
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Presentations

Competitive runtime performance for inverse kinematics
algorithms using conformal geometric algebra

Dietmar Hildenbrand1 , Daniel Fontijne2 , Yusheng Wang1 , Marc Alexa3 and Leo Dorst2

1Darmstadt University of Technology, Germany
2University of Amsterdam, The Netherlands

3TU Berlin, Germany

Abstract

Conformal geometric algebra is a powerful tool to find geometrically intuitive solutions. We present an approach
for the combination of compact and elegant algorithms with the generation of very efficient code based on two
different optimization approaches with different advantages, one is based on Maple, the other one is based on the
code generator Gaigen 2. With these results, we are convinced that conformal geometric algebra will be able to
become fruitful in a great variety of applications in Computer Graphics.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.5 [Computational Geometry and Object Modelling]: Geometric algorithms, languages, and systems

1. Introduction

For the animation of humanoid models, inverse kinemat-
ics (IK) solutions are important as a basic building block
for path planning. The standard model for arms (and also
legs) is a seven 7 DOF kinematic chain, with 3 degrees
of freedom (θ1,θ2,θ3) at the shoulder, 1 degree of free-
dom at the elbowθ4 and 3 degrees of freedom at the wrist
(θ5,θ6,θ7). The current standard tool for solving the inverse
problem of mapping from a given end effector state to the
configuration space{θi} is due to Tolani, Goswami, and
Badler [TGB00]. They also discuss in detail less favorable,
optimization-based solutions. The importance of their algo-
rithm in computer graphics and animation can be seen from
the large number of uses and citations of their work (just to
give a few recent examples [SLGS01,ST03,BB04,SHP04]).
Our analytic solution to the inverse problem in conformal
geometric algebra is an improvement of [HBCZE05] (please
refer also to [BCZE04], [Hil05], [RS05] and [WCL05]), and
its derivation is considerably simpler than in affine or projec-
tive geometry. Perhaps more importantly for the prospective
user, our approaches also turns out to be more than 3 times
faster.

The goal of our inverse kinematics algorithm is to com-

Table 1: input/output parameters of the inverse kinematics
algorithm

parameter Maple / Gaigen 2 meaning

pw pw(pwx, pwy, pwz) target point of wrist
θ sangle swivel angle
L1,L2 L1, L2 length of the arm

qs qs shoulder quaternion
qe qe elbow quaternion

pute the output parametersqs andqe based on the input pa-
rameters (see Table1). In our improved algorithm we ben-
efit from the fact that quaternions are part of conformal ge-
ometric algebra. We present two different optimization ap-
proaches with different advantages, one is based on Maple,
the other one is based on the code generator Gaigen 2.

2. Optimization with Maple

We use Maple in order to get the most elementary relation-
ship between the input and output parameters of our inverse
kinematics algorithm (see Table1).

c© The Eurographics Association 2006.

Hildenbrand et al. / Competitive runtime performance for inverse kinematics algorithms using conformal geometric algebra

The most important feature of Maple is the symbolic
calculation [MAP]. In order to deal with the computation
of conformal geometric algebra, we use a library called
Cliffordlib, developed by Rafal Ablamowicz and Bertfried
Fauser. For download and installation hints please refer to
[CLI05, Wan06]. For information about conformal geomet-
ric algebra please refer to the tutorial [HFPD04]. The most
important operations of the Clifford package are presented
in table2. For the inner product we use the left contraction
(LC) operation. Besides these main operations we also need

Notation Meaning
a &c b geometric product
a &w b outer product

LC(a,b) inner product
-(a) &c e12345 dualization

reversion() reversion

Table 2: Notation of GA-Operations

some methods likescalarpart() or vectorpart()
for extracting the scalar or the vector part of a multivector.
In order to use conformal geometric algebra computation we
have to load the Clifford package, set the metric of Clifford
algebra, set aliases to basic blades (optional) and definee0
ande∞.

> with(Clifford);
> B:=linalg[diag](1, 1, 1, 1, -1);
> eval(makealiases(5, "ordered"));
> e0:=-0.5*e4+0.5*e5;
> einf:=e4+e5;

Here, we present an improvement of the algorithm of
[HBCZE05] for the first 4 DOF as well as the corresponding
Maple code :

• Compute the elbow pointpe

> pw:=pwx*e1+pwy*e2+pwz*e3+0.5*
(pwx^2+pwy^2+pwz^2)*einf+e0;

> S1:=pw-0.5*L2*L2*einf;
> S2:=e0-0.5*L1*L1*einf;
> C_e:=S1 &w S2;
> l_sw:=-(e0 &w pw &w einf)&c e12345;
> pi_swivel:=-(pe2 &w pw &w e0 &w einf)

&c e12345;
> norm_l_sw:=sqrt(l_sw &c reversion(l_sw));
> q_swivel:=cos(sangle/2)+sin(sangle/2)

*(l_sw / norm_l_sw);
> pi_swivel:=q_swivel &c pi_swivel

&c reversion(q_swivel);
> PP:=-(C_e &w pi_swivel) &c e12345;
> PP:=vectorpart(PP,2);
> einf_PP:=LC(einf,PP);
> norm_einf_PP:=einf_PP &c

reversion(einf_PP);
> inv_einf_PP:=einf_PP/norm_einf_PP;
> p_e:=-(-sqrt(scalarpart(LC(PP,PP)))

+PP) &c inv_einf_PP;
> p_e:=vectorpart(p_e,1);

The main difference to the [HBCZE05] algorithm equa-
tions (10) to (20) is the interpretation of the rotor of equa-
tion (11) as a quaternion. It can be shown that in confor-
mal geometric algebra lines through the origin represent
pure quaternions with the imaginary unitsi = e3∧e2, j =
e1∧ e3,k = e2∧ e1. The quaternionqswivel describing the
rotation of the swivel plane can be expressed asqswivel =
cos(θ

2)+sin(θ
2) lsw
|lsw| with the normalized linelsw.

• Compute the quaternionqe at the elbow joint
For efficiency reasons we do not compute the angleΘ4 ex-
plicitly based on thearccosfunction (see equations (21)
and (22) of [HBCZE05]) but immediately compute the el-
bow quaternionqe based on the formulae forcos(θ

2) and

sin(θ
2).

> l_se:=-(e0 &w p_e &w einf)&c e12345;
> l_ew:=-(p_e &w pw &w einf)&c e12345;
> c4:=-LC(l_se,l_ew)/(L1*L2)/Id;
> qe:=sqrt((1+c4)/2)+sqrt((1-c4)/2)*(-qi);

• Rotate until the elbow position matches
For efficiency reasons we combine the steps 3 and 4 of
[HBCZE05] in one improved step as follows :

> p_ze:=L1*e3+0.5*L1^2*einf+e0;
> pi_m:= p_ze-p_e;
> pi_e:=-(p_ze &w p_e &w e0 &w einf)&c e12345;
> l_m:=pi_e &w pi_m;
> q12:=l_m/(sqrt(l_m &c reversion(l_m)));

We directly compute a quaternion that rotates an object
from one pointp1 = pze to another pointp2 = pe, both
points having the same distance to the origin (see Figure
1). First, we calculate the middle linelm between the two
points through the origin. In conformal geometric algebra,
a middle plane of two points is described by their differ-
ence (see [PH04]). We calculatelm with the help of the
intersection of this plane and the plane through the origin
and the pointsp1 andp2. Second, in order to rotate from

Figure 1: Rotation based on the line between two points
through the origin

p1 to p2 we have to rotate about the middle line with ra-
diusπ. If the line is normalized, this results in a quaternion
identical to the normalized line. In Figure1 the two points
are indicated by two spheres. We can see the line between

c© The Eurographics Association 2006.

Hildenbrand et al. / Competitive runtime performance for inverse kinematics algorithms using conformal geometric algebra

two points through the origin and the two planes for its
computation. The quaternionq12 describes the rotation at
shoulder joint which lets the robot elbow reach its target
pe:

• Compute the quaternionqs at the shoulder joint
The quaternionqs will let the robot wrist reach the given
targetpw:

> pi_yz2:=q_12 &c e1 &c reversion(q_12);
> _sign:=scalarpart(LC(pw,pi_yz2));
> _sign:=_sign/abs(_sign);
> norm_pi_swivel:=sqrt(pi_swivel &c

reversion(pi_swivel));
> c3:=scalarpart(-LC(pi_yz2,pi_swivel))

/(norm_pi_swivel);
> q3:=sqrt((1+c3)/2)+sqrt((1-c4)/2)

*_sign*qk;
> qs:=q12 &c q3;

The quaternionsqs andqe are the required results of our
algorithm.

With the help of Maple our conformal geometric algebra
formulae are simplified and combined to very efficient ex-
pressions because of the symbolic computation feature of
Maple. For instance, for the first lines of the algorithm we
get a result as follows for the intersection circle

C_e = 0.5*(1-L1^2)*(pwx*e15+pwy*e25+pwz*e35)-

0.5*(1+L1^2)*(pwx*e14+pwy*e24+pwz*e34)+
0.5*e45*(pwx^2+pwy^2+pwz^2+L1^2-L2^2)

with only some simple multiplications and additions.

3. Optimizations with Gaigen 2

The philosophy behind Gaigen 2 is based on two ideas :
generative programming and specializing for the structure
of conformal geometric algebra. Gaigen 2 takes a succinct
specification of a geometric algebra and transforms it into an
implementation. The resulting implementation is very sim-
ilar to what someone would program by hand and can be
directly linked to an application.

In many types of programs, each variable has a fixed ‘spe-
cialized’ multivector type. I.e., the inverse kinematics al-
gorithm uses variables of with multivector types likeline
andsphere. If the GA implementation could work directly
with these leaner specialized multivector types, performance
would be greatly increased.

As an implementation of this insight, Gaigen 2 allows the
user to define specialized types along with the algebra spec-
ification, and generates classes for each of them. These spe-
cialized multivector classes require much less storage than
the generic multivector, but as a result, they are of course
unable to store an arbitrary multivector type. For example, a
line variable can not be stored in aspherevariable.

The below description of the first part of the algorithm
(see item Compute the elbow pointpe at page 2) is offered

as an explicit example of how one can think in geometry, and
directly program in geometric elements.

Figure 2: compute the elbow point

We implement the computation of the elbow point in
Gaigen 2 as follows:
Sphere s1 = _Sphere(pw-
0.5f* L2* L2*einf); // einf meanse∞

originSphere s2 = _originSphere(e0-
0.5f* L1* L1*einf);

Circle c_e = _Circle(s1^s2);
With the help of the two spheres s1, s2 with center points
pw (target point of the wrist) andeo (shoulder located at the
origin) and radiiL2,L1 we are able to compute the circle
determining all the possible locations of the elbow as the
intersection of the spheres.

For the needed geometric objects we use the following
specializations:
Both, the target pointpw as well as the spheres1 are assigned
to a multivector type calledSphere (please remember that
a point in conformal geometric algebra is simply a sphere
with 0 radius). TypeSphere is defined as follows:

specialization:

blade Sphere(e0=1, e1, e2, e3, einf);

Type Sphere means a linear combination of basis blades
with the coefficient ofe0 being 1.

The center of the spheres2 is the origine0. We use the
typeoriginSphere :

specialization:

blade originSphere(e0, einf);

since we can see thate0-0.5f* L1* L1*einf only
needs the bladese0 andeinf . The result of the intersec-
tion of the spheresCe = s1∧ s2 is of typeCircle being a
bivector.

4. Results

First we developed and simulated our algorithm visually
based on CLUCalc (see [Per05]), developed by Christian
Perwass. Then, we had to implement it on the target platform

c© The Eurographics Association 2006.

Hildenbrand et al. / Competitive runtime performance for inverse kinematics algorithms using conformal geometric algebra

Avalon ([ZGD]), a virtual reality system written in C++ us-
ing Visual Studio.NET 2003. Previously, inverse kinematics
was implemented using IKAN [TGB00], a widely used C++
library.

Our Maple approach outperformed the IKAN implemen-
tation clearly. It turned out to be about 3.3 times faster. Based
on this approach we are able to design and test our algo-
rithms on a high level. When we are satisfied with our al-
gorithm we are able to transfer it into the C/C++ language
without the need of additional libraries.

Also our Gaigen 2 approach outperformed the IKAN in
a similar way. The conformal geometric algebra based al-
gorithm is 43 % faster than IKAN, and even 240 % faster
when the conversion from matrices to quaternions is taken
into account (this has to be done in our application, because
the rotations must be represented as quaternions in order to
perform SLERP operations on them, while the conformal ge-
ometric algebra based algorithm delivers quaternions by de-
fault). Based on this approach we are able to design and test
our algorithms on a high level as well as implement them
in a way that still reflects the elegant features of conformal
geometric algebra.

5. Conclusion

Algorithms based on conformal geometric algebra are geo-
metrically intuitive and easy to understand. But, often, better
structure and greater elegance comes at the prize of lower
run time performance. The approaches of this paper show
that we are now able to get algorithms that can even be much
faster than conventional ones. Because of their compactness
conformal geometric algebra algorithms are easy to imple-
ment and process in Maple and Gaigen 2.

The two approaches have different advantages: Based on
the Gaigen 2 approach we are able to implement our algo-
rithms in a way that still reflects the elegant features of con-
formal geometric algebra. Based on the Maple approach we
are able to implement them with the help of our standard
compilers without the need of additional libraries.

With these results, we are convinced that conformal ge-
ometric algebra will be able to become fruitful in a great
variety of applications in Computer Graphics.

References

[BB04] BAERLOCHER P., BOULIC R.: An inverse kine-
matics architecture enforcing an arbitrary number of strict
priority levels. The Visual Computer 20, 6 (2004), 402–
417.

[BCZE04] BAYRO-CORROCHANO E., ZAMORA-
ESQUIVEL J.: Inverse kinematics, fixation and grasping
using conformal geometric algebra. InIROS 2004,
September 2004, Sendai, Japan(2004).

[CLI05] The homepage of the package cliffordlib. HTML
document http://math.tntech.edu/rafal/cliff9/, 2005. Last
revised: September 17, 2005.

[HBCZE05] HILDENBRAND D., BAYRO-CORROCHANO

E., ZAMORA-ESQUIVEL J.: Advanced geometric ap-
proach for graphics and visual guided robot object manip-
ulation. Inproceedings of ICRA conference, Barcelona,
Spain(2005).

[HFPD04] HILDENBRAND D., FONTIJNE D., PERWASS

C., DORST L.: Tutorial geometric algebra and its appli-
cation to computer graphics. InEurographics conference
Grenoble(2004).

[Hil05] HILDENBRAND D.: Geometric computing in
computer graphics using conformal geometric algebra.
Computers & Graphics 29, 5 (2005), 802–810.

[MAP] The homepage of maple.
http://www.maplesoft.com/products/maple. 615 Kumpf
Drive, Waterloo, Ontario, Canada N2V 1K8.

[Per05] PERWASSC.: The CLU home page. HTML doc-
ument http://www.clucalc.info, 2005.

[PH04] PERWASSC., HILDENBRAND D.: Aspects of Ge-
ometric Algebra in Euclidean, Projective and Conformal
Space. Tech. rep., University of Kiel, 2004.

[RS05] ROSENHAHN B., SOMMER G.:. Journal of Math-
ematical Imaging and Vision 22(2005), 27–70.

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD

N. S.: Synthesizing physically realistic human motion in
low-dimensional, behavior-specific spaces.ACM Trans-
actions on Graphics 23, 3 (Aug. 2004), 514–521.

[SLGS01] SHIN H. J., LEE J., GLEICHER M., SHIN

S. Y.: Computer puppetry: An importance-based ap-
proach.ACM Transactions on Graphics 20, 2 (Apr. 2001),
67–94.

[ST03] SMINCHISESCU C., TRIGGS B.: Kinematic jump
processes for monocular 3d human tracking. In2003
Conference on Computer Vision and Pattern Recognition
(CVPR 2003)(June 2003), pp. 69–76.

[TGB00] TOLANI D., GOSWAMI A., BADLER N. I.:
Real-time inverse kinematics techniques for anthropo-
morphic limbs. Graphical Models 62, 5 (Sept. 2000),
353–388.

[Wan06] WANG Y.: Algorithm and performance of the
grasping movement of a human-arm-like chain based
on Conformal Geometric Algebra. Master’s thesis, TU
Darmstadt, 2006.

[WCL05] WAREHAM R., CAMERON J., LASENBY J.:
Applications of conformal geometric algebra in computer
vision and graphics.Lecture Notes in Computer Science
3519(June 2005), 329–349.

[ZGD] ZGDV: The Avalon home page. HTML document
http://www.zgdv.de/avalon/.

c© The Eurographics Association 2006.

