
ANALYSIS OF POINT CLOUDS
Using Conformal Geometric Algebra

Dietmar Hildenbrand
Research Center of Excellence for Computer Graphics, University of Technology, Darmstadt, Germany

Dietmar.Hildenbrand@gris.informatik.tu-darmstadt.de

Eckhard Hitzer
Department of Applied Physics, University of Fukui, Japan

hitzer@mech.fukui-u.ac.jp

Keywords: geometric algebra, geometric computing, point clouds, osculating circle, fitting of spheres, bounding spheres.

Abstract: This paper presents some basics for the analysis of point clouds using the geometrically intuitive mathematical
framework of conformal geometric algebra. In this framework it is easy to compute with osculating circles
for the description of local curvature. Also methods for the fitting of spheres as well as bounding spheres are
presented. In a nutshell, this paper provides a starting point for shape analysis based on this new, geometrically
intuitive and promising technology.

1 INTRODUCTION

The main contribution of this paper are properties and
basic algorithms based in conformal geometric alge-
bra (CGA) promising for the analysis of point clouds.
We refer e.g. to (Schnabel et al., 2007) for current
research with this application.

CGA has shown some advantages in recent years.
It is very easy to directly calculate with geometric ob-
jects like spheres, circles and planes and to transform
them. CGA unifies a lot of mathematical systems like
vector algebra, projective geometry, quaternions and
Plücker coordinates, etc.

While CGA formerly had the problem of ef-
ficiency, new approaches provide CGA algorithms
that can even be faster than conventional algorithms
(Hildenbrand et al., 2006), (Hildenbrand et al., 2008).

Like implementations of quaternions can be more
robust than rotation matrices CGA promises to deliver
more robust algorithms. As an example, planes can
be represented as specific spheres allowing to fit both
into point sets (Hildenbrand, 2005).

For the foundations of CGA and its application
to computer graphics we refer to (Dorst et al.,
2007), (Rosenhahn, 2003), (Hitzer, 2004) and to tuto-
rials (Hildenbrand et al., 2004), (Hildenbrand, 2005).

2 CONFORMAL GEOMETRIC
ALGEBRA FOUNDATIONS

2.1 Geometric Algebra of 3D Space

Geometric algebra (GA) uses a dimension indepen-
dent way of vector multiplication, adding inner and
outer products.

eie j = ei · e j + ei∧ e j, 1≤ i, j ≤ n, (1)

where the vectors {ei : 1≤ i≤ n} form a vector space
basis. The outer product is antisymmetric

ei∧ e j =−e j ∧ ei, 1≤ i, j ≤ n. (2)

In three dimensions the R 3 basis {e1,e2,e3} with

e2
1 = e2

2 = e2
3 = 1, e1 · e2 = e2 · e3 = e3 · e1 = 0 (3)

yields an eight dimensional GA of subspace blades

{1,e1,e2,e3,e1e2,e2e3,e3e1,e1e2e3}, (4)

of a grade 0 scalar, three grade 1 vectors, three grade
2 bivector areas, and a grade 3 unit volume trivec-
tor e123 = e1e2e3. Adding blades of the same grade
k gives a k-vector, a linear combination of blades of
different grades gives a multivector.

A vector e1 can represent a Euclidean point. But
via the inner product e1 can also represent a normal
plane (standard representation) through the origin

x · e1 = 0⇔ x ∈ Plane. (5)

If we want to reflect a general position vector y at
the plane (5) we simply reverse the component of y
parallel to e1 (perpendicular to the plane) by

−e1ye1 =−e1(y · e1 +y∧ e1) = y−2(y · e1)e1, (6)

because y∧ e1 =−(e1∧y) =−(e1y− e1 ·y).
It is well known that the product of two reflections

is a rotation about the axis in which their planes inter-
sect, by twice the smaller angle between the planes.
So using a second plane normal to n, ∠(e1,n) = θ/2,
we get a rotation by θ in the e1,n-plane by

−n(−e1ye1)n = (ne1)y(e1n) = R̃yR. (7)

The rotation is discribed in (7) by the (scalar + bivec-
tor) rotation operator R = e1n = e1 · n + e1 ∧ n, R̃ =
ne1, completely equivalent to quaternions.

Via the outer product e1 may further represent a
line through the origin with direction e1 (direct repr.)

x∧ e1 = 0⇔ x ∈ Line∗. (8)

Bivectors like e2e3 = e2 ∧ e3 represent lines in the
standard repr. (intersection of normal planes)

x ·(e2e3) = (x ·e2)e3−(x ·e3)e2 = 0⇔ x∈ Line. (9)

and planes in the direct representation

x∧ (e2e3) = x∧ e2∧ e3 = 0⇔ x ∈ Plane∗. (10)

We therefore see that planes and lines in the two rep-
resentations are dual to each other, because e.g.

(e2e3)(e3e2e1) = e2(e3e3)e2e1 = e2e2e1 = e1. (11)

The (dihedral) angle between (planes) lines o1, o2 can
be calculated representation independent as

cos(θ) =
o1 ·o−1

2

|o1||o−1
2 | (12)

2.2 Conformal Geometric Algebra

In order to model objects away from the origin and to
describe curved objects, conformal GA (CGA) adds
an origin-infinity plane to 3D Euclidean space. In or-
der to retain as much Euclidean structure as possible
we demand for origin vector e0, infinity vector e∞, and
e1,e2,e3 of (4)

ei · e0 = ei · e∞ = 0, e2
∞ = e2

0 = 0, e∞ · e0 =−1. (13)

The origin-infinity plane is given by its bivector blade
E = e∞∧ e0.

Euclidean points, planes and spheres can all be
embedded (normed stand. repr.) in CGA by 5D vec-
tors:

P = p+
1
2

p2e∞ + e0, (14)

S = s+
1
2
(s2− r2)e∞ + e0, (15)

π = n+de∞. (16)

Table 1: Representations of the conf. geometric objects.

object standard repr. direct repr.
Point P = x+ 1

2 x2e∞ + e0

Sphere S = P− 1
2 r2e∞ S∗ = P1∧P2∧P3∧P4

Plane π = n+de∞ π∗ = P1∧P2∧P3∧ e∞
Circle Z = S1∧S2 Z∗ = P1∧P2∧P3
Line L = π1∧π2 L∗ = P1∧P2∧ e∞
P-Pair Pp = S1∧S2∧S3 P∗p = P1∧P2

Where p is the 3D point location, s and r the 3D
sphere center and the sphere radius, n the 3D unit nor-
mal vector of the plane, and d the distance of the plane
from the origin. A point is thus a sphere with r = 0.

Conformal objects are homogeneous, but in (14)
and (15) we have normed them by keeping the co-
efficient of e0 one. This is not necessay, but helpful
regarding numerical implementations. We can always
norm them by division with−P ·e∞ or−S ·e∞, respec-
tively. The plane π can be normed by division with
|n|.

The standard representation of a conformal sub-
space V uses conformal blades AV via the inner prod-
uct

X ·AV = 0⇔ X ∈V. (17)

The direct representation is based on the outer prod-
uct and is dual to the standard representation via the
division with the unit 5D volume I5 = e123E (similar
to (11))

X ∧A∗V = 0⇔ X ∈V, A∗V = AV I−1
5 =−AV e123E.

(18)
In the conformal (conf.) standard repr. the inter-

section of two spheres (planes) gives a circle (line)
and the intersection of three spheres a point pair, see
table 1. In the conf. direct repr. all these objects can
be constructed by joining conf. object points by outer
products (table 1).

In CGA two reflections at parallel planes yield a
translation by twice the 3D distance vector t/2 of the
planes

π2π1Pπ1π2 = T̃ PT, T = π1π2 = 1+
1
2

te∞. (19)

The blade E can be used to extract pure 3D Eucl.
parts from conf. multivectors M

M3D = (M∧E) ·E , (20)

e.g. P3D = p, S3D = s and π3D = n .

3 DISTANCES AND ANGLES

The inner product of conf. vectors for points, spheres
and planes results in a scalar, and can be used as an
(oriented) distance (or angle) measure between these
geometric objects. Minus two times the inner product
of two (normed) sphere vectors gives according to (3),
(13) and (15)

−2(S1 ·S2) = (s1− s2)2− r2
1− r2

2, (21)

which is the square of the 3D distance of the centers
minus the squares of the radii. Based on (21) we ob-
serve that for

S1 ·S2 > 0 : S1 intersects S2 (P1 inside S2)
S1 ·S2 = 0 : S1 touches S2 from outside (P1 on S2)
S1 ·S2 < 0 : S1, S2 do not intersect (P1 outside S2)

The relations in parenthesis result from (21) if S1 de-
generates (r1 = 0) to a point P1, i.e.

−2(P1 ·S2) = (p1− s2)2− r2
2. (22)

If S2 also degenerates (r2 = 0) to a point P2, we get
from (22) the 3D distance square of the two points. If
the two spheres become identical S1 = S2 we get from
from (21) the radius square itself

S2
1 = r2

1. (23)

The inner product of a sphere S and a plane π gives
the oriented 3D distance of the sphere center s from
the plane

S ·π = s ·n−d. (24)

The sign of (24) shows on which side of the plane the
sphere center lies (relative to the origin). If the sphere
S degenerates (r = 0) to a point P, (24) results in the
oriented 3D distance of the point P from the plane π.

Finally the inner product of two conf. lines (or
planes) results like in (12) in the cosine of their (dihe-
dral) angle. The same is also true for two circles (or
point pairs). Then the inner product yields the cosine
of the angle of the respective carrier planes (lines) of
the two circles (point pairs).

4 DIFFERENTIAL GEOMETRY

In order to analyze point clouds some properties of
CGA are very helpful. Assuming some kind of curva-
ture information of point clouds the easy handling of
geometric objects like circles and lines can be used for
the local description of curvature. Based on these lo-
cal properties the existence of geometric objects like
cylinder, sphere, cone or torus can be investigated.

(Adamson, 2007) already developed algorithms to
estimate local curvature information including princi-
pal curvatures. These can be very easily transferred
into algebraic expressions for locally fitting objects.
These objects include

• osculating circle (fig. 1)

• line describing vanishing curvature (fig. 2)

• osculating circle with vanishing radius (fig. 3)

and can be treated very consistently since all these ob-
jects are easy to compute with CGA bivectors (stand.
repr. of table 1).

Figure 1: Osculating circle describing curvature at point pi
and local coordinate system (see Figure 3).

Figure 2: Line describing vanishing curvature at point pi
and local coordinate system (see Figure 3).

Circles (3D center c, radius r) can be described
with the help of the outer product of 3 conf. points ly-
ing on the the circle or as the intersection of a sphere
and a plane (normal nc) resulting in the following for-

Figure 3: Local coordinate system at point pi based on the
tangent vector t and the normal vector n.

Figure 4: The line through a, b and its plücker parameters
u and m of equation (25).

mula
Z = c∧nc−nc∧ e0− (c ·nc)E

+[(c ·nc)c− 1
2
(c2− r2)nc]∧ e∞.

Lines can be described with the help of the outer
product of 2 planes (i.e. intersection in stand. repr.)
which explicitly leads to (dir. repr. L∗ = A∧B∧ e∞)

L = ue123 +m∧ e∞, (25)
with a, b two 3D points on the line, u = b− a as
3D direction vector, and m = a× b as the 3D mo-
ment vector (relative to origin). The corresponding
six Plücker coordinates (componentes of u and m) are
(see fig. 4)

(u : m) = (u1 : u2 : u3 : m1 : m2 : m3). (26)

5 Fitting of Points With a Sphere

While in (Hildenbrand, 2005) fitting of spheres or
planes into point clouds is described, in this section

a point cloud pi ∈ R3, i ∈ {1, ...,n} will be approxi-
mated specifically with the help of a sphere. We will
use the conf. representation (14) for the points and
(15) for the sphere S.

The inner product (22) provides us with a distance
measure, we will therefore seek the least square min-
imum of

n

∑
i=1

[Pi ·S]2 =
n

∑
i=1

[
pi · s− 1

2
p2

i −
1
2
(s2− r2)

]2

(27)

The four coordinates of the sphere (15) are s =
(s1,s2,s3,s4), where s4 = (s2 − r2)/2. In the mini-
mum the derivatives of (27) with respect to the com-
ponents s1,s2,s3, and s4 will be zero. We thus get a
linear system of four equations

∑ pi,1 pi,1 ∑ pi,2 pi,1 ∑ pi,3 pi,1 −∑ pi,1
∑ pi,1 pi,2 ∑ pi,2 pi,2 ∑ pi,3 pi,2 −∑ pi,2
∑ pi,1 pi,3 ∑ pi,2 pi,3 ∑ pi,3 pi,3 −∑ pi,3
−∑ pi,1 −∑ pi,2 −∑ pi,3 ∑1

 · s

=

1
2 ∑p2

i pi,1
1
2 ∑p2

i pi,2
1
2 ∑p2

i pi,3
− 1

2 ∑p2
i

with pi,1, pi,2, pi,3 the 3D coordinates of the points pi.
We sum over the whole cloud ∑ = ∑n

i=1. The re-
sult s represents the center point of the approximation
sphere (s1,s2,s3) and its radius as r2 = s2

1 + s2
2 + s2

3−
2s4.

6 BOUNDING SPHERE
ALGORITHM

The problem of defining a bounding sphere of a point
cloud can be subdivided into three sub-problems:
1. How to enclose a set of points by a minimal

sphere.

2. How to minimally expand an existing bounding
sphere when adding more points.

3. How to merge existing bounding spheres.
Because points can be treated as spheres of zero

radius, case 2 becomes part of case 3 if the latter is
solved for bounding spheres of general radii.

6.1 Clouds of one, two or three Points

If the cloud consists of only one point (14), then this
point defines its own bounding sphere with conf. cen-
ter P and radius r = 0.

If the cloud consists of two (normed) conf. points
P1, P2, then the minimal bounding sphere has P1 and

P2 as its poles. The conformal sphere vector (see left
side of Fig. 5) is then given by

S =
1
2
(P1 +P2). (28)

The factor one half is convenient for norming S such
that r2 = S2, because of (23). The Euclidean center
vector of the normed sphere (28) is given according
to (20) by

s = (S∧E) ·E. (29)
In the case of three conformal points P1, P2 and P3,

we can first define an initial sphere with two points
(e.g. P1,P2) as in Equ. (28). Then we can regard the
third point as a second sphere with zero radius and
center P3 and apply the method for the bounding of
two spheres described in subsection 6.3. Or we can
directly expand the sphere to minimally include the
third point in the following way.

6.2 Minimally Including a New Point

We describe this alternative (compared to subsection
6.3) way in order to show that CGA offers a variety
of algorithmic constructions, some of which may be
preferable for specific tasks and for numerical opti-
mization.

We show two variants in the form of CLUCalc
Scripts. The first more from a geometric algebra prin-
ciple point of view, the second based on further code
performance optimization with Maple.

DefVarsN3(); // Use of conformal model
:IPNS; // Use of standard representation
C = VecN3(c1,c2,c3);

// Conformal sphere center
r = r0; // Sphere radius
S = C-0.5*r*r*einf;

// Definition of initial sphere S
P = VecN3(p1,p2,p3);

// New point outside S
d = sqrt(-2*P.C);

// Distance from sphere center C to P
if (d>r){

CP = (p1-c1)*e1+(p2-c2)*e2+(p3-c3)*e3;
// 3D vector from C to P

T = 1 + 0.5*(0.5*(1-r/d)*CP)*einf;
// Translator to new sphere center

C1 = ˜T*C*T; // Center of new sphere
r1 = (d+r)/2; // Radius of new sphere
S1 = C1 - 0.5*r1*r1*einf;

// Definition of new sphere }

We see in the CLUCalc Script that the initial
sphere S = C− 1

2 r2
0e∞ is only expanded if the new

point P is outside the sphere S (d > r). C1 is the cen-
ter of the expanded sphere S1, obtained by shifting

Figure 5: Left: Sphere vector constructed from two pole
points. Right: Minimally adding a point P to a sphere S by
adjusting center and radius.

C in the direction of P by t = 1
2 (d− r) CP

|CP| , because
d = |CP|. r1 = (d + r)/2 is the radius of the mini-
mally expanded sphere S1. Compare right side of Fig.
5.

For numerical optimization we can replace the
definition of d and the if loop by shorter Maple op-
timized code

d = sqrt((p1-c1)*(p1-c1)+(p2-c2)*(p2-c2)
+(p3-c3)*(p3-c3));

if (d>r){
c1x = (-r*p1+r*c1+p1*d+c1*d)/d/2;
c1y = (r*c2+p2*d+c2*d-r*p2)/d/2;
c1z = (p3*d-r*p3+r*c3+c3*d)/d/2;
r1 = (d+r)/2;
S1 = VecN3(c1x,c1y,c1z)-0.5*r1*r1*einf; }

6.3 Bounding Two Spheres

We can merge (bound) two spheres by defining a
straight line g which connects the centers of the two
(normed) spheres S1 and S2

g∗ = (S1∧S2∧ e∞)∗. (30)

The Eulidean unit vector in the direction of g is then

d =
g∗ · e123

|g∗ · e123| . (31)

We now calculate the poles of the minimal bounding
sphere. The first pole is the point of intersection of g
with S1 away from S2

q1 = s1− r1d, (32)

with s1 and r1 calculated according to (29) and (23).
We similarly obtain the second pole of the bounding
sphere as the point of intersection of g with S2 away
from S1

q2 = s2 + r2d, (33)

Figure 6: Minimal bounding sphere of two spheres.

The corresponding conformal poles (14) give accord-
ing to (28) the mininal bounding sphere (see Fig. 6)

S12 =
1
2
(Q1 +Q2). (34)

In this section we developed the algebraic expres-
sions for the minimal bounding sphere [eqs. (30) to
(34)] for easy numerical implementation. It would be
possible to completely carry out the calculation of S12
on the conf. level. For that purpose we would first
calculate the conf. point pairs (direct repr.) by inter-
secting line g with spheres S1 and S2, respectively

pair1 = g ·S1, pair2 = g ·S2. (35)

With

Q1 =
pair1 + |pair1|

pair1 · e∞
, Q2 =

pair2−|pair2|
pair2 · e∞

(36)

we can then directly pick the conformal points Q1 and
Q2 out of the point pairs pair1 and pair2.

If (like in subsection 6.2) the second sphere S2
happens to be only a point (sphere with zero radius),
we can omit the calculation of Q2 in Equs. (33), (35)
and (36). We simply replace Q2 = S2 in Equ. (34).

6.4 Comparison with Welzl’s Bounding
Sphere Algorithm

The iteration of the method suggested in subsection
6.3 (test of inclusion, and if necessary the calcula-
tion of the new bounding sphere) results in the final
bounding sphere of n points in linear time O(n). The
proposed method is easy to understand and with given
routines for inner and outer products easy to imple-
ment. In average Welzl’s algorithm (Welzl, 1991) also
runs in asymptotically linear time, but the recursion
in Welzl’s algorithm makes it harder to examine and
guarantee the performance time. As demonstrated in
subsection 6.2 our algorithm can be further optimized

with Maple as well as based on reconfigurable hard-
ware with the potential of dramatically reducing the
constant factor of our O(n) algorithm as described
for an inverse kinematics algorithm in (Hildenbrand
et al., 2008).

7 CONCLUSION

We introduced the framework of conformal ge-
ometric algebra (CGA). We highlighted representa-
tion and manipulation of geometric objects in CGA.
We are convinced that in CGA the easy handling of
objects like spheres, circles or planes, the seemless
computation of distances and angles between them,
as well as the new possibilities for the fitting and
bounding of geometric objects will provide a promis-
ing foundation for the analysis of point clouds.

REFERENCES

Adamson, A. (2007). Computing Curves and Surfaces from
Points. PhD thesis, Darmstadt University of Technol-
ogy.

Dorst, L., Fontijne, D., and Mann, S. (2007). Geometric Al-
gebra for Computer Science, An Object-Oriented Ap-
proach to Geometry. Morgan Kaufman.

Hildenbrand, D. (2005). Geometric computing in computer
graphics using conformal geometric algebra. Comput-
ers & Graphics, 29(5):802–810.

Hildenbrand, D., Fontijne, D., Perwass, C., and Dorst, L.
(2004). Tutorial geometric algebra and its applica-
tion to computer graphics. In Eurographics confer-
ence Grenoble.

Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., and
Dorst, L. (2006). Competitive runtime performance
for inverse kinematics algorithms using conformal ge-
ometric algebra. In Eurographics conference Vienna.

Hildenbrand, D., Lange, H., Stock, F., and Koch, A. (2008).
Efficient inverse kinematics algorithm based on con-
formal geometric algebra using reconfigurable hard-
ware. In GRAPP conference Madeira.

Hitzer, E. (2004). Euclidean geometric objects in the clif-
ford geometric algebra of Origin, 3-Space, Infinity.
Bulletin of the Belgian Mathematical Society - Simon
Stevin, 11(5):653–662.

Rosenhahn, B. (2003). Pose Estimation Revisited. PhD
thesis, Inst. f. Informatik u. Prakt. Mathematik der
Christian-Albrechts-Universität zu Kiel.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient
ransac for point-cloud shape detection. Computer
Graphics Forum, 26(2):214–226.

Welzl, E. (1991). Smallest enclosing disks (balls and ellip-
soids. In Lecture Notes in Computer Science, pages
555:359–370.

