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Abstract This work reviews some current engineering applications of geometric
algebra and observes the potential of this mathematical language to become
a basis for a wide range of computational engineering applications. Geomet-
ric algebra unifies many other mathematical concepts like quaternions and
projective geometry and is able to easily deal with geometric objects, oper-
ations and transformations. For computational engineering, not only these
nice properties are important, but also the computational point-of-view. We
describe the big potential of geometric algebra for optimizations leading to
highly efficient implementations.

1 Introduction

Geometric algebra is a mathematical framework to easily describe geometric
aspects. It allows us to develop algorithms fast and in an intuitive way. Ge-
ometric algebra is based on the work of Hermann Grassmann and William
Clifford ([12], [13]). Pioneering work has been done by David Hestenes, who
firstly applied geometric algebra to problems in mechanics and physics [23]
[22].

2 Benefits of geometric algebra for computational
engineering

Here, we highlight some properties of geometric algebra making it very helpful
for computational engineering applications.

2.1 Unification of mathematical systems

In the wide range of engineering applications a lot of different mathematical
systems are used. One big advantage of geometric algebra is, that it is able
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to cover a lot of other mathematical systems like vector algebra, imaginary
numbers, quaternions, Plucker coordinates or dual quaternions. Some of the
applications described in section 3 are using this property very advantageously.

2.2 Easy handling of geometric objects

Geometric algebra is able to easily treat geometric objects like spheres, circles
and planes as well as geometric operations between them. The spheres of Fig.

Fig. 1. Spheres and circles are basic entities of geometric algebra. Geometric oper-
ations like the intersection of two spheres can be expressed very easy.

1 for instance are simply represented by the algebraic object

S = P − 1
2
r2e∞ (1)

based on their center point P, their radius r and the basis vector e∞ repre-
senting the point at infinity. Their intersecting circle can be computed easily
with the help of the outer product as a basic algebraic operation

Z = S1 ∧ S2 (2)

This way of computing with geometric algebra can be advantageously used
in application areas like robotics, computer vision and computer graphics as
presented in section 3.

2.3 Easy handling of rigid body motion

Rigid body motions can be described with the help of one compact linear
expression, called screw, including both the rotational and the linear part. In
the same way velocities and forces are represented. The combinations of rota-
tional and linear velocities as well as of forces and torques are also described
with the help of one linear expression including both the rotational and the
linear parts. One application of this property is the improvement of Finite
Element methods by geometric algebra [7].
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2.4 Easy handling of curl, vorticity and rotation

Addressing the curl, vorticity and rotation, geometric algebra offers some
advantages over ”classical” vector algebra. For instance, the outer product
allows for the curl to be defined in any dimension, where the cross-product
is only defined for three-dimensional vectors. This kind of properties based
on geometric algebra calculus opens the door for applications e.g. for fluid
dynamics [11].

2.5 Potential for very efficient implementations

Geometric algebra is a very powerful tool to solve engineering problems. But,
often a clear structure and greater elegance results in lower runtime perfor-
mance. In section 4 we will present our optimization approach. We will see
there that geometric algebra inherently has a big potential for optimizations
leading to highly efficient implementations.

3 Current applications

The research and application focus of geometric algebra in the engineering
area currently is on computer graphics, robotics and computer vision. This is
why we describe these applications in some more detail.

Since about one decade, many researchers at the University of Cambridge,
UK have shown that applying geometric algebra in their field of research
is very advantageous. They started with projects more related to computer
vision. In the meantime the Cambridge engineering department as well as
a company with university background are dealing with typical computer
graphics applications like mesh deformation and lighting. Lasenby et al. and
Perwass et al. present some applications dealing with structure and motion
estimation as well as with the trifocal tensor in the articles [27], [28] and [37,
38, 36]. Some computer graphics articles using geometric algebra are presented
by Cameron et al. [10] and Wareham et al. [46], [47]. They use geometric
algebra for applications like rigid-body pose and position interpolation, mesh
deformation and catadioptric cameras. Geomerics [1] is a start-up company in
Cambridge specializing in simulation software for physics and lighting which
just presented its new technology allowing real-time radiosity in videogames
utilizing commodity graphics processing hardware. The technology is based
on geometric algebra wavelet technology.

Dorst et al. at the University of Amsterdam, the Netherlands, are apply-
ing their fundamental research on geometric algebra [18, 15, 17, 29, 30] to
computer graphics. Zaharia et al. investigated modeling and visualization of
3D polygonal mesh surfaces using geometric algebra [48]. Currently D. Fonti-
jne is primarily focusing on the efficient implementation of geometric algebra.
He investigated the performance and elegance of five models of 3D Euclidean
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geometry in a ray tracing application [21] and developed a code generator
for geometric algebras [20]. There is a book with applications of geometric
algebra edited by Dorst et al. [14]. A new book was published recently [16].

The first time geometric algebra was introduced to a wider Computer
Graphics audience, was probably at the SIGGRAPH conferences 2000 and
2001 (see [31]).

Bayro-Corrochano et al. from Guadalajara, Mexico are primarily dealing
with the application of geometric algebra in the field of robotics and computer
vision. Some of their kinematics algorithms can be found in [3] for the 4D mo-
tor algebra and in the Conformal geometric algebra papers [5, 6] dealing with
inverse kinematics, fixation and grasping as well as with kinematics and dif-
ferential kinematics of binocular robot heads. Books from Bayro-Corrochano
et al. with geometric algebra applications are for instance [2] and [4].

At the University of Kiel, Germany, Sommer et al. are applying geometric
algebra to robot vision [44], e.g. Rosenhahn et al. concerning pose estima-
tion [41, 42] and Sommer et al. regarding the twist representation of free-
form objects [45]. Perwass et al. are applying conformal geometric algebra
to uncertain geometry with circles, spheres and conics [33], to geometry and
kinematics with uncertain data [34] or concerning the inversion camera model
[35]. There is a book with applications of geometric algebra edited by Sommer
[43] and a new book about the application of geometric algebra in engineering
applications by Christian Perwass [39]. Sven Buchholz together with Kanta
Tachibana from the university of Nagoya and Eckhard Hitzer from the uni-
versity of Fukui, Japan do some interesting research dealing for instance with
neural networks based on geometric algebra ( [9], [8]).

In addition to these examples there are a lot of other applications like
geometric algebra fourier transform for the visualization and analysis of vector
fields [19] or classification and clustering of spatial patterns with geometric
algebra [40] showing the wide area of possibilities of advantageously using this
mathematical system in engineering applications.

4 Computational efficiency of geometric algebra
algorithms with the help of Gaalop

Gaalop uses a two-stage approach for the automatic optimization of geometric
algebra algorithms. In a first step we optimize our geometric algebra algorithm
with the help of symbolic computing. This kind of optimization results in very
basic algorithms leading to high efficient software implementations. These al-
gorithms which are in a first step optimized have an inherent high potential
of parallelization which can be used very advantageously for hardware opti-
mizations in a second step.

We investigated these performance issues especially with an inverse kine-
matics algorithm. Naively implemented, our first algorithm was slower than
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the conventional one. But, with our symbolic computation optimization ap-
proach the software implementation became three times faster [24] and a
hardware implementation about 300 times faster [25] (3 times by software
optimization and 100 times by additional hardware optimization) than the
conventional software implementation. This result served us as a proof-of-
concept for Gaalop [26].

Figure 2 shows an overview over the architecture of Gaalop. Its input is a
geometric algebra algorithm. Via symbolic simplification it is transformed into
a generic intermediate representation (IR) that can be used for the generation
of different output formats such as C-code, FPGA descriptions (as a structural
hardware description, currently written in the Verilog language), CLUCalc-
code in order to visualize the results (see [32]).

Fig. 2. Architecture of Gaalop

Gaalop is currently able to handle sequential geometric algebra algorithms.
It optimizes parts of the algorithm that are explicitly indicated. The algorithm
is currently transformed into C-code as well as CLUCalc-code. Please find
always the newest information on the Gaalop homepage ([26]).

In the future we will be able to handle not only sequential algorithms but
also more advanced program structures. One focus will lie on the automatic
compilation of hardware descriptions as well as on mixed solutions handling
reasonable combinations of software and hardware implementations.

From the runtime performance point-of-view, Gaalop is just able to au-
tomatically generate software implementations comparable to the software
implementation of our proof-of-concept application ([25]). In this application
we are three times faster than the conventional algorithm (see [24]). In the
future, we expect an additional speedup of more than 100 times based on the
automatic generation of hardware implementations as described in [25].

5 Conclusion

In this paper, we highlight some properties of geometric algebra that are al-
ready very helpful in a lot of presented engineering applications. With these
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properties together with the potential of being the base for highly efficient
implementations using tools like Gaalop we are convinced that geometric al-
gebra will become more and more fruitful in a great variety of computational
engineering applications.

As a consequence, what are the benefits for students, researchers and prac-
titioners with geometric algebra? From the educational point of view, students
do not have to learn different mathematical systems and the translations be-
tween them, but one global mathematical system. Researchers can get new
insights into their research area using this global system. Practitioners in the
field of computational engineering can benefit from the easy development, test
and maintenance of algorithms based on geometric algebra.
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