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ABSTRACT

2D-3D pose estimation is an important task for computer vision, ranging from robot navigation to medical intervention. In such

applications as robot guidance, the estimation procedure should be fast and automatic, but in industrial metrology applications,

the precision is typically a more important factor. In this paper, a new 3D approach for infrared data visualization precisely with

the help of 2D-3D pose estimation based on Geometric Algebra is proposed. The approach provides a user friendly interface,

a flexible structure and a precise result, which can be adjusted to almost all the geometrically complex objects.

Keywords: Geometric algebra, 2D-3D pose estimation, ICP algorithm.

1 INTRODUCTION

2D-3D pose estimation is an important problem in com-

puter vision. The standard requisites to the pose esti-

mation procedures are high speed, automatic mode and

high precision. The main aim in these procedures is to

define the relative position and orientation of a known

3D object with respect to a reference camera system.

In other words, we search for a transformation (i.e. the

pose) of the 3D object such that the transformed object

corresponds to 2D image data. For rigid objects, this

transformation should be the Euclidean transformation

consisting of a rotation R and a translation t. Pose es-

timation is a subclass of the more general registration

problem. The main focus in this paper is given to the

pose estimation based on Geometric Algebra and the

3D data visualization with texture mapping. This leads

to three main questions:

• How and what kind of image and object features to

extract?

• How to do the pose estimation precisely and fast?

• How to detect object parts (surfaces) are visible?

Note that throughout this paper the 3D object model

(independent of its representation) is assumed to be

known (3D object model is given .wrl file format). The

problem how the model of unknown object can be ob-

tained is discussed in works by N. Krueger [21] and M.

Zerroug [32].

A 3D object can contain different features like 3D

points, 3D lines, 3D spheres, 3D circles, kinematic

chain segments, boundary contours and contour parts.

The aim is to find the rotation R and the translation t

of the object which leads to the best fit of the reference

model with the actually extracted entities. So far, it is

not defined how to measure the fit quality. It is clear by

intuition that a mathematical formalization is not triv-

ial.Current approaches to pose estimation (and registra-

tion in general) can be divided into two categories:

• Explicit pose estimation [28]: The involved 2D and

3D entities are defined explicitly. This includes

points, lines and higher order entities such as con-

ics, kinematics chains or higher order 3D curves.

• Free-form pose estimation [28]: The involved enti-

ties are modeled as free-form objects such as para-

metric curves/surfaces, 3D meshes, active contours

and implicit curves/surfaces.

Additionally, from a statistical point of view, pose

estimations of global object descriptions are more ac-

curate and robust than those from a sparse set of local

features. But on the other hand, pose estimation based

feature can be performed much faster. In this paper we

discuss 2D-3D pose estimation using the feature-based

method in explicit point corresponding and the free-

from method in active contour. After finding the right

posed position of the 3D object, we try to visualize the

3D data with texture mapping from the 2D image to the

3D mode, test whether the triangles of the 3D object are

visible or not with a ray-tracing algorithm. In this pa-

per we implement the ray-tracing method based on the

Geometric Algebra approach in [13].

Main contribution in this work can be generalized as

follows:

• We do the camera calibration based on the linear

method. This model is used in the geometric alge-

bra framework. The conformal geometric algebra

[23] allows to deal with higher order entities (lines,

planes, circles, spheres) in the same manner as with

points. It is further possible to model the conformal

group on these entities by applying special operators

in a multiplicative manner.
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• This paper introduces a new pose estimation method

based on the active object contour extraction. To es-

timate the pose of free-form contours, ICP (Iterative

Closest Point) algorithms [30, 15] are applied. Nor-

mal ICP starts with two data sets and an initial guess

for their rigid body motion. Then the transformation

is refined by repeatedly generating pairs of corre-

sponding point sets and minimizing the error met-

ric. Furthermore, they will later be used to compare

a 3D contour, modeled by Fourier descriptors, with

3D reconstructed projection rays. The use of Fourier

descriptors is accompanied by some features, which

can advantageously be applied within the pose esti-

mation problem: instead of estimating the pose for a

whole 3D contour, low-pass descriptions of the con-

tour can be used for an approximation. This leads

to a speed up of the algorithm. Meanwhile, this

paper brings forward an improved ICP, which im-

proves the normal ICP algorithm to avoid the local

minimum.

The paper is structured as follows. In section 2, re-

lated work of pose estimation based on the geomet-

ric algebra is presented. The 2D-3D entities constraint

equations and some experiments of 2D-3D point to line

constraints will be given in section 3. Section 4 de-

scribes 2D-3D pose estimation based on an active con-

tour method.

2 RELATED WORK

The first pose estimation algorithms were based on a

point-based method, which is widely discussed in many

foundational papers. A rigid body is generally assumed,

but no complete explicit geometric model is given.

Methods of this class were firstly studied in the 80’s and

90’s and pioneering works were done by Lowe [11, 12]

and Grimson [22]. Lowe applied a Newton-Raphson

minimization method to the pose estimation problem

and showed the direct application of numerical opti-

mization techniques in the context of noisy data and

in gaining fast (real-time capable) algorithms. Lowe’s

work is based on pure point concepts and he expresses

the constraint equations in the 2D image plane. To

linearize the equations, an affine camera model is as-

sumed. The extension to a fully projective formulation

is proposed by Araujo et al [1]. The minimum num-

ber of correspondences that produce an unique solution

are three (non collinear and non-coplanar) points. Four

coplanar and non-collinear points also give a unique so-

lution [17]. In general the accuracy increases with the

number of used point features. Over-determined solu-

tions are also used for camera calibration [25].

A pose estimation algorithm based on dual quater-

nions [31] is given by Walker et al. [24]. The method

uses the real-part of the dual quaternion to estimate the

rotational part and the dual-part of the dual-quaternion

to estimate the translational part of the pose. This ap-

proach is also discussed by Daniilidis [10] in the con-

text of hand-eye calibration.

There exist some methods that do the pose estimation

with image silhouettes (also called occluding contours,

extremal contours, apparent contours), which are a rich

source of geometric information about the 3D objects.

An image silhouette is the projection of the locus of

points on the object.

Reconstructing the shape from silhouettes was intro-

duced by Baumgart [4] more than three decades ago.

Cippolla and Blake [7] showed that by analysing sil-

houette deformations local surface curvature can be

computed along the corresponding contour generators.

Forsyth [8] showed that outlines of algebraic surfaces

completely determine their projective geometry from a

single view. Cross et al. [9] studied the projective rela-

tionship between the coefficients of quadratic algebraic

surfaces and the coefficients of the corresponding 2D

algebraic silhouettes. Due to perspective projection, the

relationship between algebraic surface and algebraic

plane curve coefficients is very complex for higher-

order surfaces. Kang et al. [18] reconstructed 3D sur-

faces from occluding contours of algebraic surfaces us-

ing a linear dual-surface approach that makes use of the

duality between 3D points and tangent planes.

For 2D-3D pose estimation, Kriegman and

Ponce [20] parameterised image silhouette equa-

tions by 3D pose parameters and minimized the

distance between such equations and pixels repre-

senting image outlines to obtain the optimal pose.

Rosenhahn [28] used the explicit approach instead

and back-projected lines through the silhouette pixels

in order to register 3D models with those lines. He

extended approach to human motion tracking in [29].

Ilic et al. [16] and Knossow et al. [19] also used image

silhouettes for human motion tracking using implicit

equations.

There are also several variations in the methods of

pose estimation. An overview of existing techniques

for pose estimation is given by J.S. Goddards PhD-

thesis [17].

3 POSE ESTIMATION WITH ENTI-

TIES CORRESPONDENCE

3.1 Pose constraints in conformal geomet-

ric algebra

In this section we give a brief framework about how the

interaction of entities in geometric algebras are applied

on the pose problem. As mentioned earlier, the main

problem in the pose estimation is determination of the

2D image features corresponding to 3D object features.

The constraint equations can lead to equations of the

following equation [28] (this one is just for point cor-

respondences).
2
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λ
((

MXM̃
)
×e∞ ∧ (O∧ x)

)
· e+ = 0 (1)

where λ is a scale parameter, O is the camera position,

the underline characters stand for the points in confor-

mal space, the commutator × [26] is used to model a

distance measure.

The interpretation of the equation is simple as the

equation can be separated in the following manner,

λ
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rigid motion
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optical
center

∧ x
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






︸ ︷︷ ︸

projection ray
in conformal space
















︸ ︷︷ ︸

collinearity of the object point with reconstructed line

·e+

︸ ︷︷ ︸

Euclidean distance measure between line and point

= 0 (2)

We see that the strategy of expressing the pose prob-

lem can directly be seen from the equation. All geomet-

ric aspects are considered and the equation is compact

and easy to interpret.

The main denotes advantages of the constraint equa-

tions are:

1. The constraints are expressed in a multiplicative

manner, they are concise and easy to interpret. This

is the basis for further extensions, like kinematic

chains and other higher order algebraic entities.

2. The whole geometry within the scenario is con-

cerned and strictly modeled. This ensures an opti-

mal treating of the geometry and the knowledge that

no geometric aspects have been neglected or approx-

imated which is sometimes done in the literature [5]

by using orthographic camera models.

3.2 Numerical estimation of pose param-

eters

In the section 3.1, we give constraint equation that re-

late 3D object entities to 2D image information. In

these equations the object, camera and image informa-

tion are assumed to be known, the motor M expressing

the motion is assumed to be unknown. The main ques-

tion is now, how to solve a set of constraint equations

for multiple features with respect to the unknown motor

M. Since a motor is a polynomial of infinite degree, this

is a non-trivial task, especially in the case of real-time

estimation.

How to get a linear equation with respect to the gen-

erators of the motor? We try to solve this problem with

exponential representation of motors and the Taylor se-

ries expansion with the first approximation order. This

leads to a mapping of the above mentioned global mo-

tion transformation to a twist representation, which al-

lows for incremental changes of pose. This results in

linear equations in the generators of the unknown 3D

rigid body motion. In this section the linearization of

the motor is derived. For simplicity, we consider the

case of point transformations.

The Euclidean transformations of a point X in con-

formal space caused by the motor M is approximated

as:

MXM̃ = exp

(

−
θ

2

(
l′ + e∞m′

)
)

X exp

(
θ

2

(
l′ + e∞m′

)
)

≈

(

1−
θ

2

(
l′ + e∞m′

)
)

X

(

1+
θ

2

(
l′ + e∞m′

)
)

≈ E + e∞

(
x−θ(l′ · x)−θm′

)
(3)

We assume l := θ l′ and m := θm′, then:

MXM̃ ≈ E + e∞ (x− l · x−m) (4)

In the next step we estimate the motion of the 3D

object with the previously derived point-line constraint,

it leads to

0 = MXM̃×L

0 = exp

(

−
θ

2

(
l′ + e∞m′

)
)

X exp

(
θ

2

(
l′ + e∞m′

)
)

×L

0 ≈ (E + e∞ (x− l · x−m))×L

0 = λ (E + e∞ (x− l · x−m))×L (5)

Due to the approximation ≈ in equation (5), the un-

known motion parameters l and m are linear. This equa-

tion contains six unknown parameters for the rigid body

motion. The unknowns are the unknown twist param-

eters for the motion. In the last step the linearized

constraints are scaled with a suitable factor λ to ex-

press an Euclidean distance measure as mentioned in

section 3.1. This means, all transformations are done

in the conformal space, only in the last step the con-

straint equations are scaled for transformations in the

Euclidean space.

The linear equations are solved for a set of corre-

spondences by applying the Householder method [27].

From the solution of the system of equations, the mo-

tion parameters R, t can easily be recovered by evalu-

ating θ := ‖l‖ , l′ := l
θ ,m′ := m

θ . The motor M can be

evaluated by applying the Rodrigues’ formula.

The principle of this approximation is illustrated in

figure 1. The aim is to rotate a point X by 90 degrees

to a point X ′. The first order approximation of the rota-

tion leads to the tangent of the circle passing through X .
3
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Figure 1: Principle of convergence for the iteration of a

point X rotated around 90 degrees to a point X ′. X1 is

the result of the first iteration and X2 is the result of the

second iteration. [28]

Figure 2: Iterative pose estimation process, the red ob-

ject is the position after the first iteration, the green one

is after the second iteration, the blue and the white ob-

jects are the positions after the third and fourth iteration.

Normalizing the tangent line to X ′(denoted by dashed

lines) X1 is gained as the first order approximation of

the required point X ′. By repeating this procedure the

points X2 . . .Xn will be estimated, approaching to the

point X ′. It is clear from figure 1 that the convergence

rate of a rotation depends on the amount of the expected

rotation.

All angles converge during the iteration. For the most

cases just a few iterations are sufficient to get a good

approximation. In situations where only small rotations

are assumed, four iterations are sufficient for all cases.

3.3 Result

We use the point-line constraint to construct the linear

equation matrix and the least square method to solve it.

Four iterations are needed to compute the final transla-

tion t and rotation R. The developed algorithm interac-

tively computes the camera position (see Figure 2).

The next problem that we need to solve for texture

mapping is detection of visible areas. We should detect

visible triangle for the computed camera position. To

solve the problem, the Ray-tracing algorithm is used:

For each point, there exists a ray from this point to the

camera position. If the ray hits a triangle of the ob-

ject before it gets to the camera position, we consider

Figure 3: Left: 2D image, the green points are the cor-

responding points. Right: final textured 3D object.

the point is invisible, otherwise it is visible. If three

points of the triangle are visible, we consider this trian-

gle as visible. Ray-tracing algorithm gives the texture

coordinates in the 2D image, which are used in texture

mapping. There’re some experiments results in Figure

3, on the left are the original image, the green points are

the corresponding points between 2D image and 3D ob-

ject detected by user, on the right are the texuted object.

We see clearly that the developed algorithm success-

fully solve the texture mapping problem.

Now we present a practical application of the de-

veloped algorithm for non-destructive testing (NDT).

Thermal inspection is one of the numerous methods in

NDT. The inspection consists of two cases: 1) excita-

tion using the flash lamps 2) observation of the cool-

ing process using an infrared camera. The existing

methods in representation of infrared data involve 1D

(time profile) and 2D (x/y space) forms. They’re caused

by using focal plane array (FPA) detectors in infrared

cameras. The technique developed in this paper sig-

nificantly extends capabilities in representation of ac-

quired data. The combination with prior known geom-

etry of an object to be inspected makes the representa-

tion more informative and allows analyzing the phys-

ical processes inside the object taking into account its

geometry. The developed algorithm was successfully

tested for visualization of thermal inspection data, Fig-

ure 4 shows the infrared 3D data sequence visualization

as time increase.
4
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Figure 4: From Left to right, from top to bottom: 3D

Visualization of the thermal image set.

4 POSE ESTIMATION WITH ACTIVE

CONTOUR CORRESPONDENCE

4.1 3D object contour in Fourier domain

This section we intorduce signal theoretic foundations.

The aim is to define the discrete Fourier transformation

and its extension to the 3D space in classical matrix cal-

culus. More detail information can be found in [3, 2].

For 3D contour interpolation a set f 3
j ∈ ℜ3 of 3D val-

ues is assumed j = 0, . . . ,M − 1,M ∈ ℵ. These values

are contour points of a closed contour. To achieve a 3D

contour interpolation, the 3D signal can be interpreted

as 3 separate 1D signals:

F3
m =

1

M

M−1

∑
u=0





f 3
u (1)

f 3
u (2)

f 3
u (3)



exp

(
−2πium

M

)

(6)

And its inverse transformation can be written as

f 3
u =

M−1

∑
m=0





F3
m (1)

F3
m (2)

F3
m (3)



exp

(
2πimu

M

)

(7)

Taking only a subset of the phase vectors leads to a

low-pass approximation of the contour. This is applied

to speed up the algorithm for pose estimation of free-

form contours and to avoid local minimum during iter-

ations.

The user should give initial position of the 3D object

firstly, and then select the region or sub-region of the

3D object which is captured in the 2D image. Finally

the selected object will be mapped to 2D image, as Fig-

ure 5 left shows. This 2D information can help us to

find the discrete contour points of the 3D object. The

contour points of the mapped 2D image correspond to

Figure 5: Left: Mapped 2D image from 3D object. ‘1’

is the object region, ‘0’ is the background region. Mid-

dle: Discrete contour points of the 3D object. Right:

Continuous contour of the 3D object.

the discrete contour points of the 3D object. As Fig-

ure 5 middle shows, the algorithm can find the discrete

contour points. With Fourier transformation as talked

above, we can get the continuous contour of the 3D ob-

ject from the discrete contour points (as Figure 5 right

shows). The user can also select the sub-region of the

3D object and with the same processing, get the contin-

uous contour of the 3D object.

4.2 2D image contour

2D active image extraction algrithom [6] is proposed an

active contour model based on Mumford-Shah segmen-

tation technique and the level set method. The model

is not based on an edge-function to stop the evolving

curve on the desired boundary. Also, we do not need

to smooth the initial image, even if it is very noisy and

in this way, the locations of boundaries are very well

detected and preserved. By this model, we can detect

objects whose boundaries are not necessarily defined

by gradient or with very smooth boundaries, for which

the classical active contour models are not applicable.

The position of the initial curve can be anywhere in the

image, and it does not necessarily surround the objects

to be detected.

Let us define the evolving curve C in Ω, as the bound-

ary of an open subset ω (i.e. ω ⊂ Ω, and C = ∂ω ).

Then, inside(C) denotes the region ω , and outside(C)
denotes the region Ω\ω . This method is the minimiza-

tion of an energy based-segmentation. Let us first ex-

plain the basic idea of the model in a simple case. As-

sume that the image u0 is formed by two regions of ap-

proximatively piecewise-constant intensities, of distinct

values ui
0 and uo

0. Assume further that the object to be

detected is represented by the region with the value ui
0.

We denote its boundary initially by C0. Then we have

u0 ≈ ui
0 inside the object (or inside(C0)), and u0 ≈ uo

0

outside the object (or outside(C0) ). Now let us con-

sider the following ‘fitting’ energy function:

F (c1,c2,C) = µL(C)+νA(in(C))

+λ1

∫

in(C) |u0(x,y)− c1|
2
dxdy

+λ2

∫

out(C) |u0(x,y)− c2|
2
dxdy (8)

5

GraVisMa 2009

21



Figure 6: Left: 2D image and the initial contour given

by the user (green line). Right: 2D image contour given

by the active contour algorithm (green line)

Where L(C) stands for the length of the contour,

A(in(C)) stands for the area in the contour, c1 and c2

is are the average intensity levels inside and outside

of the contour. µ,ν ,λ1,λ2 are the weight parameters.

There’re some algorithms to find the minimization of

the energy function, Therefore, we consider the mini-

mization problem:

inf
c1,c2,C

F (c1,c2,C) (9)

Simply we can consider the Euler-Lagrange equation

to solve this problem. With this method the contour

of the object can be extracted reiteratively. THe final

results are shown in figure 6, on the left are the original

images, the green lines are the initial contour defined by

user, on the right are the contour results with the green

line showed.

4.3 Pose estimation between 2D image

and 3D object’s contour

The aim is to formulate a 2D-3D pose estimation algo-

rithm for any kind of free-form contour. The assump-

tions are the following:

• The object contour curve is given as a set of 3D

points f 3
j , spanning the 3D contour.

• In an image of a calibrated camera, the object is ob-

served in the image plane and a set of 2D points x2
j

spanning the 2D contour is extracted.

Since the number of contour points in the image is

often too high (e.g. 800 points in the experimental sce-

nario), just every kth point (e.g. k ∈ 5, . . . ,20) is used to

get an equal sub-sampled set of contour image points.

Note that there is no knowledge which 2D image

point corresponds to the 3D point of the interpolated 3D

model contour. Furthermore, a direct correspondence

does not generally exist since the contours are mostly

sampled from different starting points and the number

of image and object points may also vary.

Using the approach for pose estimation of point-line

correspondences, the Iterative Closest Point (ICP) [30]

algorithm for free-form contours consists of iterating

the following steps:

Algorithm 1: Normal ICP Algorithm

1. Reconstruct projection rays from the image points.

2. Estimate the nearest point of each projection ray to

a point on the 3D contour.

3. Estimate the pose of the contour with the use of this

correspondence set.

4. Goto 2.

The idea is that all image contour points simultane-

ously pull on the 3D contour. This is the normal ICP

algorithm, and there exist two aspects to improve the

performance.

• With Fourier transformation, increasing degree

method can improve the calculation speed.

• We can improve normal ICP to avoid the local min-

imum problem.

We talk about the methods in detail. Increasing de-

gree method: Using the Fourier coefficients for contour

interpolation works well, but the algorithm can be made

faster by using a low-pass approximation for pose esti-

mation and by adding successively higher frequencies

during the iteration. We call this technique the increas-

ing degree method. Therefore the pose estimation pro-

cedure starts with just a few Fourier coefficients of the

3D contour and estimates the pose to a certain degree

of accuracy. Then the order of used Fourier coefficients

is increased and the algorithm proceeds to estimate the

pose with the refined object description. Improve ICP

to avoid the local minimum: We can define the error,

which is sum of the distances between the posed object

points and the nearest rays from the image points. The

user can define a threshold, for our experiments, we de-

fine the threshold 0.005. If the error is bigger than the

threshold, the ICP comes to the local minimum. Then

rotate the image space, such as 10 degree around the

view angle, then do the normal ICP again, do this proce-

dure again and again, until the ICP get the error smaller

than the threshold. The algorithm pipeline is as follows:

With the improved ICP algorithm, the performance

of pose estimation results are presented in Figure 7.
6
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Algorithm 2: Improved ICP Algorithm

1. If error > threshold (0.005), Rotation of the image.

(10 degree around the view angle).

2. Pose estimation, do this step 4 times

(a) Reconstruct projection rays from the image

points.

(b) Estimate the nearest point of each projection ray

to a point on the 3D contour points, which is pro-

duced by the Fourier interpolation.

(c) Estimate the pose of the contour with the use of

this correspondence set.

(d) Increasing the Fourier coefficients of the 3D ob-

ject contour, goto (b).

3. Calculation of the new error. Goto 1.

End

5 CONCLUSION

The main focus concentrates on pose estimation based

on Geometric Algebra and 3D data visulazation with

texture mapping. 3D object models are treated feature

based and active contour form based: The results of this

paper are summarized in the following points:

Figure 7: Left: 2D image. Right: textured 3D object

after contour corresponding estimation.

• The geometry of the 2D-3D pose estimation sce-

nario is analyzed and the interaction of entities given

in conformal space. It leads to a compact and lin-

ear description of the pose problem which contains

a distance measure. These equations can further

be scaled by a scalar which allows for an adap-

tive weighting of the constraints. The constraint

equations are solved by linearizing and iterating the

equations. The estimation of pose parameters is high

performance.

• The approach for modeling curves is related to

model 3D contours by using Fourier descriptors. In

this context ICP algorithms are used to estimate the

correspondences and poses for image contours and

object contours. The use of low-pass information

enables one further to avoid local minimum and to

speed up the algorithm. Furthermore, an automatic

method avoid the local minimum is possible, which

stabilizes the pose results.

The next extension of contour based free-form pose

estimation is pose estimation of free-form surfaces.

This has a much higher degree of complexity, simi-

lar to the extension of the 1D analytic signal and 1D

quadrature filters to 2D in an isotropic way, as presented

in [14].

Though the ICP algorithm works fine and stable in

tracking situations, its computational overhead leads to

hardly realizable real-time systems for complex object

models. Especially for the camera calibration, it’s dif-

ficult to realizable a stable and real-time performance.

Here also some work is possible and promising. E.g.

no fast Fourier transformation is applied so far and the

minima-search in the gradient descent method is highly

parallelizable. But maybe new search strategies are bet-

ter suited than the used ICP algorithm.

Another extendable topic is the image processing for

pose estimation. So far easy scenarios are assumed, e.g.

with little background noise. The image processing is

kept simple to extract the image contour, since the geo-

metric aspects of the pose scenario are dealt with in this

paper.

This leads to further extensions for computer graph-

ics or geometric algebra and is an interesting topic for

future research.
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