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Alyn Rockwood, Dietmar Hildenbrand

Abstract We illustrate the suitability of geometric algebra for representing struc-
tures and developing algorithms in computer graphics, especially for engineering
applications. A number of example applications are reviewed. Geometric algebra
unites many underpinning mathematical concepts in computer graphics such as vec-
tor algebra and vector fields, quaternions, kinematics and projective geometry, and
it easily deals with geometric objects, operations and transformations. Not only are
these properties important for computational engineering, but also for the computa-
tional point-of-view they provide. We also include the potential of geometric algebra
for optimizations and highly efficient implementations.

1 Introduction

Computer graphics relies heavily on geometric models and methods. Geometric al-
gebra is a mathematical framework to easily describe geometric concepts and op-
erations. It allows us to develop algorithms fast and in an intuitive way. Geometric
algebra is based on the work of Hermann Grassmann (see the conference [47] cel-
ebrating his 200th birthday in 2009) and William Clifford ([14], [15]). Pioneering
work has been done by David Hestenes, who first applied geometric algebra to prob-
lems in mechanics and physics [27] [25].
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2 Benefits of geometric algebra for computational engineering

We first highlight some of the properties of geometric algebra that make it advanta-
geous for graphics engineering applications.

2.1 Unification of mathematical systems

In the wide range of engineering applications many different mathematical systems
are currently used. One notable advantage of geometric algebra is that it subsumes
mathematical systems like vector algebra, complex analysis, quaternions, Plucker
coordinates and tensor analysis. Applications described in Section 3 will illustrate
this advantage.

2.2 Uniform handling of different geometric primitives

Conformal geometric algebra, the geometric algebra of conformal space we focus
on, is able to treat different geometric objects such as points, vectors, lines, circles,
spheres, and planes as the same entities algebraically. Consider the spheres of Fig. 1,

Fig. 1 Spheres and circles are basic entities of geometric algebra. Operations like the intersection
of two spheres are easily expressed.

for instance. These spheres are simply represented by

S = P− 1
2

r2e∞ (1)

based on their center point P, their radius r and the basis vector e∞ which represents
the point at infinity. The circle of intersection of the spheres is then easily computed
using the outer product to operate on the spheres as simply as if they were vectors.

Z = S1∧S2 (2)
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This way of computing with geometric algebra clearly benefits applications like
kinematics, pose estimation and other computer graphics applications as seen in
Section 3.

2.3 Simplified rigid body motion

Rigid body motions in geometric algebra can be described with one compact linear
expression, the so-called screw

S = im+ e∞n (3)

with the Euclidean pseudoscalar i = e1∧ e2∧ e3 includes both rotational and linear
parts described with the 3D vectors m and n (see [26]). The combinations of rota-
tional and linear velocities as well as of forces and torques are also described with
the help of one linear expression.

One result of this property is the improvement of Finite Element methods [9].

2.4 Curl, vorticity and rotation

The vector algebra concepts of curl, vorticity and rotation as expressed in geometric
algebra are defined in any dimension, whereas the cross-product in classical vector
algebra is restricted to three-dimensions. Thus geometric calculus enables vector
algebra applications to be considered in any dimensions [13].

2.5 More efficient implementations

Geometric algebra as a mathematical language often suggests a clearer structure and
greater elegance in understanding methods and formulae. This regularly results in
more efficiency and lower runtime performance for derived algorithms. In section
5 we present a dramatically improved optimization approach for kinematics. We
will see there that geometric algebra inherently has a large potential for creating
optimizations leading to more highly efficient implementations.
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3 Some applications

Computer graphics, and the related areas of robotics and computer vision are active
areas of research in geometric algebra. In this section we survey some of these
applications in more detail.

For about a decade, researchers at the University of Cambridge, UK have ap-
plied geometric algebra to a number of graphics related projects. They started with
ideas in computer vision.. Lasenby et al. and Perwass et al. present some applica-
tions dealing with structure and motion estimation as well as with the trifocal tensor
in the articles [32], [34] and [44, 45, 39]. Rigid-body pose and position interpola-
tion, mesh deformation and catadioptric cameras articles using geometric algebra
are presented by Cameron et al. [12] and Wareham et al. [54], [55]. Geomerics [1]
is a start-up company in Cambridge specializing in simulation software for physics
and lighting, which presented its new technology allowing real-time radiosity in
videogames utilizing commodity graphics processing hardware. The technology is
based on geometric algebra wavelet technology.

Dorst et al. at the University of Amsterdam, the Netherlands, are applying their
fundamental research on geometric algebra [16, 18, 20, 35, 36] mainly to 3D com-
puter vision. Zaharia et al. investigated modeling and visualization of 3D polygo-
nal mesh surfaces using geometric algebra [56]. Currently D. Fontijne is primarily
focusing on the efficient implementation of geometric algebra. He investigated the
performance and elegance of five models of 3D Euclidean geometry in a ray tracing,
an archetypical computer graphics application [24]. It summarized the investigation
by noting that 5D conformal space was the most elegant, but required appropriate
hardware to become the most efficient as current hardware supported the 4D affine
model. Along this line, research into hardware for geometric algebra continues. The
Amsterdam group developed a code generator for geometric algebras [23]. Also,
there is a book with applications of geometric algebra edited by Dorst et al. [17]. A
new book was published recently [19], which dedicates a major portion of the book
to the issue of geometric algebra calculation.

The first time geometric algebra was introduced to a wider Computer Graphics
audience, was through a couple of courses at the SIGGRAPH conferences 2000 and
2001 (see [37]).

Bayro-Corrochano et al. from Guadalajara, Mexico are primarily dealing with
the application of geometric algebra in the field of computer vision, robot vision
and kinematics. They are using geometric algebra for instance for tasks like visual
guided grasping, camera self-localization and reconstruction of shape and motion
[4]. Their methods for geometric neural computing are used for tasks like pattern
recognition ([21], [2]). Registration, the task of finding correspondences between
two point sets, is solved based on geometric algebra methods in [33]. Some of their
kinematics algorithms can be found in [5] for the 4D motor algebra and in the con-
formal geometric algebra papers [7, 8] dealing with inverse kinematics, fixation and
grasping as well as with kinematics and differential kinematics of binocular robot
heads. Books from Bayro-Corrochano et al. with geometric algebra applications are,
for instance, [3] and [6].
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At the University of Kiel, Germany, Sommer et al. are applying geometric alge-
bra to robot vision [52], e.g. Rosenhahn et al. concerning pose estimation [49, 50]
and Sommer et al. regarding the twist representation of free-form objects [53]. Per-
wass et al. are applying conformal geometric algebra to uncertain geometry with cir-
cles, spheres and conics [42], to geometry and kinematics with uncertain data [43]
or concerning the inversion camera model [46]. There is a book with applications
of geometric algebra edited by Sommer [51] and a new book about the application
of geometric algebra in engineering applications by Christian Perwass [41]. Sven
Buchholz together with Kanta Tachibana from the university of Nagoya and Eck-
hard Hitzer from the university of Fukui, Japan do some interesting research dealing
for instance with neural networks based on geometric algebra ( [11], [10]).

In addition to these examples there are many other applications like geometric
algebra fourier transforms for the visualization and analysis of vector fields [22] or
classification and clustering of spatial patterns with geometric algebra [48] showing
the wide area of possibilities of advantageously using this mathematical system in
engineering applications.

4 The geometric primitives in more detail

Table 1 List of the basic geometric primitives provided by the 5D conformal geometric algebra.
The bold characters represent 3D entities (x is a 3D point, n is a 3D normal vector and x2 is
the scalar product of the 3D vector x). The two additional basis vectors e0 and e∞ represent the
origin and infinity. Based on the outer product, circles and lines can be described as intersections
of two spheres, respectively two planes. The parameter r represents the radius of the sphere and
the parameter d the distance of the plane to the origin.

entity representation
Point P = x+ 1

2 x2e∞ + e0

Sphere s = P− 1
2 r2e∞

Plane π = n+de∞
Circle z = s1∧ s2
Line l = π1∧π2

Here, we look into some details of the basic geometric primitives of conformal
geometric algebra as introduced in section 2.2 and listed in table 1. We especially
look into the representations of spheres and planes and will see that planes are spe-
cific spheres with infinite radius. Increasing the radius of a sphere to infinity, the
resulting plane is described by

π = n+de∞ (4)

with n being the 3D unit normal vector of the plane, and d the distance of the plane
from the origin. This limit process can be used in order to fit the best suitable
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object into a set of points , whether it is a plane or a sphere. A locally estimated
sphere can be used in order to describe local curvature of point clouds [29] while an
estimation of a plane describes vanishing curvature.

4.1 Planes as a limit of spheres

Fig. 2 A sphere with a center point s (in the opposite direction of a normal vector n) going to
infinity (and always adapting its radius), at the end, results in a plane with normal vector n and
distance d to the origin.

Spheres and planes, both, are vectors in conformal geometric algebra. In this
section, we will see how a sphere

S = s+
1
2
(s2− r2)e∞ + e0 (5)

with Euclidean center point s and radius r degenerates to a plane as the result of a
limit process.
According to the construction of Fig. 2, the minimum distance from the origin to
the sphere, having its center in the opposite direction of a normal vector n, is

d = r−
√

s2 (6)

and the radius as the sum of the length of the 3D vector s and d

r =
√

s2 +d (7)

or
r2 = s2 +2d

√
s2 +d2. (8)
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Now, the sphere can be written as

S = s+
1
2
(s2− s2−2d

√
s2−d2)e∞ + e0 (9)

or equivalently

S = s+
1
2
(−2d

√
s2−d2)e∞ + e0. (10)

Now, we introduce S′ as a scaled version of the algebraic expression of sphere S
representing geometrically the same sphere as

S′ =− S√
s2

=− s√
s2

+
1
2
(2d +

d2
√

s2
)e∞− e0√

s2
. (11)

Since the ratio of the 3D vector s and its length
√

s2 corresponds to the negative
normal vector n (see the construction in figure 2)

lim
s2→∞

− S√
s2

= n+ lim
s2→∞

1
2
(2d +

d2
√

s2
)e∞− lim

s2→∞

e0√
s2.

(12)

This is equivalent to

lim
s2→∞

− S√
s2

= n+de∞ (13)

which is a representation of a plane with normal vector n and distance d to the
origin.

4.2 Distances based on the inner product

Points, planes and spheres are represented as vectors (as listed in table 1). We will
see that the inner products of these vectors describe distances between these geo-
metric objects. The inner product between a vector P and a vector S is defined by

P ·S = (p+ p4e∞ + p5eo) · (s+ s4e∞ + s5eo) (14)

This corresponds to
P ·S = p · s+ s4 p · e∞︸ ︷︷ ︸

0

+s5 p · eo︸︷︷︸
0

+p4 e∞ · s︸︷︷︸
0

+p4s4 e2
∞︸︷︷︸
0

+p4s5 e∞ · eo︸ ︷︷ ︸
−1

+p5 eo · s︸︷︷︸
0

+p5s4 eo · e∞︸ ︷︷ ︸
−1

+p5s5 e2
o︸︷︷︸

0

and based on the rules of conformal geometric algebra to
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P ·S = p · s− p5s4− p4s5 (15)

or
P ·S = p1s1 + p2s2 + p3s3− p5s4− p4s5 (16)

4.2.1 Distances between points

In the case of P and S being points we get

p4 =
1
2

p2, p5 = 1

s4 =
1
2

s2, s5 = 1

The inner product of these points is according to equation (15)

P ·S = p · s− 1
2

s2− 1
2

p2

= p1s1 + p2s2 + p3s3− 1
2
(s2

1 + s2
2 + s2

3)−
1
2
(p2

1 + p2
2 + p2

3)

=−1
2
(s2

1 + s2
2 + s2

3 + p2
1 + p2

2 + p2
3−2p1s1−2p2s2−2p3s3)

=−1
2
((s1− p1)2 +(s2− p2)2 +(s3− p3)2)

=−1
2
(s−p)2

We recognize that the square of the Euclidean distance of the inhomogenous points
corresponds to the inner product of the homogenous points multiplied by −2.

(s−p)2 =−2(P ·S) (17)

4.2.2 Distance between points and planes

For a vector P representing a point we get

p4 =
1
2

p2, p5 = 1

For a vector S representing a plane with normal vector n and distance d we get

s = n, s4 = d, s5 = 0
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The inner product of point and plane is according to equation (15)

P ·S = p ·n−d (18)

representing the Euclidean distance of a point and a plane.

4.2.3 Distance between point and sphere

We will see now that the inner product of a point and a sphere can be used as a
measure of distance between a point and a sphere even if it does not correspond to
the minimal Euclidean distance between them.

For a vector P representing a point we get

p4 =
1
2

p2, p5 = 1

For a vector S representing a sphere we get

s4 =
1
2
(s2

1 + s2
2 + s2

3− r2), s5 = 1

The inner product of point and sphere is according to equation (15)

P ·S = p · s− 1
2
(s2− r2)− 1

2
p2

= p · s− 1
2

s2 +
1
2

r2− 1
2

p2

=
1
2

r2− 1
2
(s2−2p · s−p2)

=
1
2

r2− 1
2
(s−p)2

Finally, we get
2(P ·S) = r2− (s−p)2 (19)

Twice the inner product P ·S equals to the square of the radius minus the square
of the distance between the point p and the center point s of the sphere. Figure 3
describes this relation geometrically. Equation 19 can be rearranged to

(s−p)2 = r2−2(P ·S) (20)

describing the relations of the right angle triangle in the case a) with the point p
being outside of the sphere, while the equation

r2 = 2(P ·S)+(s−p)2 (21)



10 Alyn Rockwood, Dietmar Hildenbrand

Fig. 3 The inner product of point and sphere [19], the bold segments describe the square root of
the inner product depending on a) (s−p)2 = r2−2(P ·S), the point p lies outside of the sphere
b) r2 = 2(P ·S)+(s−p)2, the point p lies inside of the sphere

describes the relations of the right angle triangle in the case b) with the point p being
inside of the sphere.

Please notice that, based on these observations, we can see that

P ·S > 0 : p is inside of the sphere
P ·S = 0 : p is on the sphere
P ·S < 0 : p is outside of the sphere

4.3 Approximation of points with the help of planes or spheres

In this section, a point set pi ∈ R3, i ∈ {1, ...,n} will be approximated with the
help of the best fitting plane or sphere. Please find also an approach for the fitting of
circles into point sets in [42].

Plane and sphere in conformal space are vectors of the form

S = s1e1 + s2e2 + s3e3 + s4e∞ + s5e0 (22)

while the points are specific vectors of the form

Pi = pi +
1
2

pi
2e∞ + e0 (23)

In order to solve the approximation problem we

• use the distance measure of the previous section between point and sphere/plane
with the help of the inner product.
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• make a least squares approach to minimize the squares of the distances between
the points and the sphere/plane.

• solve the resulting eigenvalue problem.

4.3.1 Distance measure

From section 4.2.3 we already know that a distance measure between a point Pi and
the sphere/plane S can be defined with the help of their inner product

Pi ·S = (pi +
1
2

pi
2e∞ + e0) · (s+ s4e∞ + s5e0) (24)

According to equation 15, this results in

Pi ·S = pi · s− s4− 1
2

s5pi
2

or equivalently

Pi ·S =
5

∑
j=1

wi, js j (25)

with

wi,k =





pi,k : k ∈ {1,2,3}
−1 : k = 4
− 1

2 pi
2 : k = 5

4.3.2 Least squares approach

In the least-squares sense we consider the minimum of the sum of the squares of the
distances (in terms of the inner product) between all the points and the plane/sphere

min
n

∑
i=1

(Pi ·S)2 (26)

In order to obtain the minimum this can be rewritten in bilinear form to

min(sT Bs) (27)

with
sT = (s1,s2,s3,s4,s5)

and the 5x5 matrix
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B =




b1,1 b1,2 b1,3 b1,4 b1,5
b2,1 b2,2 b2,3 b2,4 b2,5
b3,1 b3,2 b3,3 b3,4 b3,5
b4,1 b4,2 b4,3 b4,4 b4,5
b5,1 b5,2 b5,3 b5,4 b5,5




with entries

b j,k =
n

∑
i=1

wi, jwi,k

The matrix B is symmetric since b j,k = bk, j. We consider only normalized results
sT s = 1. A conventional approach to such a constrained optimization problem is to
introduce

L = sT Bs−0 = sT Bs−λ (sT s−1),

sT s = 1,

BT = B

Necessary conditions for a minimum are

0 = ∇L = 2 · (Bs−λ s) = 0

→ Bs = λ s

The solution of the minimization problem is given as the eigenvector of B that cor-
responds to the smallest eigenvalue.

The figures 4 and 5 discuss two properties of the distance measure of this ap-
proach dealing with the double squaring of the distance as well as with the limit
process of the distance in the case of a plane as a sphere with infinite radius

Fig. 4 The inner product of point and sphere on one hand describes already the square of a distance,
but on the other hand has to be squared again in the least squares sense since the inner product can
be positive or negative depending on a) the point p lies outside of the sphere b) the point p lies
inside of the sphere
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Fig. 5 The constraint sT s = 1 leads implicitly to a scaling of the distance measure in order that it
gets smaller with increasing radius, leading to a plane as a sphere with infinite radius

4.3.3 Example

Fig. 6 Fitting a sphere into a set of 5 points

Three distinct (not co-linear) points are needed to describe a plane while four
distinct (not co-planar) points exactly describe a sphere. In this example we use five
points in order to demonstrate that our approach is really able to fit the best fitting
objects, whether it is a sphere or a plane. First, let us have a look on an example
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with the following five points with four of them being co-planar:

Point x y z
p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 -1 0 1

The least squares calculation results in

S =−0.301511e1 +0.301511e2−0.301511e3

−0.603023e∞ +0.603023e0

Another scaled representation describing the same object is

S =−1
2

e1 +
1
2

e2− 1
2

e3− e∞ + e0

This corresponds to a sphere with the center point s = (0.5,0.5,−0.5) and the square
of the radius r2 = 2.75 (see figure 6). Let us now change the fifth point in order that

Fig. 7 Fitting a plane into a set of 5 points

all the points are within one plane.
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Point x y z
p1 1 0 0
p2 1 1 0
p3 0 0 1
p4 0 1 1
p5 -1 0 2

Now, the result is

S = 0.57735e1 +0.57735e3 +0.57735e∞

representing a plane according to figure 7.

5 Computational efficiency of geometric algebra using Gaalop

Since many of the applications depend on an appropriate calculation platform for
geometric algebra, it is worth investigating one approach in some detail. Gaalop
([30],[31]) uses a two-stage approach for the automatic optimization of geometric
algebra algorithms. In a first step they optimize geometric algebra algorithms with
the help of symbolic computing. This kind of optimization results in very basic algo-
rithms leading to high efficient software implementations. These algorithms, foster
a high degree of parallelization which are then used for hardware optimizations in a
second step.

They investigated performance issues with an inverse kinematics algorithm.
Naively implemented, the first algorithm was slower than the conventional one.
However, with the symbolic computation optimization approach the software im-
plementation became three times faster [28] and with a hardware implementation
about 300 times faster [30] (3 times by software optimization and 100 times by
additional hardware optimization) than the conventional software implementation.
This result served as a proof-of-concept for Gaalop [31].

Figure 8 shows an overview over the architecture of Gaalop. Its input is a ge-
ometric algebra algorithm written in CLUCalc (see [40]). Via symbolic simplifi-
cation it is transformed into a generic intermediate representation (IR) that can be
used for the generation of different output formats. Gaalop supports sequential plat-
forms with the automatic generation of C and JAVA code while its main focus is
on supporting parallel platforms like reconfigurable hardware as well as modern ac-
celerating GPUs. FPGAs (field programmable gate arrays) are currently supported
as a structural hardware description, written in the Verilog language. Thanks to the
lower prices of powerful GPUs for instance based on the CUDA technology [38]
from NVIDIA or on the future Larrarbee technology of INTEL, one can expect
impressive results using the powerful language of geometric algebra .

One focus of Gaalop will lie on mixed solutions handling reasonable combina-
tions of software and hardware implementations.
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Fig. 8 Architecture of Gaalop

6 Conclusion

In this paper, we observed some properties of geometric algebra that have already
proven helpful in computer graphics engineering applications. With these proper-
ties, together with the potential of being the base for highly efficient implementa-
tions using tools like Gaalop, we are convinced that geometric algebra will become
more and more fruitful in a great variety of computational engineering applications.
As a consequence, it is worth noting the benefits for students, researchers and prac-
titioners with geometric algebra. From the educational point of view, students do not
have to learn the different mathematical systems and the translations between them,
rather they learn one global mathematical system. Researchers gain new insights
into their research area using geometric algebra. Practitioners in the field of compu-
tational engineering benefit from the easy development, testing and maintenance of
algorithms based on geometric algebra.
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