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1,2,3,4University of Technology Darmstadt, Germany

1,3Faculty of Interactive Graphics Systems Group
dietmar.hildenbrand@gris.informatik.tu-darmstadt.de

2Faculty of Interactive Graphics Systems Group
thomas.kalbe@gris.informatik.tu-darmstadt.de

4Department for Numerical Methods in Mechanical Engineering
schaefer@fnb.tu−darmstadt.de

Abstract. In this paper we present how Geometric Algebra can be used
for deformation simulations. The aim is to capture the elastic behavior of
simple components like rods. First we will review some other works in this
field. Later we present an extended Finite Element Method, which has recently
been developed and investigated. Our goal is a proof of concept that Geometric
Algebra is able to improve Finite Element Methods. All algorithms presented
in this paper work in real-time.

1 Introduction

Geometric Algebra (GA) is a mathematical framework to easily describe geo-
metric aspects. It allows us to develop algorithms fast and in an intuitive way.
It unifies many other mathematical concepts like quaternions and dual quater-
nions and is appropriate to model solutions for many different disciplines. GA
is based on the work of Hermann Grassmann and William Clifford. Pioneering
work has been done by David Hestenes, who firstly applied GA to problems
in mechanics and physics. Rigid body motions can be described with the help
of one linear expression, called screw, including both the rotational and the
linear part. In the same way velocities and forces are represented. The com-
binations of rotational and linear velocities as well as of forces and torques
are also described with the help of one linear expression including both the
rotational and the linear parts.
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2 Related Work

GA is used in different fields, e.g. physics, simulation and engineering. As a
consequence, various introductions, intended for readers with different back-
grounds exist. In computer graphics there are [3] [7], for example. The con-
formal model is emphasized there, which has useful attributes, as we will see
in the following section. David Hestenes is one of the first, who applied GA
for calculations of deformable objects. Based on his theoretical work [6], a
simulation of an elastic coupling between rigid bodies has been developed [8].
A numeric solver using expressions in GA has been presented, which we have
used in our approach as well. It is a generic tool and can be used for solving
equations of motions of various kinds. The method is called Iterated Com-
mutators [8] [2] and operates with compact terms in GA, representing the
needed physical entities. This allows us to process linear and rotational mo-
tions at once without splitting them up into two separated expressions. This
simplifies the implementation of the solver. The different cases, where only a
translational movement or only a rotational movement are considered, do not
need to be treated separately. So, only one uniform term has to be integrated.
In our modified Finite Element Method (FEM), the location of the element
vertices are given by screws. These screw displacements allow us to manip-
ulate the position and orientation of the body in an easy and intuitive way.
We can define an arbitrary axis in space and rotate the vertices, respectively
the body around it. There is no need of an external application of transfor-
mations, for example with matrices. Velocities of the nodes are expressed by
so-called twists. Forces and torques can be applied to the nodes by so-called
wrenches. In our simulation we numerically integrate these entities with the
already mentioned solver. We obtain the equations of motion from physical
laws, which we discretized with the FEM. We use a simplified version of the
FEM [4], that can be used in interactive real-time simulations. This type is
based on the standard FEM [9], which is rather used in different engineer-
ing fields and often only works offline. Distances and intersections between
objects can also easily be calculated with the products of GA, no matter
how the objects are oriented in space. This improves the implementation of
collision detection and collision response.

3 Introduction to conformal Geometric Algebra

Conformal GA uses five base vectors e1, e2, e3, e0, e∞. The first three vectors
represent the three spatial directions, e0 is an additional vector for the origin,
e∞ is an additional vector for the point at infinity. So, in conformal GA we
do not have to treat these two special points separately. The algebra contains
three products. The outer product is a grade increasing operation, which spans
the blades and is also used for intersection calculations. The inner product is
a grade decreasing operation and is used for distance and angle measures. The
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geometric product is a combination of outer and inner product and is mainly
used to apply transformations.

3.1 Blades

The basic elements of this algebra are the so-called blades. These blades are
spanned by the basis vectors described above with the help of the outer prod-
uct. A 2-blade or bivector is an oriented area element spanned by two vectors,
a 3-blade or trivector is an oriented volume element and so on. The highest
grade of blades in conformal GA is a 5-blade or pseudoscalar. In total there
are 32 unique vector combinations and therefore 32 basic blades.

3.2 Multivectors

The general elements of GA are multivectors. They are combinations of blades
and generated by the geometric product. They have a geometric meaning and
can be represented in two ways: the IPNS (inner product null space) or OPNS
(outer product null space) representation, which are dual to each other.

3.3 Geometric Objects

Conformal GA contains some basic geometric objects. The user can create
and work with them in an intuitive way and also can apply transformations
directly to them.

Table 1. The basic geometric objects of conformal Geometric Algebra.

Object IPNS OPNS

Point P = x + 1

2
x

2e∞ + e0

Sphere S = P −
1

2
r2e∞ S∗ = x1 ∧ x2 ∧ x3 ∧ x4

Plane π = n + de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞

Circle Z = s1 ∧ s2 Z∗ = x1 ∧ x2 ∧ x3

Line L = π1 ∧ π2 L∗ = x1 ∧ x2 ∧ e∞

Point Pair Pp = s1 ∧ s2 ∧ s3 Pp∗ = x1 ∧ x2

3.4 Transformations

A transformation V can be applied to an object with the help of the geometric
product in the following way.

Object′ = V Object Ṽ (1)
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The translator T translates an object along a specific vector t.

T = 1 −
te∞

2
(2)

The rotor R rotates an object around an arbitrary axis l in space by a certain
angle φ.

R = cos
φ

2
+ l sin

φ

2
(3)

The motor (or screw) M is a combination of a rotor and translator. M rotates
an object around an arbitrary axis in space by a certain angle and translates
it along this axis at the same time.

M = R T (4)

3.5 Physical Entities

The screw can be seen as a transformation, that displaces points in space. So,
it can be used to represent a location in space instead of a position vector.
This location is additionally equipped with an implicit orientation informa-
tion because of the rotational component of the screw. This is the reason why
screws are very useful for rigid body applications, because they can determine
compactly all needed information for describing the body’s state. A conven-
tional definition of a screw is based on Plücker coordinates. A line described
with these coordinates is extended by a ratio h between a translation along
and a rotation around it. A screw can be expressed in this conventional form
by a 6x1 vector [8]:

S =

(
ŝT

b × ŝ + hŝ

)
(5)

In conformal GA a screw can be expressed by a bivector, which we have al-
ready seen in equation (4).

The twist determines the velocity of a screw motion. It extends a screw in
conventional representation by a scalar ω, which is the ratio between radians
and time. A twist can be defined by a 6x1 vector [8]:

T =

(
ωŝ

ω(b × ŝ + hŝ)

)
(6)

In conformal GA a twist can be expressed by a bivector:

T = −(iω + e∞v) (7)

Now ω represents the rotational velocity vector and vector v denotes the lin-
ear velocity.
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The wrench combines the force and torque acting on a body in one term.
It is simply expressed by a 6x1 vector:

W =

(
τ

f

)
(8)

In conformal GA a wrench can be written in bivector form:

W = iτ + e0f (9)

In both forms the vector τ is the torque vector and f is the force vector.

4 Modified Finite Element Approach

In our approach [2] we use a real-time version of the FEM. Those algorithms
have a wide range of application and can be used in interactive simulations,
game engines or medical training devices. The FEM divides a body into dis-
crete elements, for example tetrahedra or cubes. For each element the stiffness
matrix Ke is determined. After that the global stiffness matrix K can be as-
sembled out of the single Ke and the arrangement of the elements. In the
real-time FEM this only has to be done once before the simulation starts.
The elastic forces are then calculated with f = K · ∆x, where ∆x denote
the displacements of the elements’ vertices. Concepts of conformal GA have
been used for position, velocity and force. So, the position of a vertex is de-
fined by a screw, the velocity by a twist and the force acting at the vertex
by a wrench. Then equations of motions for each vertex can be solved by the
Iterated Commutators scheme, which works with these GA expressions.

4.1 Time Integration with Iterated Commutators

The Iterated Commutators solver [8] [2] is capable to process linear and rota-
tional expressions in one term. It uses the screw representation of positions.
The velocity represented in the body frame is given by a twist. Calculating
the acceleration V̇ (t) depends on the type of solver being used. The Iterated
Commutators scheme is defined as follows:

T (t + ∆t) = T (t) + V̇ (t) ∆t (10)

S(t + ∆t) = S(t) e
1

2
T (t) ∆t (11)

The acceleration V̇ is also given in form of a twist. Using an implicit scheme,
V̇ depends on the solution of a linear equation system. In an explicit scheme
V̇ can be calculated by the following equation:

V̇ = M−1
· Wvec (12)
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Note, that the wrench is given in the conventional 6x1 vector form (cp. equa-
tion (12)). The resulting twist describes the acceleration with reference to the
body frame. The 6x6 Matrix M is denoted as generalized mass matrix. If it
is defined in the body’s center of mass, it has a diagonal shape and can be
written as follows:

M =

(
I 0

0 m1

)
(13)

The 3x3 submatrix I is the inertia tensor of the body. It describes the distri-
bution of mass inside the body and determines its behavior under rotations.
The scalar m denotes the mass of the body and is multiplied with the 3x3
identity matrix 1. It is easy to calculate the inversion M−1 because of the
diagonal shape of M . Simply the scalar values on the diagonal have to be
replaced by their reciprocals.

M−1 =

(
I−1 0

0 1
m

1

)
(14)

The equation (12) can now be written as:

V̇ =

(
I−1 0

0 1
m

1

)
·

(
τ

f

)
(15)

The first three lines of this linear equation system determine the rotational
dynamic behavior and the last three lines determine the linear dynamic be-
havior. In our FEM simulation all bodies are simple mass points (the vertices
of the elements). Thus we do not have a mass distribution and can use the
identity matrix as M . In a rigid body application we have to adapt M to
the properties of the body, of course. A slight improvement of the Iterated
Commutator scheme (equations (10), (11)) is given in the next formulas. An
additional Verlet step has been inserted to obtain a better accuracy.

T (t +
1

2
∆t) = T (t) +

1

2
V̇ (t) ∆t (16)

S(t + ∆t) = S(t) e
1

2
T (t+ 1

2
∆t) ∆t (17)

T (t + ∆t) = T (t +
1

2
∆t) +

1

2
V̇ (t + ∆t) ∆t (18)

4.2 Collision Detection

Conformal GA can also support the collision detection of objects. A collision
between two objects can be detected very simply. The inner product of two
objects of conformal GA results in the distance between them. Consider a
plane π representing the rigid ground. A deformable body can collide with
this plane because of gravity. The distance d between all vertices i of the
body and the ground π can be calculated by the next equation:
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d = π . (Si e0 S̃i) (19)

Generally, we cannot prevent a point from penetrating the ground because
of the inaccuracy of the numeric time integration method. So, one has to
define a threshold, that determines whether a point is colliding with the plane
or not. The smaller the time step ∆t of the numeric solver the less deep
the penetration of the particle in the ground will be. The advantage of the
GA approach is, that the calculations are very compact and independent of
the position and orientation of the colliding objects. Other types of objects
(cp. table 1) can be taken without or only with slight changes of equation
(19). Collisions between more complex objects can be efficiently modeled with
bounding sphere hierarchies. Operators for intersection determination and
distance measurements are already embedded in conformal GA. If a collision
has been detected, it must trigger an event to simulate the impact. A very
simple collision handling between a fixed rigid ground and a deformable body
can be done in the following way. The method keeps waiting until a particle
of the deformable body penetrates the ground due to numeric reasons. If the
particle is inside the ground, a force acts on it. The direction of the force is
the same as the direction of the ground’s surface normal n. Its magnitude
depends on the distance ǫ between the point and the surface. The factor k

can be seen as the hardness of the ground.

fcoll = nǫ · k (20)

5 Conclusion and Discussion

In the future, GA will more and more improve algorithms and geometric
calculations. At the first view, GA algorithms often tend to be slower than
conventional algorithms. Without optimizations this is usually true. One have
to take into account, that there is no hardware support for calculations in GA.
For example, matrix computations in computer graphics are highly supported
by the hardware. Recently much effort has been put into optimizing expres-
sions of conformal GA. For our simulation source files we used a software
named Gaalop to convert expressions in GA into optimized C code. A main
drawback of our simulation is the unrealistic behavior of the body under large
bendings. The body unnaturally gains volume due to the usage of the real-
time FEM. There the Cauchy strain tensor is being used, which allows us to
calculate the stiffness matrix K only once, at startup. Unfortunately, this ten-
sor is not invariant up to rotations, which leads to this incorrect behavior. A
technique called stiffness warping successfully overcomes this problem. There
is even a GA implementation of this method [5], which would be interesting to
compare with conventional algorithms in terms of accuracy and performance.
At last we want to review the main benefits of our approach.
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5.1 Benefits

Applying rotations. The locations of the vertices of the elastic body are deter-
mined by conformal screws. These screw displacements allow us to manipu-
late the position and orientation of the body in an easy and intuitive way. We
can define an arbitrary axis in space and rotate the vertices, respectively the
body around it. Also a rotation around the coordinate axes can be performed.
There is no need of an external application of transformations, for example
with matrices.

Time integration. The numerical time integration is done by the Iterated
Commutators solver. This solver is directly applicable to expressions in con-
formal GA. This allows us to process linear and rotational motions at once
without splitting them up into two separated expressions. This simplifies the
implementation of the solver. The different cases, where only a translational
movement or only a rotational movement are considered, do not need to be
treated separately. So, only one uniform term has to be integrated.

Collision detection. The collision detection and collision response are a big
issue since the beginning of interactive computer graphics. GA can improve
the simplification of some aspects of collision detection. The main advantage
is the easy distance measure between objects. It is completely independent
from the position and orientation of the objects and works almost identical
for various types of objects. Recently GA has find one’s way into commercial
products in this field. The company Geomerics [1] uses GA successfully for
collision detection as well as dynamic light calculations.
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