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1 Geometric Algebra Computing

Fig. 1 Spheres and lines are basic entities of geometric algebra to compute with. Operations like

the intersection of them are easily expressed with the help of their outer product. The result of the

intersection of a ray and a (bounding) sphere is another geometric entity, the point pair of the two

points of the line intersecting the sphere. The sign of the square of the point pair easily indicates

whether there is a real intersection or not.

Geometric algebra as a general mathematical system unites many mathematical

concepts such as vector algebra, quaternions, Plücker coordinates and projective

geometry, and it easily deals with geometric objects, operations and transformations.

A lot of applications in computer graphics, computer vision and other engineering

areas can benefit from these properties. In a ray tracing application, for instance, the

intersection of a ray and a bounding sphere is needed. According to Figure 1, this

can be easily expressed with the help of the outer product of these two geometric

entities.

Geometric algebra is based on the work of Hermann Grassmann (see the con-

ference [21] celebrating his 200th birthday in 2009) and William Clifford ([5], [6]).

Pioneering work has been done by David Hestenes, who first applied geometric

algebra to problems in mechanics and physics [13] [12].

The first time geometric algebra was introduced to a wider Computer Graphics

audience, was through a couple of courses at the SIGGRAPH conferences 2000

and 2001 (see [18]) and later at the Eurographics [14]. Researchers at the Univer-

sity of Cambridge, UK have applied geometric algebra to a number of graphics

related projects. Geomerics [1] is a start-up company in Cambridge specializing in

simulation software for physics and lighting, which presented its new technology al-

lowing real-time radiosity in videogames utilizing commodity graphics processing

hardware. The technology is based on geometric algebra wavelet technology. Re-

searchers at the University of Amsterdam, the Netherlands, are applying their fun-

damental research on geometric algebra to 3D computer vision, to ray tracing and

on the efficient software implementation of geometric algebra. Researchers from

Guadalajara, Mexico are primarily dealing with the application of geometric alge-

bra in the field of computer vision, robot vision and kinematics. They are using

geometric algebra for instance for tasks like visual guided grasping, camera self-

localization and reconstruction of shape and motion. Their methods for geometric
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neural computing are used for tasks like pattern recognition ([3]). Registration, the

task of finding correspondences between two point sets, is solved based on geomet-

ric algebra methods in [23]. Some of their kinematics algorithms are dealing with

inverse kinematics, fixation and grasping as well as with kinematics and differential

kinematics of binocular robot heads. At the University of Kiel, Germany, researchers

are applying geometric algebra to robot vision and pose estimation [24]. They also

do some interesting research dealing for instance with neural networks based on

geometric algebra ( [4]). In addition to these examples there are many other appli-

cations like geometric algebra fourier transforms for the visualization and analysis

of vector fields [8] or classification and clustering of spatial patterns with geomet-

ric algebra [22] showing the wide area of possibilities of advantageously using this

mathematical system in engineering applications.

1.1 Benefits of geometric algebra

As follows we highlight some of the properties of geometric algebra that make it

advantageous for a lot of engineering applications.

• Unification of mathematical systems

In the wide range of engineering applications many different mathematical sys-

tems are currently used. One notable advantage of geometric algebra is that it

subsumes mathematical systems like vector algebra, complex analysis, quater-

nions or Plücker coordinates. Table 1, for instance, describes how complex num-

Table 1 Multiplication table of the 2D geometric algebra. This algebra consists of basic algebraic

objects of grade (dimension) 0, the scalar, of grade 1, the two basis vectors e1 and e2 and of grade

2, the bivector e1∧ e2, which can be identified with the imaginary number i squaring to -1

1 e1 e2 e1∧ e2

1 1 e1 e2 e1∧ e2

e1 e1 1 e1∧ e2 e2

e2 e2 -e1∧ e2 1 -e1

e1∧ e2 e1∧ e2 -e2 e1 -1

bers can be identified within the 2D geometric algebra. This algebra does not

only contain the two basis vectors e1 and e2, but also basis elements of grade

(dimension) 0 and 2 representing the scalar and imaginary part of complex num-

bers.

Other examples are Plücker coordinates based on the description of lines in con-

formal geometric algebra (see section 1.2) or quaternions as to be identified in

Figure 4 with their imaginary units.
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Table 2 List of the basic geometric primitives provided by the 5D conformal geometric algebra.

The bold characters represent 3D entities (x is a 3D point, n is a 3D normal vector and x2 is

the scalar product of the 3D vector x). The two additional basis vectors e0 and e∞ represent the

origin and infinity. Based on the outer product, circles and lines can be described as intersections

of two spheres, respectively two planes. The parameter r represents the radius of the sphere and

the parameter d the distance of the plane to the origin.

entity representation

Point P = x+ 1
2

x2e∞ + e0

Sphere S = P− 1
2

r2e∞

Plane π = n+de∞

Circle Z = S1∧S2

Line L = π1∧π2

• Uniform handling of different geometric primitives

Conformal geometric algebra, the geometric algebra of conformal space we fo-

cus on, is able to easily treat different geometric objects. Table 2 presents the

representation of points, lines, circles, spheres and planes as the same entities

algebraically. Consider the spheres of Figure 2, for instance. These spheres are

Fig. 2 Spheres and circles are basic entities of geometric algebra. Operations like the intersection

of two spheres are easily expressed.

simply represented by

S = P−
1

2
r2e∞ (1)

based on their center point P, their radius r and the basis vector e∞ which repre-

sents the point at infinity. The circle of intersection of the spheres is then easily

computed using the outer product to operate on the spheres as simply as if they

were vectors.

Z = S1∧S2 (2)

This way of computing with geometric algebra clearly benefits computer graph-

ics applications.
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• Simplified geometric operations

Geometric operations like rotations, translations (see [14]) and reflections can be

easily treated within the algebra. There is no need to change the way of describ-

ing them with other approaches (vector algebra, for instance, additionally needs

matrices in order to describe transformations).

Fig. 3 The ray R is reflected from the plane π computing − πR
π

.

Figure 3 visualizes the reflection of the ray R from one plane

π = n+de∞ (3)

(see Table 2). The reflected line, drawn in magenta,

Rre f lected =−
πR

π

(4)

is computed with the help of the reflection operation including the reflection ob-

ject as well as the object to be reflected.

• More efficient implementations

Geometric algebra as a mathematical language suggests a clearer structure and

greater elegance in understanding methods and formulae. But, what about the

runtime performance for derived algorithms? In section 1.3 we present a dramat-

ically improved optimization approach based on Gaalop [17]. In section 1.3, we

will see that geometric algebra inherently has a large potential for creating opti-

mizations leading to more highly efficient implementations especially for parallel

platforms.
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Fig. 4 The blades of conformal geometric algebra. Spheres and planes, for instance, are vectors.

Lines and circles can be represented as bivectors. Other mathematical systems like complex num-

bers or quaternions can be identified based on their imaginary units i, j,k. This is why also trans-

formations like rotations can be handled within the algebra.

1.2 Conformal geometric algebra

Conformal geometric algebra is a 5D geometric algebra based on the 3D basis vec-

tors e1,e2 and e3 as well as on the two additional base vectors e0 representing the

origin and e∞ representing infinity.

Blades are the basic computational elements and the basic geometric entities of

geometric algebras. The 5D conformal geometric algebra consists of blades with

grades (dimension) 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade (blade of grade

0). The element of grade five is called the pseudoscalar. A linear combination of

blades is called a k-vector. So a bivector is a linear combination of blades with grade

2. Other k-vectors are vectors (grade 1), trivectors (grade 3) and quadvectors (grade

4). Furthermore, a linear combination of blades of different grades is called a multi-

vector. Multivectors are the general elements of a geometric algebra. Table 4 lists all

the 32 blades of conformal geometric algebra. The indices indicate 1: scalar, 2 . . .6:

vector, 7 . . .16: bivector, 17 . . .26: trivector, 27 . . .31: quadvector, 32: pseudoscalar.

A point P = x1e1 + x2e2 + x3e3 + 1
2
x2e∞ + e0 (see Table 2), for instance, can be

written in terms of a multivector as the following linear combination of blades b[i]

P = x1 ∗b[2]+ x2 ∗b[3]+ x3 ∗b[4]+
1

2
x2
∗b[5]+b[6] (5)

with multivector indices according to Table 4.
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Figure 4 describes some interpretations of the 32 basis blades of conformal ge-

ometric algebra. Scalars like the number π are grade 0 entities. They can be com-

bined with the blade representing the imaginary unit i to complex numbers or with

the blades representing the imaginary units i, j,k to quaternions. Since quaternions

describe rotations, this kind of transformation can be handled within the algebra.

Geometric objects like spheres, planes, circles and lines can be represented as vec-

tors and bivectors.

Table 3 lists the two representations of the conformal geometric entities. The

inner product null space IPNS and the outer product null space OPNS [20] are dual

to each other. While Table 2 already presented the IPNS representation of spheres

and planes, they can be described also with the outer product of 4 points being part

of them. In the case of a plane one of these 4 points is the point at infinity e∞. Circles

can be described with the help of the outer product of 3 conformal points lying on

the circle or as the intersection of two spheres. Lines can be described with the help

Table 3 The extended list of the two representations of the conformal geometric entities. The

IPNS representation as described in Table 2 have also an OPNS representation, which are dual to

each other (indicated by the star symbol). In the OPNS representation the geometric objects are

described with the help of the outer product of conformal points that are part of the objects, for

instance lines as the outer product of two points and the point at infinity.

entity IPNS representation OPNS representation

Point P = x+ 1
2

x2e∞ + e0

Sphere S = P− 1
2

r2e∞ S∗ = P1∧P2∧P3∧P4

Plane π = n+de∞ π
∗ = P1∧P2∧P3∧ e∞

Circle Z = S1∧S2 Z∗ = P1∧P2∧P3

Line L = π1∧π2 L∗ = P1∧P2∧ e∞

Point Pair Pp = S1∧S2∧S3 Pp∗ = P1∧P2

of the outer product of 2 points and the point at infinity e∞ or with the help of the

outer product of 2 planes (i.e. intersection in IPNS representation). An alternative

expression is

L = ue123 +m∧ e∞, (6)

with the 3D pseudoscalar e123 = e1 ∧ e2 ∧ e∞, the two 3D points a, b on the line,

u = b−a as 3D direction vector, and m = a×b as the 3D moment vector (relative

to origin). The corresponding six Plücker coordinates (components of u and m) are

(see Figure 5)

(u : m) = (u1 : u2 : u3 : m1 : m2 : m3). (7)
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Fig. 5 The line L through the 3D points a, b and the visualization of its 6D Plücker parameters

based on the two 3D vectors u and m of equation (7).

1.3 Computational efficiency of geometric algebra using Gaalop

Because of its generality geometric algebra needs some optimizations for efficient

implementations.

Gaigen [10] is a geometric algebra code generator developed at the university

of Amsterdam (see [7] and [9]). The philosophy behind Gaigen 2 is based on two

ideas: generative programming and specializing for the structure of geometric al-

gebra. Please find some benchmarks comparing Gaigen 2 with other pure software

solutions as well as comparing five models of 3D Euclidean geometry in a ray trac-

ing application ([9] and [11]).

Gaalop [17] combines the advantages of software optimizations and the adapt-

ability on different parallel platforms. As an example, an inverse kinematics algo-

rithm of a computer animation application was investigated [15]. With the optimiza-

tion approach of Gaalop the software implementation became three times faster and

with a hardware implementation about 300 times faster [16] (3 times by software

optimization and 100 times by additional hardware optimization) than the conven-

tional software implementation.

Figure 6 shows an overview over the architecture of Gaalop. Its input is a geomet-

ric algebra algorithm written in CLUCalc [19], a system for the visual development

of geometric algebra algorithms. Via symbolic simplification it is transformed into

an intermediate representation (IR) that can be used for the generation of different

output formats. Gaalop supports sequential platforms with the automatic generation

of C and JAVA code while its main focus is on supporting parallel platforms like

reconfigurable hardware as well as modern accelerating GPUs.

Gaalop uses the symbolic computation functionality of Maple (using the Open

Maple interface and a library for geometric algebras [2]) in order to optimize a

geometric algebra algorithm. It computes the coefficients of the desired multivec-

tor symbolically, returning an efficient implementation depending just on the input

variables.
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Fig. 6 Architecture of Gaalop

As an example, the following CLUCalc code computes the intersection circle C

of two spheres S1 and S2 according to Figure 2.

P1 = x1*e1 +x2*e2 +x3*e3

+1/2*(x1*x1+x2*x2+x3*x3)*einf +e0;

P2 = y1*e1 +y2*e2 +y3*e3

+1/2*(y1*y1+y2*y2+y3*y3)*einf +e0;

S1 = P1 - 1/2 * r1*r1 * einf;

S2 = P2 - 1/2 * r2*r2 * einf;

?C = S1 ˆ S2;

See Table 2 for the computation of the conformal points P1 and P2, the spheres

S1 and S2 as well as the resulting circle based on the outer product of the two

spheres.

The resulting C code generated by Gaalop for the intersection circle C is as fol-

lows and depends only on the variables x1, x2, x3, y1, y2, y3, r1 and r2 for the 3D

center points and radii:

float C [32] = {0.0};

C[7] = x1*y2-x2*y1; C[8] = x1*y3-x3*y1;

C[9] = -0.5*y1*x1*x1-0.5*y1*x2*x2

-0.5*y1*x3*x3+0.5*y1*r1*r1

+0.5*x1*y1*y1+0.5*x1*y2*y2

+0.5*x1*y3*y3-0.5*x1*r2*r2;

C[10] = -y1+x1;

C[11] = -x3*y2+x2*y3;
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C[12] = -0.5*y2*x1*x1-0.5*y2*x2*x2

-0.5*y2*x3*x3+0.5*y2*r1*r1

+0.5*x2*y1*y1+0.5*x2*y2*y2

+0.5*x2*y3*y3-0.5*x2*r2*r2;

C[13] = -y2+x2;

C[14] = -0.5*y3*x1*x1-0.5*y3*x2*x2

-0.5*y3*x3*x3+0.5*y3*r1*r1

+0.5*x3*y1*y1+0.5*x3*y2*y2

+0.5*x3*y3*y3-0.5*x3*r2*r2;

C[15] = -y3+x3;

C[16] = -0.5*y3*y3+0.5*x3*x3

+0.5*x2*x2+0.5*r2*r2

-0.5*y1*y1-0.5*y2*y2

+0.5*x1*x1-0.5*r1*r1;

In a nutshell, Gaalop always computes optimized 32-dimensional multivectors.

Since a circle is described with the help of a bivector, only the blades 7 to 16 (see Ta-

ble 4) are used. As you can see, all the corresponding coefficients of this multivector

are very simple expressions with basic arithmetic operations.

Table 4 The 32 blades of the 5D conformal geometric algebra

index blade grade

1 1 0

2 e1 1

3 e2 1

4 e3 1

5 e∞ 1

6 e0 1

7 e1∧ e2 2

8 e1∧ e3 2

9 e1∧ e∞ 2

10 e1∧ e0 2

11 e2∧ e3 2

12 e2∧ e∞ 2

13 e2∧ e0 2

14 e3∧ e∞ 2

15 e3∧ e0 2

16 e∞∧ e0 2

index blade grade

17 e1∧ e2∧ e3 3

18 e1∧ e2∧ e∞ 3

19 e1∧ e2∧ e0 3

20 e1∧ e3∧ e∞ 3

21 e1∧ e3∧ e0 3

22 e1∧ e∞∧ e0 3

23 e2∧ e3∧ e∞ 3

24 e2∧ e3∧ e0 3

25 e2∧ e∞∧ e0 3

26 e3∧ e∞∧ e0 3

27 e1∧ e2∧ e3∧ e∞ 4

28 e1∧ e2∧ e3∧ e0 4

29 e1∧ e2∧ e∞∧ e0 4

30 e1∧ e3∧ e∞∧ e0 4

31 e2∧ e3∧ e∞∧ e0 4

32 e1∧ e2∧ e3∧ e∞∧ e0 5
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