= ρ2. (2.25)

We can also easily tell whether a point lies inside, on or outside the sphere represented by
S . From equation (2.22) it follows that

S ·X
(S · e∞) (X · e∞)


> 0 : x inside sphere

= 0 : x on sphere

< 0 : x outside sphere

(2.26)

This feature also forms that basic idea behind the hypersphere neuron [4, 3]. It may be
represented as a perceptron with two ”bias” components and allows the separation of the
input space of a multi-layer perceptron in terms of hyperspheres and not hyperplanes.

So what about vectors of the form

S = A + 1
2ρ2 e∞. (2.27)

The inner product ofS with someX ∈ H3
a gives

S ·X = −1
2(a− x)2 − 1

2ρ2,

such that

S ·X = 0 ⇐⇒ (a− x)2 = −ρ2.

Since we assumedE3 to be a vector space overR , this condition is never satisfied for
ρ 6= 0 . However, had we regardedE3 as a vector space over the complex numbersC ,
then, together with an appropriate definition of the norm, the solution would be

‖a− x‖ = i ρ,

where i =
√
−1 is the imaginary unit. We may thus say thatS as defined in equation

(2.27) represents a sphere withimaginaryradius inE3 .

Note that any vector inPK3 may be brought into the form

S = A± 1
2ρ2 e∞,

whereA is a vector on the null cone. From a visual point of view, we can say that vectors of
the typeS = A− 1

2ρ2 e∞ lie outside the null cone and vectors of the typeS = A+ 1
2ρ2 e∞

lie inside the null cone. We may thus say that any vector inPK3 either represents a sphere
with positive, zero or imaginary radius. In terms of the Euclidean IPNS, the basic ”building
blocks” of homogeneous conformal space are therefore spheres.
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2.2.4.3 The Representation of Planes

We mentioned earlier that a plane can be regarded as a sphere with infinite radius. Since we
are working in a homogeneous space, we can represent infinity by setting the homogeneous
component of a vector to zero. And this is also all it takes to make a sphere into a plane,
which also becomes clear from equation (2.25). Consider the vectorP ∈ H3 given by

P = A− eo − 1
2ρ2 e∞ = a + 1

2a
2 e∞ − 1

2ρ2 e∞.

The inner product ofP with some vectorX ∈ H3
a gives

P ·X = a · x− 1
2a

2 + 1
2ρ2

= ‖a‖ ‖x‖‖ − 1
2(a2 − ρ2),

wherex‖ is the component ofx parallel toa . Therefore,

P ·X = 0 ⇐⇒ ‖x‖‖ =
a2 − ρ2

2 ‖a‖
.

Hence, all vectorsx whose component alonga has a fixed length lie in the Euclidean IPNS
of P , which thus represents a plane with orthogonal distance(a2 − ρ2)/(2‖a‖) from the
origin and normala .

A particularly nice representation of planes is the difference of two vectors on the affine
null cone. That is, forA,B ∈ H3

a , we defineP = A−B . The inner product ofP with a
vectorX ∈ H3

a then gives

P ·X = A ·X−B ·X

= −1
2(a− x)2 + 1

2(b− x)2.

It follows that

P ·X = 0 ⇐⇒ 1
2(a− x)2 = 1

2(b− x)2.

This is the case ifx lies on the plane half way betweena andb , with normala− b .

2.2.4.4 The Other Entities

We have seen in section 1.1.9 (eqn. (1.23), p. 13), that in terms of the IPNS, the outer prod-
uct of two vectors represents the intersection of their respective inner product null spaces.
This is, of course, still valid here. Hence, the Euclidean IPNS of the outer product of two
spheres is their intersection circle or point. If the spheres do not intersect we obtain an
intersection circle of imaginary radius. The Euclidean IPNS of the outer product of three
spheres is accordingly the intersection of three spheres. This may be a point pair, a single
point or an imaginary point pair. The Euclidean IPNS of the intersection of four spheres
can at most give a single point. This also works for spheres with infinite radius, ie planes.
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Since the OPNS is dual to the IPNS, we find the following representations for blades
in terms of their OPNS inPK3 . In the following let A,B,C,D,E ∈ H3

a be mutually
linearly independent vectors.

NOE(A) : Point a

NOE(A ∧B) : Point pair (a, b)

NOE(A ∧ e∞) : Point pair (a, ∞)

NOE(A ∧B ∧C) : Circle through a, b, c

NOE(A ∧B ∧ e∞) : Line through a, b

NOE(A ∧B ∧C ∧D) : Sphere througha, b, c,d

NOE(A ∧B ∧C ∧ e∞) : Plane througha, b, c

NOE(A ∧B ∧C ∧D ∧E) : The whole spaceE3.

(2.28)

It may seem strange that there is a ”point pair” object. It clearly has to be there, since
otherwise the intersection of, for example, a sphere with a circle could not be expressed.
However, a somewhat better explanation is that a point pair is nothing else but a one di-
mensional sphere: a point pair has a center from which all points on the point pair (the
pair itself) have the same distance. This is simply the definition of a sphere applied to one
dimension. A circle is thus a two dimensional sphere and a point may in fact be interpreted
as a zero dimensional sphere. This shows again that the basic entities of conformal space
are spheres.

In equation (2.28) you may have wondered why there is a point pair of a finite point in
E3 and infinity. If we recall the stereographic projection of lines inE2 , it becomes clear
that two lines that intersect in a point inE2 intersect in two points when stereographically
projected: the north polee+ and another point (see figure 2.16). Two parallel lines inE2

only intersect ine+ . Sincee+ maps toe∞ in the homogenization ofK3 , it is now clear
why we need point pairs of the typeA ∧ e∞ .

2.2.5 DiscoveringC̀ (E3) and C̀ (PE3) in C̀ (PK3)

When we look again at equation (2.28), it is interesting to see that those geometric entities
that can also be represented inC̀ (PE3) are represented by the outer product of a blade of
null vectors ande∞ . It therefore seems as ifC̀ (PE3) is a subalgebra ofC̀ (PK3) . Even
though the operators do not carry over immediately, there is an isomorphism between the
algebraic entities of the two spaces. We will not give a proof here but a motivation.

Consider again a vectorA ∈ H3
a with

A = a + 1
2a

2 e∞ + eo.

If we take the outer product ofA with e∞ we obtain

A ∧ e∞ = a ∧ e∞ + eo ∧ e∞.
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Figure 2.16: Stereographic projection of two intersecting lines.

If we identify eo ∧ e∞ with the homogeneous dimension and the bivectors{ei ∧ e∞}3
i=1

with the orthonormal basis vectors of a vector space, then we do obtain an element ofPE3 .
This also carries over to blades of the typeA〈k〉∧e∞ , whereA〈k〉 is a blade of null vectors
excludinge∞ .

In a similar way we can also rediscoverC̀ (E3) . This time we take the outer product of
A with e∞ ∧ eo ,

A ∧ e∞ ∧ eo = a ∧ e∞ ∧ eo.

Now we could identify the{ei ∧ e∞ ∧ eo}3
i=1 with the orthonormal basis of a Euclidean

spaceE3 . In fact, NOE(a ∧ e∞ ∧ eo) is a line through the origin with the direction ofa ,
that is exactly the same asNO(a ∈ C̀ (E3)) . Similarly NOE(a∧b∧ e∞ ∧ eo) is the same
plane through the origin asNO(a ∧ b ∈ C̀ (E3)) .

This shows that when we are working in conformal space, we have all the features of
Euclidean and projective space combined. This also carries over to the operators, as we will
see in the next section. This embedding of Euclidean and projective space in a single frame-
work, offers immediately the possibility to implement the ideas laid out in the well known
paper ”Stratification of Three Dimensional Vision: Projective, Affine and Metric Represen-
tations” by Olivier Faugeras [11], without changing spaces or representations. This has, for
example, been used quite successfully in [33, 34].

2.2.6 Inversions inPKn

When we introduced conformal space initially, we said that it takes its name from the con-
formal mappings that are possible within it. We carried on to say that a conformal trans-
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formation can be expressed by a combination of inversions. However, so far we have not
shown how an inversion may be expressed inPKn .

Before we go for the full monty, let us take a look what effect an inversion has inKn .
Recall that the embedding of a vectorx ∈ En in Kn was a stereographic projection defined
as

K(x ∈ En) =
2

x2 + 1
x +

x2 − 1
x2 + 1

e+.

The inverse ofx can be written as

x−1 =
x
x2

,

which is the same as the inversion ofx on the unit sphere centered at the origin. The
embedding ofx−1 in Kn gives

K(x−1) =
2

x2

x4 + 1
x
x2

+
x2

x4 − 1
x2

x4 + 1
e+

=
2

1
x2 + 1

x
x2

+
1
x2 − 1
1
x2 + 1

e+

= x2 2
1 + x2

x
x2

+
1
x2

1
x2

1− x2

1 + x2
e+

=
2

x2 + 1
x− x2 − 1

x2 + 1
e+.

This shows that in order to invert a vector inEn , we only have to negate itse+ component
in its embedding inKn . That’s quite neat. Especially since we can express this negation
by a reflection inKn on the Euclidean subspace. For example, inK1 , vector x = αe1

becomes

K(x) =
2α

α2 + 1
e1 +

α2 − 1
α2 + 1

e+.

The inverse ofx is then given by

x−1 = K−1
(
e1K(x) e1

)
= K−1

( 2α

α2 + 1
e1 −

α2 − 1
α2 + 1

e+

)
=

1
1 + α2−1

α2+1

2α

α2 + 1
e1

=
2α

(α2 + 1) + (α2 − 1)
e1

= α−1 e1,
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Figure 2.17: Inversion of vectorx in K1 .

where we used equation (2.7) to evaluateK−1 . Figure 2.17 illustrates this example.

Let us now return toPKn . Here it turns out that an inversion of a vector on the unit
sphere centered at the origin is given by a reflection one+ . Mathematically we find for a
vectorX ∈ Hn

a ,

e+ X e+ = e+ (x + 1
2x

2 e∞ + eo) e+

= . . . exercise :-)

= −1 (x + x2 eo + 1
2 e∞)

= −x2 (x−1 + 1
2x

−2 e∞ + eo).

Projecting this vector back intoEn then clearly gives

C−1(e+ C(x) e+) = x−1.

This is visualized in figure 2.18. VectorX ∈ H1
a on the affine null cone is reflected one+

which givese+ X e+ . However, if we scale the latter vector such that itseo component is
unity, we obtainY which lies again on the affine null cone. ProjectingY back into E1

then gives the inverse ofC−1(X) .

Note that using the definitions ofe∞ = e− + e+ and eo = 1
2(e− − e+) , we find for the

unit sphereS centered at the origin

S = eo︸︷︷︸
origin

− 1
2e∞︸︷︷︸

radius 1

= 1
2(e− − e+)− 1

2(e− + e+)

= −e+.

Hence, we seem to be able to use vectors inPKn representing spheres in their Euclidean
IPNS to invert vectors inHn on them. In fact, it turns out that we can indeed use any
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Figure 2.18: Inversion of vectorX ∈ H1
a via reflection one+ .

sphere vector to invertany other bladein PKn . In this way we can invert points, lines,
circles, planes and spheres on spheres. Note that inversions on circles and point pairs are
also possible, but we will not discuss this any further here.

2.2.7 Rotations inPKn

We said before that the group of Euclidean transformation is a subgroup of the conformal
group. Since the conformal group can be created by combinations of inversions and we can
express inversion inC̀ (PKn) , we should also be able to find operators for the group of
Euclidean transformations.

It turns out that in C̀ (PKn) we can not just express reflections on planes that pass
through the origin but on arbitrary planes. Therefore, we can also reflect consecutively on
two arbitrary planes. The intersection line of two such planes then gives the rotation axis. If
the two planes are parallel, ie the rotation axis lies at infinity, we obtain a translation. This,
however, will be discussed in the next section.

It is interesting to see how, by enlarging the embedding space of Euclidean space, we
get more and more freedom of expression. In Euclidean space we could only express planes
that pass through the origin and reflections on planes through the origin. In projective space
PEn , we managed to ”free” planes from the origin and place them anywhere. Reflections,
however, were still confined to planes through the origin. In conformal spacePKn we
finally also managed to place reflection planes arbitrarily in space.

In order to achieve the reflection of a vectorx ∈ En on a line with directionn ∈ En ,
in PKn we have to reflectC(x) on

n ∧ e∞ ∧ eo = n ∧ e+ ∧ e−.
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This is similar to what we found for the projective space and is also in accordance with what
we said about the embedding ofC̀ (En) in C̀ (PKn) in section 2.2.5. A rotorR expressed
as two consecutive reflections onn ∈ En and m ∈ En , will thus take the following form
in C̀ (PKn) .

R = (n ∧ e+ ∧ e−) (m ∧ e+ ∧ e−) = nm e+ e− e+ e− = nm. (2.29)

Therefore, a rotor inC̀ (PKn) expressing a rotation about an axis through the origin, takes
again the same form as forC̀ (En) .

2.2.8 Translations in PKn

It may be shown that a translation inEn can also be expressed by two consecutive reflec-
tions on two parallel lines. InPKn the appropriate operator does take on a similar form as
that of a rotor. To cut a long story short, the translation operator, also calledtranslator, for
a translation by a Euclidean vectort , is given by

T = 1− 1
2t e∞. (2.30)

That is, a translator also has a scalar and a bivector part, just like a rotor. In fact, in terms
of the representation ofPKn as Rn+1,1 , a translator expresses a rotation. However, the
rotation plane does not lie in the Euclidean subspace but in a mixed subspace.

It may be shown that since

(t e∞)2 = t e∞ t e∞ = −t t e∞ e∞ = 0,

the operatorT can be expressed in exponential form as

T = exp
(
− 1

2t e∞
)
. (2.31)

Furthermore,T T̃ = 1 . If we apply T to the origineo we get

T eoT̃ = (1− 1
2t e∞) eo (1 + 1

2t e∞)

= . . . difficult exercise :-(

= t + 1
2t

2 e∞ + eo.

If we translate the point at infinity,e∞ , it remains the point at infinity. That is,

T e∞ T̃ = e∞.

With a translator we can again translate any blade inC̀ (PKn) . That is, we can use the
operator to translate points, lines, planes, circles and spheres. We can even translate a rotor
with a translator, which then results in a rotation about an arbitrary axis in space. Such a
general rotation operator may simply be given by

M = T R T̃ . (2.32)
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If we apply M to a vectorX ∈ PKn we get

M XM = T

rotation︷ ︸︸ ︷
R T̃ X T︸ ︷︷ ︸

translation by−t

R̃ T̃

︸ ︷︷ ︸
translation byt

.

One very nice effect of having a translator available is that for many properties it is
enough to show that they are valid at the origin. Applying the translation operator it is
then possible to show that this property holds everywhere in space. A simple example may
elucidate this. For a sphere centered at the origin of radiusρ , we know that the expression
in PKn is

S = e0 − 1
2ρ2 e∞.

It is easily shown that

S · S = ρ2,

in this case. But is this true for any sphere? Suppose nowS′ is a sphere with center
t in Euclidean space and letT denote a translator representing a translation byt , then
S′ = T̃ ST , if S denotes a sphere of the same radius asS′ at the origin. We then find that

S′ S′ = T S T̃ T S T̃ = T SS T̃ = ρ2 T T̃ = ρ2.

Thus we can relate a property that is valid at the origin to any point in space.
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Chapter 3

An Interactive Introduction to
Geometric Algebra

by Dietmar Hildenbrand

3.1 Motivation

Geometric Algebra promises to stimulate new methods and insights in all areas of science
dealing with geometric properties.
It has a lot of advantages, e. g. it allows simple, compact, coordinate-free and dimensionally
fluid formulations.

3.1.1 Unification

Geometric Algebra comprises a lot of mathematical systems like

• Clifford Algebra

• Vector Algebra

• Grassmann Algebra

• Complex Numbers

• Quaternions

• Tensor Algebra

• Spinor Algebra

71
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3.1.2 Low Symbolic Complexity

Expressions in Geometric Algebra normally have low complexity. For instance in section
3.6.5 we will see that the inner product of two vectorsP · S is used for different tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere

3.1.3 Robustness

One reason for the robustness of Geometric Algebra is its natural dealing with infinity. For
example the intersection of two parallel lines delivers a well-defined result.

3.2 Introduction to this interactive Tutorial

In this tutorial we use theCLUCalc software tocalculate with Geometric Algebraand to
visualize the resultsof these calculations. CluCalc is available for download at [27]. With
help of the CLUCalc Software you are able to edit and run Scripts calledCLUScripts.

CluCalc offers the following three windows

• editor window

• visualization window ( results can be arranged with help of the left mouse button )

• output window

Figure 3.1: Screenshot of the CLUCalc windows
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The following CLUScript example ”BaseVectorsE3.clu” draws the 3 base vectors of the
3-dimensional Euclidean space.

DefVarsE3();
_BGColor = Color(1,1,1); // Background white

:Red;
:a=e1;
:b=e2;
:c=e3;

Figure 3.2: BaseVectorsE3.clu

DefVarsE3(); in this CLUScript indicates that we are working in the 3-dimensional Eu-
clidean space E3.
:Red; means that the succeeding geometric objects will be drawn in red.
:a=e1; assigns the base vectore1 to the variablea and visualize it ( Note : without the
leading colon it would not be visualized ).

Figures generated by CLUScripts are labeled by the name of the script.
All the CLUScripts of this tutorial can be downloaded at

http://www.dgm.informatik.tu-darmstadt.de/staff/dietmar/

Formatting information like setting of background colors or annotations are not explained
in this tutorial.
For details regarding CLUScript please refer to the CLUCalc online help [27].
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3.3 Blades and Vectors

Bladesare the basic computational elements of the Geometric Algebra.
The Geometric Algebra of the Euclidean 3D space consists of blades with dimension ( usu-
ally called grade ) 0, 1, 2 and 3.
A scalar is a0-blade( blade of grade 0 ).

1-bladesare the 3 base vectorse1, e2, e3 .
2-bladesare plane elements spanned by 2 base vectors.

In the following CLUScript ”planeelement.clu” the 2-bladee1∧e2 ( spanned by the 2 base
vectorse1 and e2 ) is drawn in red.

DefVarsE3(); // 3D Euclidean space

:Blue;
:a=e1;
:b=e2;
:c=e3;

:Red;
:PE = e1ˆe2;

Figure 3.3: planeelement.clu

The Geometric Algebra of the Euclidean 3D space also consists of a3-blade e1 ∧ e2 ∧ e3

spanned by all the 3 base vectors.

A linear combination of k-blades is called ak-vector ( also called vectors, bivectors, trivec-
tors ... ).

Table 3.1 lists the 8 blades of the Geometric Algebra of the Euclidean 3D space.
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Table 3.1: list of blades of the 3D Euclidean space

blade grade abbreviation

1. 1 0 1

2. e1 1 e1

3. e2 1 e2

4. e3 1 e3

5. e2 ∧ e3 2 e23

6. e3 ∧ e1 2 e31

7. e1 ∧ e2 2 e12

8. e1 ∧ e2 ∧ e3 3 I

3.4 The products of the Geometric Algebra

The Geometric Algebra offers 3 products

• outer product

• inner product

• geometric product

3.4.1 The Outer Product and Parallelness

Geometric Algebra provides an outer product∧ with the following properties

Property Meaning

1. anti-symmetry a ∧ b = −(b ∧ a)

2. linearity a ∧ (b + c) = a ∧ b + a ∧ c

3. associativity a ∧ (b ∧ c) = (a ∧ b) ∧ c

What isa ∧ a then ?

As you can easily see, the outer product of a vector with itself is always 0.
a ∧ a = −(a ∧ a) = 0 .

The outer product of parallel vectors is 0. This is why the outer product can be used as a
measure forparallelness.
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3.4.1.1 Bivectors

A bivector is a plane element spanned by two vectors. It is the result of the outer product
of the vectors.

The following CLUScript bivectorE3.clu computes and draws a simple bivector

DefVarsE3();
:Blue;
:a = e1 + e2;
:b = e1 - e2;
:Red;
:c = a ˆ b;

Figure 3.4: bivectorE3.clu

The 2 vectorsa = e1 + e2 and b = e1 − e2 are drawn in blue. The resultc of their outer
productc is a bivector. It is visualized as a plane element in red color.

?c; // output in separate window

The algebraic representation of the bivectorc is shown in a separate window ( see the
question mark in front of the variable c ) as

c = -2 e12

According to table 3.1 this is the same as−2 (e1 ∧ e2) .
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?reverse = ˜c;

Thereverseof c is computed.
It results in

reverse = 2 e12

since the reverse of a blade simply reverses its order.

We compute the above mentioned example in order to better understand its geometrical
meaning.

c = a ∧ b

= (e1 + e2) ∧ (e1 − e2)

because of linearity

c = (e1 ∧ e1)− (e1 ∧ e2) + (e2 ∧ e1)− (e2 ∧ e2)

sincea ∧ a = 0

c = −(e1 ∧ e2) + (e2 ∧ e1)

because of anti-symmetry

c = −(e1 ∧ e2)− (e1 ∧ e2)

= −2(e1 ∧ e2)

because of anti-symmetry

c = 2(e2 ∧ e1)

We see that the resulting plane element is

• twice the plane element spanned by the base vectorse2 and e1 , or

• twice the plane element spanned by the base vectorse1 and e2 and invertedorien-
tation

Note : c̃ ( the reverse ofc ) is equal to

c̃ = 2(e1 ∧ e2)
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3.4.1.2 Trivectors

A trivector is a volume element resulting from the outer product of three vectors. The
following CLUScript computes and draws a simple trivector in E3

DefVarsE3();

:Blue;
:a = e1 + e2;
:b = e1 - e2;
:c = e3;

:Red;
:d = a ˆ b ˆ c;
?d;

Figure 3.5: trivectorE3.clu

The 3 vectorsa, b, c are drawn in blue and their outer productd in red color.

We compute the above mentioned example in order to better understand its geometrical
meaning.

d = a ∧ b ∧ c = (e1 + e2) ∧ (e1 − e2) ∧ e3

because of linearity

d = ( (e1 ∧ e1︸ ︷︷ ︸
0

)− (e1 ∧ e2) + (e2 ∧ e1)− (e2 ∧ e2︸ ︷︷ ︸
0

) ) ∧ e3

= (−(e1 ∧ e2) + (e2 ∧ e1)) ∧ e3

because of anti-symmetry

d = (−(e1 ∧ e2)− (e1 ∧ e2)) ∧ e3
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= (−2(e1 ∧ e2)) ∧ e3

= −2(e1 ∧ e2 ∧ e3)

= −2I

This means, the resulting geometric objecta∧ b∧ c is equal to -2 multiplied by the volume
element spanned by the 3 base vectorse1, e2, e3 . This is often denoted asI , the so-called
pseudoscalar.

3.4.2 The Inner Product and Perpendicularity

Geometric Algebra offers a so-called inner product denoted byA ·B
( in CLUScript A.B ).

3.4.2.1 The Inner Product of vectors

For Euclidean spaces, the inner product of 2 vectors is the same as the well known Euclidean
scalar product of 2 vectors.

The result of the following CLUScript

DefVarsE3();
B = e1+e2;
? length = sqrt(B.B);

is

length = 1.41421,

the length of the vectore1 + e2 .

For perpendicular vectors the inner product is0 .

The result of the following CLUScript

DefVarsE3();
? norm = e1.e2;

is

norm = 0,

since the two base vectors are perpendicular.
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3.4.2.2 The general Inner Product

In Geometric Algebra, the inner product is not only defined for vectors.

The following CLUScript innerProductE3.clu computes and draws inner product calcula-
tions of
- 2 bivectors
- a vector and a bivector

DefVarsE3();

:Red;
:B = e1 ˆ e2;
? norm = B.B;

:Green;
:x = e1+e3;

:Blue;
// xiB is a vector in the B-plane perpendicular to x
:xiB = x.B;

The surprising result of the square productB2 of the bivectorB = e1 ∧ e2 is −1 .

The result of the inner product of the vectorx = e1 + e3 and the bivector B is a vector in
the plane ( represented by the bivector B ).
The resulting vector isperpendicular to x .

Remark : the inner product is grade decreasing, e. g. in the previous example the result of
the inner product of an element with grade 2 and grade 1 is an element of grade 2-1 =1.

Figure 3.6: innerProductE3.clu



81

3.4.3 The Geometric Product and Duality

The geometric product is a combination of the outer product and the inner product. The
Geometric Product ofu and v is denoted byuv ( in CLUScript u*v ).
As we will see, it is an amazingly powerful operation.

3.4.3.1 The Geometric Product of Vectors

For vectorsu and v the geometric productuv is defined as

uv = u ∧ v + u · v (3.1)

We derive for the inner and the outer product

u · v =
1
2
(uv + vu) (3.2)

u ∧ v =
1
2
(uv − vu) (3.3)

Example 1: What is thesquare of a vector?

a2 = aa = a ∧ a + a · a = a · a

for example

e1e1 = e1 · e1 = 1

Example 2: What is (e1 + e2)(e1 + e2) ?

DefVarsE3();
?(e1+e2)*(e1+e2);

results in

Constant = 2

(e1+e2)(e1+e2) = (e1+e2)·(e1+e2) = e1·e1+e1·e2+e2·e1+e2·e2 = e1·e1+e2·e2 = 2

Example 3: What is e1e2 ?

DefVarsE3();
?e1*e2;
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results in

Constant = e12

e1e2 = e1 ∧ e2 + e1 · e2 = e1 ∧ e2

Example 4: What is e1(e1 + e2) ?

DefVarsE3();
?e1*(e1+e2);

results in

Constant = e12 +1

e1(e1 + e2) = e1e1 + e1e2 = 1 + e1 ∧ e2

Note : The result of this calculation is a linear combination of different types of blades ( in
this example of a scalar and a bivector ). These kind of expressions are calledmultivectors.

3.4.3.2 Extension of the Geometric Product to general multivectors

The geometric product is not only defined for vectors but also for all kind of multivectors.
Let us for example calculate the geometric product of 2 bivectors:

DefVarsE3();
?(e1ˆe2)*((e1+e2)ˆe3);

The result is

Constant = - e23 - e31

Proof

(e1 ∧ e2)((e1 + e2) ∧ e3)

= (e1e2)(e1 ∧ e3 + e2 ∧ e3)

= e1e2(e1e3 + e2e3)

= e1e2e1e3 + e1e2e2e3

= −e2e1e1e3 + e1e3

= −e2e3 + e1e3

= −(e2 ∧ e3) + e1 ∧ e3
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3.4.3.3 Invertibility

The invertibility of a bladeA is defined by

AA−1 = 1

The inverse of a vectorv is

v−1 =
v

v · v

Proof

v
v

v · v
=

v · v
v · v

= 1

Example 1: What is the inverse of the vectorv = 2e1

DefVarsE3();
:v=2*e1;
? 1/v;

results in0.5e1

Example 2: What is theinverse of the pseudoscalar?

DefVarsE3();
? 1/I;

results in the negative of the pseudoscalar (−I )

Constant = - I;

Proof

II = (e1 ∧ e2 ∧ e3)(e1 ∧ e2 ∧ e3) = (e1e2e3)(e1e2e3)

= e1e2︸︷︷︸
−e2e1

e3e1e2e3 = −e2e1e3e1e2e3 = e2e3 e1e1︸︷︷︸
1

e2e3

= e2e3e2e3 = −e3e2e2e3 = −e3e3 = −1

→ II = −1

→ II(I−1) = −I−1

→ I−1 = −I
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3.4.3.4 Duality

Since the geometric product isinvertible , divisions by geometric objects are possible.
Thedual of a geometric object is calculated by its division by the pseudoscalarI .

In the following CLUScript DualE3.clu the dual of the planeA is calculated.

DefVarsE3();

:Blue;
:A= e2 ˆ (e1+e3);

:Green;
:b= A/I;
?b;

Figure 3.7: DualE3.clu

The resulting vectorb

b = e1 - e3

corresponds to the normal vector of the plane.
Let us verify the result.
A superscript ”*” means the dual operator. In CLUScript this is denoted by a leading ”*”.

(e2 ∧ (e1 + e3))∗ = (e2 ∧ (e1 + e3))(e1e2e3)−1

= (e2 ∧ (e1 + e3))(−e1e2e3) = −(e2(e1 + e3))e1e2e3

= −e2 e1e1︸︷︷︸
1

e2e3 − e2e3︸︷︷︸
−e3e2

e1e2e3 = −e2e2e3 + e3e2e1e2e3

= −e3 − e3e1e2e2e3 = −e3 − e3e1e3

= −e3 + e1e3e3 = −e3 + e1
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3.5 Geometric Properties

The products of the Geometric Algebra already have some geometric meaning. We will
now see some additional geometric properties.

3.5.1 Projection and Rejection

In the following example ProjectE3.clu we compute and draw the projection and rejection
of a vectorv to a planeB .
The projection is calculated with help of

vpar = (v ·B)/B

and the rejection with help of

vperp = (v ∧B)/B

Figure 3.8: ProjectE3.clu

DefVarsE3();
:Red;
:B = e1ˆ(e1+e2);
v = 1.5*e1 + e2/3 +e3;

The planeB and the vectorv are computed. The planeB is drawn in red color.
Remark : the vectorv is only computed but not drawn because of the missing colon.

:Blue;
:vpar = (v.B)/B;
?vpar;
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vpar is computed asvpar = (v ·B)/B and drawn in blue color.
It is the part of v parallel to B .

:Yellow;
:vperp= (v ˆ B)/B;
?vperp;

vperp is computed asvperp = (v ∧B)/B and drawn in yellow color.
It is the part of v perpendicular to B .

:Magenta;
:Sum = vpar + vperp;
?Sum;

Sum ( as the sum of the 2 vectorsvpar and vperp ) results in the original vectorv , since
vB = v ·B + v ∧B and therefore
(vB)/B = (v ·B)/B + (v ∧B)/B = v
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3.5.2 Reflection

The reflection of a vectorv from a planeM is defined by

vrefl = MvM

In the following example ReflectE3.clu we reflect a vector from a plane.

Figure 3.9: ReflectE3.clu

DefVarsE3();
:Blue;
:v=e1+2*e3;
:Green;
:M = e1 ˆ e2;

The vectorv is drawn in blue color, the planeM in green.

:Red;
:vrefl = M*v*M;
? vrefl;

With help of the geometric productMvM the reflected vectorvrefl is calculated, drawn
and printed.



88

3.5.3 Rotation in 2d

In geometric algebra, the geometric productR := ba of two normalized vectors describes
the rotation between these two vectors ( by twice the angle between a and b ). In the
following exampleRotor2d.clu we rotate the vectora with help of

c = R a R̃.

R is called a rotor,R̃ is the reverse ofR .

DefVarsE3();

:Blue;
:a = e1;

:Green;
:b = 1/sqrt(2)*(e1+e2);

Figure 3.10: Rotor2d.clu

The vectora is drawn in blue color, the vectorb in green.

?R = b*a;

The rotation operatorR is calculated as product of the vectorb and the vectora .

:Red;
:c = R*a*˜R;

The rotated vectorc is calculated and drawn in red color. We see thatR rotatesa by twice
the angle betweena and b .
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The rotation operator can also be calculated with help of an exponential function.

DefVarsE3();
:Green;
:i = e1 ˆ e2;

The planei is drawn in green.

R=exp( -i * (Pi/4)/2 );

The rotation operator is calculated with help ofi and the specific anglePi/4 ( π/4 ).

:Blue;
:a = e1;
:Red;
:b = R*a*˜R;

Figure 3.11: RotateEXP E3.clu

The operatorR = e−i φ
2 with i = e1 ∧ e2 can be decomposed as follows :

With help of the Taylor series and the fact thati2 = −1 ( see 3.4.2.2 )

R = e−i φ
2 = 1 +

−iφ
2

1!
+

(−iφ
2 )2

2!
+

(−iφ
2 )3

3!
+

(−iφ
2 )4

4!
+

(−iφ
2 )5

5!
+

(−iφ
2 )6

6!
...

= 1−
(φ

2 )2

2!
+

(φ
2 )4

4!
−

(φ
2 )6

6!
...

+− i
φ
2

1!
+−i

(φ
2 )3

3!
−−i

(φ
2 )5

5!
...

= cos(
φ

2
)− isin(

φ

2
)
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3.5.4 Rotation in 3d

The operatorR = e−
φ
2
p describes a rotor in 3d withp being a normalized plane. The

normal vector ( or the dual ) of this plane is used as rotation axis.
In the following exampleRotor3d.clu we rotate the vectora with help of rot = R a R̃ .

DefVarsE3();
:Blue;
:a=e1+e2;

:Green;
axis = -3*e1 + 6*e2 - 2*e3;
:axis = axis/sqrt(axis.axis);
:p = *axis;

angle = Pi/3;
?R=exp(-0.5*angle*p);
:Red;
:rot=R*a*˜R;

Figure 3.12: Rotor3d.clu

The vectora is drawn in blue color.
The rotated vectorc is calculated and drawn in red color.
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3.5.5 Intersection

In the geometric algebra, there is a powerful meet operation to calculate the intersection
between geometric objects.
The meet operation between two bladesA and B is given by

A ∨B = A∗ ·B,

if the direct sum of the OPNS ofA and B is the whole vector space. In the following
examplemeetE3.clu we intersect two planes.

DefVarsE3();
:Blue;
:A = e2 ˆ (e1 + e3);
:Green;
:B = e1 ˆ(e2 + e3/2);

The two planesA and B are calculated and drawn in blue and green color.

:Red;
:mAB = *A.B;

Figure 3.13: meetE3.clu

The result of the intersectionmAB = A∗ ·B is drawn in red.
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3.6 The Conformal Geometric Algebra

Up to now we have dealt with the well known Euclidean space.
In this section we will extend our investigations to one specific non-Euclidean space, the
so-called conformal space.
The Conformal Geometric Algebra is a 5-dimensional Geometric Algebra. For details
please refer to [38]. In this Algebra, points, spheres and planes are easily represented as
vectors ( grade 1 blades ).

3.6.1 The two additional base vectors

The Conformal Geometric Algebra uses 2 additional base vectors (e+, e− ) with the fol-
lowing properties.

e2
+ = 1 e2

− = −1 e+ · e− = 0 (3.4)

Another base (e∞, eo ) can be defined with the following relations

eo =
1
2
(e− − e+) e∞ = e− + e+

The reader is encouraged to verify the following equations.

e2
o = e2

∞ = 0, e∞ · eo = −1

e− = eo +
1
2
e∞ e+ =

1
2
e∞ − eo

The outer producte∞ ∧ eo is often abbreviated byE .

3.6.2 Vectors in Conformal Geometric Algebra

A vector can be written as

S = s1e1 + s2e2 + s3e3 + s4e∞ + s5eo (3.5)

The points = s1e1+s2e2+s3e3 is denoted as inhomogenous point of the Euclidean space.
Note : bold pointss in this document means ∈ R3 .

The meaning of the two additional coordinates of the Conformal Geometric Algebra is as
follows :

s5 = 0 s5 6= 0

s4 = 0 plane through origin sphere/point through origin

s4 6= 0 plane sphere/point
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3.6.2.1 Spheres

A sphereS with inhomogenous center points and radiusr is represented as

S = s + s4e∞ + eo (3.6)

with

s4 =
1
2
(s2

1 + s2
2 + s2

3 − r2) =
1
2
(s2 − r2)

The radius of the sphere results in

r2 = s2 − 2s4 = s2
1 + s2

2 + s2
3 − 2s4

Figure 3.14: OneSphereN3.clu

In the example OneSphereN3.clu

DefVarsN3();
:IPNS;
:N3_SOLID;
:S = e2 +e3 - e +e0;

the radius the radius of the sphereS = e2 + e3 − e∞ + eo results in

r2 = 1 + 1− 2 ∗ (−1) = 4

:DefVarsN3(); is needed in order to indicate conformal space calculations.
:IPNS; means that we describe the sphere with help of the inner product null space ( IPNS
). OPNS would be used if we would like to describe the sphere with help of its dual repre-
sentation ( quadvector instead of vector ).
:N3 SOLID; is needed in order to visualize the sphere solid instead of a wired (N3WIRED).
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3.6.2.2 Points

Points are degenerate spheres with radiusr = 0 . The inhomogenous pointp is represented
as

X = p +
1
2
p2e∞ + eo (3.7)

3.6.2.3 Planes

Planes are degenerate spheres with infinite radius. They are represented as a vector with
s5 = 0 .

Plane = n1e1 + n2e2 + n3e3 + de∞ (3.8)

with the normal vector(n1, n2, n3)

n2
1 + n2

2 + n2
3 = 1

and d as the distance of the plane from the origin.

In the following CLUScript PlaneN3.clu the planee2 + e∞ is drawn in red.
The point at infinitye∞ is indicated by the predefined valuen .

DefVarsN3();
:N3_IPNS;

:Red;
:a=VecN3(0,0,0);
:Plane=e2+n;
:Green;
:b=VecN3(0,1,0);

Figure 3.15: PlaneN3.clu

Its normal vector is(n1, n2, n3) = (0, 1, 0) and the distance is1 ( indicated in the picture
by the red pointa at the origin and the green pointb ). The points in conformal space are
generated by the functionVecN3().
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3.6.3 Bivectors in Conformal Geometric Algebra

The representation of bivectors of Conformal Geometric Algebra are circles and lines.
Lines are degenerate circles with infinite radius.

3.6.3.1 Circles

A circle can be defined by 3 points. Its algebraic description in Conformal Geometric
Algebra is the dual of the outer product of these 3 points.

In the following CLUScript CircleN3.clu a circle is shown in green based on the red points
a, b, c .

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);
:c=VecN3(0.5, 0.5, 0.5);

:Green;
:Circle=*(aˆbˆc);

?Circle;

Figure 3.16: CircleN3.clu

The resulting bivector is calculated and printed.
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3.6.3.2 Lines

A line as a degenerate circle with infinite radius can be defined by 2 points and the point at
infinity.
Its algebraic description in Conformal Geometric Algebra is the dual of the outer product
of these 3 points.

In the following CLUScript LineN3.clu a line is shown in green based on the red points
a, b .

DefVarsN3();
:IPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:line=* (a ˆ b ˆ n );

?line;

Figure 3.17: LineN3.clu

The point at infinitye∞ is indicated by the predefined valuen . The resulting bivector is
calculated and printed.
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3.6.4 Dual Vectors in Conformal Geometric Algebra

In the previous section we already saw circles and lines as the dual of trivectors based on
the outer product of three points.
In the same way we are able to define spheres and planes as the dual of the outer product of
four points ( IPNS ) or as the outer product of four points ( OPNS ).

The dual of vectors in conformal geometric algebra are 4-vectors ( or quadvectors ).

In the following CLUScript DualSphereN3.clu a sphere generated by four points is visual-
ized.

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);

:Blue;
:B=VecN3(1,-0.5,2);

:Green;
:C=VecN3(0,1.5,3);

:Black;
:D=VecN3(0,2,2);

:Yellow;
:Sphere=AˆBˆCˆD;

?Sphere;

The sphere is generated by the outer product of the four pointsA,B, C, D . These points
are indicated by different colors. The resulting quadvector is shown in the output window.
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3.6.5 Distances

In the Conformal Geometric Algebra points, planes and spheres are represented as vectors.
The inner product of this kind of objects is a scalar and can be used as a measure for
distances.

In the following examples we will see that the inner productP ·S of two vectorsP andS
can be used for tasks like

• the Euclidean distance between two points

• the distance between one point and one plane

• the decision whether a point is inside or outside of a sphere

Let us first translate the inner product to an expression in Euclidean space.

The inner product between a vectorP and a vectorS is defined by

P · S = (p + p4e∞ + p5eo) · (s + s4e∞ + s5eo)

= p · s + s4 p · e∞︸ ︷︷ ︸
0

+s5 p · eo︸ ︷︷ ︸
0

+p4 e∞ · s︸ ︷︷ ︸
0

+p4s4 e2︸︷︷︸
0

+p4s5 e∞ · eo︸ ︷︷ ︸
−1

+p5 eo · s︸︷︷︸
0

+p5s4 eo · e∞︸ ︷︷ ︸
−1

+p5s5 e2
o︸︷︷︸
0

It results in

P · S = p · s− p5s4 − p4s5 (3.9)

or

P · S = p1s1 + p2s2 + p3s3 − p5s4 − p4s5

3.6.5.1 Distances between points

In the case ofP and S being points we get

p4 =
1
2
p2, p5 = 1

s4 =
1
2
s2, s5 = 1
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The inner product of these points is according to equation 3.9

P · S = p · s− 1
2
s2 − 1

2
p2

= p1s1 + p2s2 + p3s3 −
1
2
(s2

1 + s2
2 + s2

3)−
1
2
(p2

1 + p2
2 + p2

3)

= −1
2
(s2

1 + s2
2 + s2

3 + p2
1 + p2

2 + p2
3 − 2p1s1 − 2p2s2 − 2p3s3)

= −1
2
((s1 − p1)2 + (s2 − p2)2 + (s3 − p3)2)

= −1
2
(s− p)2

We recognize that the square of the Euclidean distance of the inhomogenous points corre-
sponds to the inner product of the homogenous points multiplied by−2 .

(s− p)2 = −2(P · S)

3.6.5.2 Distance between points and planes

For a vectorP representing a point we get

p4 =
1
2
p2, p5 = 1

For a vectorS representing a plane with normal vectorn and distanced we get

s = n, s4 = d, s5 = 0

The inner product of point and plane is according to equation 3.9

P · S = p · n− d

representing the Euclidean distance of a point and a plane.
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3.6.5.3 is a point inside or outside of a sphere ?

We will see now that the inner product of a point and a sphere can be used for the decision
of whether a point is inside of a sphere or not.

For a vectorP representing a point we get

p4 =
1
2
p2, p5 = 1

For a vectorS representing a sphere we get

s4 =
1
2
(s2

1 + s2
2 + s2

3 − r2), s5 = 1

The inner product of point and sphere is according to equation 3.9

P · S = p · s− 1
2
(s2 − r2)− 1

2
p2

= p · s− 1
2
s2 +

1
2
r2 − 1

2
p2

=
1
2
r2 − 1

2
(s2 − 2p · s− p2)

=
1
2
r2 − 1

2
(s− p)2

We get

2(P · S) = r2 − (s− p)2

In terms of the Euclidean distanced with

(d + r)2 = (s− p)2 = d2 + 2dr + r2

we get

2(P · S) = r2 − (d2 + 2dr + r2)

2(P · S) = −d2 − 2dr

or

D(d) = P · S = −d

2
(d + 2r)

With help of curve sketching we see that this is a parabola with

D(0) = 0 D(−2r) = 0

and a maximum at

D(−r) =
1
2
r2

we can see that

P · S > 0 : p is inside of the sphere
P · S = 0 : p is on the sphere
P · S < 0 : p is outside of the sphere
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3.6.5.4 is a point inside or outside of a circumcircle of a triangle ?

The reader is encouraged to verify that the following CLUScript PointInsideCircleN3.clu is
able to decide whether a point is inside or outside of a circumcircle of a triangle.

DefVarsN3();

:IPNS;
:N3_SOLID;

:Red;
:A=VecN3(-0.5,0,1);
:Blue;
:B=VecN3(1,-0.5,2);
:Green;
:C=VecN3(0,1.5,3);
:Black;
:X=VecN3(0,4,4);

:Magenta;
:Circle=*(AˆBˆC);
Plane=*(AˆBˆCˆe);

:Yellow;
:Sphere=Circle*Plane;
?Distance=Sphere.X;

Figure 3.18: PointInsideCircleN3.clu
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3.6.6 Intersections

As already mentioned for the 3D Euclidean space the meet operation between two blades
A and B may be given by

A ∨B = A∗ ·B,

In the following examples we will compute intersections between different objects like
spheres, lines and planes.

3.6.6.1 Intersection of two spheres

In the following CLUScript meetSphereSphereN3.clu the intersection of two spheres is
calculated with help of the meet operation.

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:a=*(VecN3(0,-0.5,-0.5)-0.5*e);
:b=*(VecN3(0,0.5,0.5)-0.5*e);

:Blue;
:M=*a.b;
?M;

Figure 3.19: meetSphereSphereN3.clu

Two spheres, defined as dual vectors in OPNS are drawn in red color. The intersection of
theses spheres is calculated with help of the meet operation. The resulting circle is drawn
in blue.
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3.6.6.2 Intersection of a line and a sphere

In the following CLUScript meetSphereLineN3.clu the intersection of one spheres and
one line l is calculated with help of the meet operations∗ · l .

DefVarsN3();
:OPNS;
:N3_SOLID;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=aˆbˆn;
?l;

:Yellow;
s=VecN3(0,1,1) -0.1*e;
:s=*s;

:Magenta;
:r=*s.l;

Figure 3.20: meetSphereLineN3.clu

The intersection of the linel ( defined by the pointsa and b ) and the spheres is apoint
pair .
This geometric object is visualized in magenta.
A point pair is a trivector in Conformal Geometric Algebra.
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3.6.6.3 Intersection of a line and a plane

In the following CLUScript meetPlaneLineN3.clu the intersection of one planep and one
line l is calculated with help of the meet operationp∗ · l .

DefVarsN3();
:OPNS;

:Red;
:a=VecN3(0,-0.5,-0.5);
:b=VecN3(0,0.5,0.5);

:Green;
:l=aˆbˆn;
?l;

:c=VecN3(2,1,2);
:d=VecN3(1,-1,1);
:e=VecN3(-1,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=*p.l;
?r;

Figure 3.21: meetPlaneLineN3.clu

The planep is defined with help of the three pointsc, d, e and the point at infinityn . The
intersection pointr with the line l ( defined with help ofa, b, n ) is visualized in magenta.
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3.6.7 Reflection

In the following CLUScript ReflectN3.clu we visualize the reflection of one linel from one
planep with help of the operationplp .

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=aˆbˆn;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=p*l*p;
?r;

Figure 3.22: ReflectN3.clu

The result is one reflected line drawn in magenta.
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3.6.8 Projection

In the following CLUScript ProjectN3.clu we visualize the projection of one line to one
plane with help of the operationp·lp

DefVarsN3();
:OPNS;

a=VecN3(0,-0.5,-0.5);
b=VecN3(0,2,2);

:Green;
:l=aˆbˆn;
?l;

c=VecN3(2,1,2);
d=VecN3(1,-1,1);
e=VecN3(-1.5,-2,-1);

:Yellow;
:p=cˆdˆeˆn;

:Magenta;
:r=(p.l)/p;
?r;

Figure 3.23: ProjectN3.clu

The result is the projected line drawn in magenta.
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Anti-commutator product
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Direct subtraction
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of subspaces, 10
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definition of, 10
geometric meaning, 12, 84, 95–97
relation between OPNS and IPNS, 11

Einstein summation convention, 27

Geometric algebra
vs. Clifford algebra, 1

Geometric product
of vectors, 17

Grade
of basis blade, 28
of blade, 3, 74, 92

Grassmann algebra
relation to Clifford algebra, 37

Grassmann-Cayley algebra
relation to Clifford algebra, 38

Homogeneous
component, 41
dimension, 41
space, 41
vector, 42

Inner product
metric property, 6
of blades, 6
relation to shuffle product, 40
with scalar, 17

Inner product null space
definition of, 9
Euclidean inPEn , 44
Euclidean inPKn , 58
intersection of, 13
relation to OPNS, 11

Inverse
of blade, 7
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Inversion
in conformal space, 66

Join
definition of, 16
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of blade, 5
of pseudoscalar, 5

Meet
definition of, 16

Multivector
definition of, 27
in C̀ 3 , 27
inverse of, 30

Operator
grade preserving, 18
inversion inPKn , 66
reflection inEn , 18
reflection inPEn , 48
rotor in En , 21
rotor in PEn , 49
rotor in PKn , 68

Outer product
properties, 2
relation to vector cross product, 12

Outer product null space
definition of, 3
Euclidean inPEn , 44
Euclidean inPKn , 58
relation to IPNS, 11

Outer-Morphism
of reflection, 19
of rotor, 22

Product
anti-commutator, 25
commutator, 25
geometric, 17
inner, 6
join, 16
meet, 16
outer, 2
regressive, 15
scalar, 2
shuffle, 39
triple scalar, 33
triple vector cross, 33
vector cross, 2

Pseudoscalar
magnitude of, 5
of R3 , 11, 79, 83, 84

Quaternions

isomorphism to Clifford algebra, 36

Reflection
in Euclidean space, 18, 87
in projective space, 48
outer-morphism, 19

Regressive Product
definition of, 15

Regressive product
relation to shuffle product, 39

Reverse
of blade, 7, 77

Rotor
definition of, 21
exponential form, 22
in conformal space, 68
in projective space, 49
outer-morphism, 22

Shuffle product
definition of, 39
relation to inner product, 40
relation to regressive product, 39

Stereographic projection
definition of, 54
inverse of, 55

Vector
of gradek , 28

Vector cross product
relation to outer product, 12

Versor
equation, 31


