
Raytracing Point Clouds using Geometric Algebra

Crispin Deul1 Michael Burger1
Dietmar Hildenbrand1 Andreas Koch2

1Interactive Graphics Systems Group

Computer Science Department

TU Darmstadt, Germany

dietmar.hildenbrand@gris.informatik.tu-darmstadt.de

2Embedded Systems and Applications

Computer Science Department

TU Darmstadt, Germany

koch@esa.informatik.tu-darmstadt.de

ABSTRACT

Geometric Algebra (GA) supports the geometrically intuitive development of an algorithm with its build-in geometric primitives

such as points, lines, spheres or planes. But on the negative side GA has a huge computational footprint. In this paper we study

how GA can compete with traditional methods from Linear Algebra (LA) in the field of raytracing. We examine the raytracing

algorithm for both GA and LA on the basis of primitive operations. Furthermore we introduce a novel framework for rendering

point clouds based on spheres and planes as surface elements. We use this model to benchmark implementations of both

algebras. Our results show that depending on the microprocessor architecture like CPUs, FPGAs or GPUs Geometric Algebra

and Linear Algebra can raytrace with comparable speed.

Keywords: FPGA, Geometric Algebra, GPGPU, Point Cloud, Raytracing.

1 INTRODUCTION

this paper we investigate how to speed up calculations

in Conformal Geometric Algebra to get comparable

speed to linear algebra in the field of computer graph-

ics. In the last decades Geometric Algebra (GA) has

become a reasonable alternative in describing geomet-

ric algorithms compared to other systems like vector

algebra.

One can work with Geometric Algebra in a very in-

tuitive way since all objects of the algebra have a ge-

ometric meaning. In the conformal model, which we

use throughout this paper, one can describe lines, planes

and spheres directly as objects of the algebra. Further-

more operations like reflections and rotations can be ap-

plied uniformly to all geometric objects. As a result

algorithms formulated with GA are very compact com-

pared to systems describing geometry that are usually

used in computer graphics.

Besides the new objects like spheres or planes and the

uniformly applicable operations GA also includes many

other mathematical systems like vector algebra, projec-

tive geometry or quaternions that enjoy a widespread

use in computer graphics today. GA developers can

slightly shift from their knowledge in these systems to

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not made

or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Figure 1: Max Planck point cloud rendered at 4.5 fps

on an AMD HD4850 GPU. The viewport size is 640 by

480. The model consists of 96208 surfels.

the new opportunities introduced by GA while still be-

ing able to use their elaborate algorithms.

While these properties of Geometric Algebra are

very exciting especially for people working in graphics,

computer vision or animation, there seems to be one

major drawback that causes a niche existence of GA in

todays applications. The mathematics in the conformal

model of GA are based on the calculation of 32

dimensional so called multivectors. These multivectors

represent the geometric objects of GA like spheres or

planes. Different products between multivectors lead

to operations like intersections or reflections. To take

the scare here we have to admit that for geometric

meaningful objects one often does not need more

than ten non-zero entries of these multivectors. As a

result mathematical effort reduces a lot in a non-naive

implementation of GA [5]. While this still seems to be

GraVisMa 2009

32



a lot of mathematical effort there are algorithms that

work faster using GA instead of using LA [10].

There has been a second development in the last

years that leads to the results of our paper. After hit-

ting the power wall with their monolithic cores and in-

creasing clocks CPU developers began to put more and

more cores onto their chips to increase computational

power. Secondly around the same time GPUs have

been opened to general purpose computations by the in-

troduction of specialized computing platforms. Today

there are lots of parallel computational resources avail-

able in commodity hardware [1] [13] [16]. Geometric

Algebra benefits from these architectures since multi-

vector entries can be computed independently of each

other.

In this paper we chose a field of computer graph-

ics, namely raytracing, to investigate how much over-

head there really is in choosing GA in favor of LA by

simply counting the needed mathematical operations

for the different raytracing primitives. We introduce

a novel surfel (surface element) model based on GA

spheres and planes to represent the local surface of a

point cloud. With the help of this model we fortify

our theoretical observations by raytracing point clouds

on different microprocessor architectures. Furthermore

we investigate the impact of parallelism on both Linear

Algebra and Geometric Algebra versions of our algo-

rithms.

2 RELATED WORK

The performance of raytracing with conformal GA on

a general purpose CPU has already been examined

in [3] and [6] but without considering the question

of parallelization. Parallel FPGA implementations of

raytracers were presented in [21] or [4] but only on

the basis of LA. The topic of implementing a general

GA processor on special hardware architectures like

FPGAs was discussed in [19] and [7] with the first one

only implementing one of the products of conformal

GA and the second one concentrating on the 4D ho-

mogeneous space. Both also without the discussion of

optimization techniques and no relation to raytracing.

In this paper we try to combine all these topics to

optimized GA raytracing on specialized hardware

respectivly GPUs.

A number of rendering approaches and surface defi-

nitions of point clouds have been proposed in the past.

Rusinkiewicz et al. [20] propose a method based on

splatting small quadrats or ellipsoids onto the screen for

a subset of the point cloud. Ohtake et al. [17] use local

low degree implicit functions based surfels to approx-

imate the point cloud. Their approach is close to ours

since they use a surfel as a local approaximation and

define the region of influence of their surfel by using a

bounding sphere. Though their approach is still CPU

based. A GPU based extension of the SLIM rendering

is presented by Kanai et al. [14]. In contrast to our

approach Kanai et al. create their primary rays by ras-

terizing the bounding box of the surfels. Guennebaud

et al. [8] fit spheres into the point cloud similar to our

approach. While we use the spheres as a direct repre-

sentation of the surface Guennebauds spheres are only

an intermediate step in finding an algebraic point set

surface.

3 SURFEL MODEL

For our surfel model we chose a representation that di-

rectly fits to Geometric Algebra. As a result we can

take advantage of the primitives and operations that are

directly included in the algebra. We chose the two geo-

metric objects plane and sphere as a basis of the surfels.

These two objects are the only objects that on their own

represent a surface in GA. With planes and spheres we

can directly approximate local details of a real-world

model. To get a representation of a whole model we

simply use several of the surfels that each represent dif-

ferent local features of the model on their own. Since

there are no data file sources for our new model repre-

sentation we have to acquire the data from other rep-

resentations. One way is to use point clouds as a data

basis and to fit the surfel locally into a neighborhood of

points. Another way would be to use triangle meshes.

One could create the planes by using the plane of a tri-

angle. Spheres could be created by using one vertex and

three of its neighbors to describe a sphere of GA with

the help of the outer product.

3.1 Building the Model

We build our surface by using point clouds as a data ba-

sis. An Algorithm to fit planes and spheres into point

clouds has been published in [9]. The algorithm is

based on the distance measure of GA between points

and spheres. With the distance measure we can define

a least squares approach for the point neighbourhood.

Based on the least squares approach the eigenvalues

of a 5x5 matrix have to be solved where the smallest

positive eigenvalue directly includes coefficients of a

sphere. A nice property of the algorithm is that we do

not have to care whether the point neighborhood is pla-

nar since then the result of the algorithm are the coeffi-

cients of a plane. In fact in geometric algebra one can

think of a plane as a sphere with infinite radius [12].

We use an iterative algorithm to get our final model.

We fit surfels into the point cloud as long as there are

points that are not represented by one of the already

fitted surfels. To get the local neighborhood we ran-

domly chose a non-fitted point which we call the fit-

ting point. With the fitting point we query a kd-tree

including the whole point cloud for the k nearest neigh-

bors. The fitting point is always assumed to be fitted

by the calculated surfel from the fitting algorithm. For

GraVisMa 2009

33



the k neighbors we calculate the distance to the surfel.

We define each neighbor to be fitted if its distance to the

surfel is below a previously defined bound ε . Using this

approach we can significantly reduce the data amount

compared to a naive algorithm where one would fit a

surfel for every point of the point cloud.

Furthermore we introduce a bounding mechanism

into our surfel model. If you consider spheres with low

curvature or planes these objects will usually cover the

whole image while often approximating a part of the

model data that is relatively small in the image space.

To counter this behaviour we introduce the bounding

mechanism. A natural choice for the bound is a region

with some radius around the fitting point that includes

most of the points in the neighborhood that were in-

volved in the fitting process. The translation of this

requirement into GA is a sphere centered at the fit-

ting point. We calculate a first radius candidate of the

bounding sphere by taking the distance between the fit-

ting point and the farthest point of the neighborhood

that is fitted by the surfel. In most cases we can take this

candidate as a feasible radius for the bounding sphere

but there are cases where the fitted sphere will be sim-

ilar in size to the bounding sphere if taking this candi-

date for the radius. A result of the similar size are visual

artifacts in the final rendered image. For many models

it is sufficient to take a value between the radius down

to a quarter of the radius of the fitting sphere as an up-

per bound for the radius of the bounding sphere to avoid

most artifacts.

3.2 Raytracing the Surfel Model

In Raytracing we want to know where the nearest inter-

section between a ray shot from the camera through a

pixel and the surface is located in space. We represent

our rays by lines of Geometric Algebra. We create our

rays by taking the camera origin and the 3D position

of the pixel on the image plane. With these two points

we build the outer product with the point at infinity to

get a line. We can intersect the lines with both spheres

and planes. Since planes in GA are spheres with infinite

radius we can use our intersection indicator and inter-

section point algorithms for both of these objects. The

algorithm to find the nearest intersection point for one

pixel looks as follows:

1. Find a candidate fit We use both brute force and

spacial data structure based approches depending on

the use of our results.

2. Intersect the bounding sphere The bounding

sphere indicates the region in space where the

fitted surfel is feasible regarding the model data.

Additionally in most cases the bounding sphere is

much smaller in screen space than the fitted surfel.

To reduce the intersection operations with fitted

surfels we first calculate the intersection indicator

of the bounding sphere.

3. Test for intersection The effort of calculating the

intersection points can be saved in some cases when

the ray intersects the bounding sphere but is tangen-

tial to the surfel. Furthermore the calculation of the

intersection indicator imposes no extra cost since we

can reuse the calculated value in the calculation of

intersection points. Vielleicht noch dazu dass beim

betrachten eines modells the bspheres wie ein ma-

tel um das modell sind und diese Fälle dann aus-

geschlossen werden.

4. Calculate intersection points This operation is

somewhat more involved in GA than in LA. In LA

you can simply calculate the ray parameter t1 and

t2. Using the parameters, the origin and direction

of the ray one can easily calculate the intersection

points. In GA the result of the intersection is a

point pair which includes both of the intersection

points. We have to dissect the point pair to get

the intersection points. After dissection we have

to normalize the intersection points so that the

following tests work in the right way.

5. Test intersection points against bounding sphere

We have to introduce this test before we can expect

the intersection points to be feasible points of our

model. There are cases where a ray intersects both

the bounding sphere and the fitting sphere but only

one of the possible two intersection points or none of

them is feasible concerning our model description.

In figure 2 you can see three of the cases depicted

in 2D that can occure when a ray intersects both

spheres. The top case is the usual case where both of

Figure 2: Three cases of the intersection of a ray with

both the bounding sphere and the fitted surfel. The sur-

fel is depicted in black while the bounding spheres out-

line is stippled. There are three feasible intersection

points depiected by the stars and three infeasible inter-

section points represented by the black filled circles

GraVisMa 2009

34



the intersection points are feasible and we take the

nearest one for further calculations. In the middle

case only one of the intersection points is inside the

bounding sphere. The lower case shows an example

of the intersection of both spheres where none of the

intersection points is feasible for our model.

6. Test intersection points to be the nearest points

We use the inner product of Geometric Algebra to

get the distance measure between an actually found

intersection point and a point from a previous itera-

tion of the algorithm.

7. Repeat 1. - 6. for other candidate fits

After finding the nearest intersection point for the

ray we shade the pixel using the Phong lighting model.

To calculate the diffuse part of the shading the Phong

model needs the normal at the intersection point. Cal-

culating the normal is the first time we have to branch

depending on the type of our surfel. The normal of a

plane surfel can be read directly from the GA coeffi-

cients. The normal of a sphere surfel can be calculated

from the center of the sphere to the intersection point.

4 MINIMIZING OPERATIONS

One subgoal of this investigation was to compare our

GA raytracing approach to existing solutions which are

based on Linear Algebra and their amount of primi-

tive operations like additions and multiplications. We

looked at the following raytracing subtasks:

• Determining whether a ray intersects an object in the

scene, in our case spheres

• Calculating the intersection point of a ray and an ob-

ject

• Finding the surface normal at the intersection point

• Calculating the reflection vector which is needed for

lighting and recursive raytracing

The number of operations for the case of LA was

taken from [22] where a GPU raytracing method based

on quadrics is introduced. Our algorithm was devel-

oped and tested with CluCalc [18]. To analyse and in-

crease the performance of our algorithm we used the

tool Gaalop [11] to symbolically optimize our GA for-

mulas. The output of Gaalop was then searched for fur-

ther potential of optimization with the intend of reduc-

ing the total number of multiplications and addition-

s/substractions. This way differs from the approach

of optimization in [6] where a GA raytracer is im-

plemented on a CPU with the help of Gaigen2 [5].

Gaigen2 increases the performance of GA algorithms

by using specialized objects instead of standard 32 en-

try multivectors. This leads to the advantage that only

those entries are considered in calculations which really

belong to an object. For example a sphere will always

contain only non-zero coefficients for e1, e2, e3, ein f

and e0. In general we used three ways to reach our goal

of less primitive operations:

1. We searched for constant values of variables which

could be excluded from the calculation. Especially

constant values of zeroes and ones lead to simplifi-

cations.

2. Gaalop sometimes calculates coefficients which

don’t belong to the object. These calculations can

be removed completely.

3. Sometimes the same multiplications appear in more

than one coefficient or more than one time in the

same coefficient. These parts were factored out.

They can be precalculated in a previous step and the

result is used in the computation of the coefficients.

All optimizations were done under the point of view

that the algorithm should run on a parallel platform and

especially on GPUs and FPGAs. Point 3 of the list

above could be important for implementing the algo-

rithm on a FPGA, because it implies a pipeline architec-

ture where the result is calculated in some single steps.

This type of architecture can be computed on a FPGA

in an efficient way if it is assured that the pipeline can

be filled constantly with new data. This requirement is

fullfilled in raytracing applications because of the high

number of pixels for which the raytracing procedure

must be executed. Another intend during the develope-

ment of the algorithm was to avoid the use of square

roots and divisions because they cause lot of computa-

tional effort. In the LA case most divisions and roots

are caused by the normalization operation. In GA we

are in most cases able to use unnormalized objects be-

cause a scaled multivector represents the same geomet-

ric object in the conformal space. To demonstrate our

approach we describe in detail the inspection of the ray-

sphere intersection and reflections in the following two

sections.

4.1 Ray-Sphere Intersection

In the GA case we have two objects. The sphere S and

the ray R, which is represented by a line. The surface

normal is represented by a line, too. In the following

∗ denotes the geometric product of two entities, while

the inner product is represented by the . operator. S and

R are intersected through the outer product S∧R. The

result of this operation is the point pair Pp. We have

to extract the point P from Pp which is nearest to the

eyepoint. For this extraction the following formula is

used:

P = (
√

Pp.Pp±Pp)∗ (ein f .Pp)

GraVisMa 2009

35



This is a variation of the extraction formula from [12,

p. 74, 6.11] where the division through ein f .PP is

replaced by a geometric product. This represents the

same object in GA like described above.

The inner product Pp.Pp indicates whether the ray

intersects the sphere or not. If it is positive there exists

an intersection. The calculation of this value consists of

a long sum of products and can’t take advantage of par-

allelism. In LA it is necessary to compute the discrimi-

nant of a quadratic equation which leads to 8 additions

and 20 mutliplications. In GA we need 14 additions and

22 multiplications. So the effort for the decision of in-

tersection is comparable in both algebras. Considering

all subtasks, the inspection of [22] and counting of op-

erations lead to the amount of calculations summarized

in table 1.

GA LA

additions/substractions 29 12

multiplications 42 23

divsions 0 1

square roots 1 1

Table 1: operations for intersection

So in general GA needs two times more operations

than LA. But a point consists of five non-zero coeffi-

cients which can be calculated in parallel. In LA there

are only three entries in the result vector which can be

computed simultaneously. As a result it seems possible

that the GA computations can be performened in the

same time as those from LA on a parallel hardware.

4.2 Reflections

The field of reflections was analysed with the most ef-

fort of the four subtasks. First we looked at reflections

in the 5D conformal space. To reflect an incoming ray

on a sphere we construct a temporary plane PL through

the intersection point P in the direction of the surface

normal N in P. With the help of two geometric products

we can calculate the reflected ray Rre f by the formula:

Rre f =−Pl ∗R∗PL

The resulting C-code created by Gaalop contained

over 8 times more primitive operations than the LA so-

lution. By hand optimizations lead to a solution which

is still between 5 and 6 times larger than the existing

LA solution with the help of the formula. Further op-

timization seems not to be possible. Another approach

was to use a rotation around the normal. This is possi-

ble because our normal is represented as a line and not

as a direction vector like in LA. But this way also leads

to results comparable to the temporary plane solution.

This is due to the characteristic of 5D GA that all calcu-

lations are done free in space and not like in LA related

to the origin what leads to a clearly higher computa-

tional effort. So we analyzed the reflection in 3D GA.

Our investigation was based on [23, p. 108f] and took

into account two different variants of the GA descrip-

tion of reflection. The first one is the equivilant to our

5D solution and taken from [23, p. 109, 8.28]. The re-

fleced ray is calculated through two geometric products

of the ray R and the normal N of the plane PL.

Rre f =−N ∗R∗N

This leads to C-code with 3 times higher operation

count than LA. After by hand optimization the op-

eration count can be reduced to the same amount as

in LA. But to do this we had to presume that the

constructed normal has unit length, which has to be

achieved through cost intensive normalization. How-

ever because of our use of the Phong model we need

the normalized direction of the reflected ray anyway, so

that this is not drawback.

GA 5D GA 3D LA

additions/substractions 25 5 5

multiplications 37 7 7

Table 2: operations for reflection

So the GA and LA solution have the same amount of

operations in 3D. Like in LA the result vector contains

3 elements which can be computed in parallel.

5 IMPLEMENTATION DETAILS

In our fitting process we find the neighbors of the fit-

ting points by using a knn-search of the ANN library

[15]. We use the newmat library [2] to calculate the

eigenvectors of the 5x5 matrix computed from the point

neighborhood.

For our final implementation we use the OpenCL

environment together with an AMD Radeon HD4850

graphics card to raytrace views of our scenes. We cre-

ate a 256 by 256 array of threads which is the maximum

for our hardware in the OpenCL environment. The ar-

ray of threads is slided across the image domain so that

every pixel is covered once by one thread. Every thread

of the thread array calculates the raytracing algorithm

for the covered pixel independent of the other threads.

We derive the rays by calculating a GA line using the

origin of the camera and a point on the image plane.

The point on the image plane is interpolated bilinearly

in euclidean space from the 3D coordinates of the image

planes corners depending on the pixel position and the

image resolution.

To speed up the calculation of intersections we use a

modified kd-tree. When we split a node of the kd-tree

in the building process we can not cut surfels that cover

the splitting plane of the kd-tree node. We decided to

enlarge the axis aligned bounding boxes (AABB) of the

resulting child nodes so that every surfel is enclosed

completely in exactly one of the child nodes. We assign

the surfels to the child node that is covered by most of

GraVisMa 2009

36



Figure 3: Phlegmatic Dragon point cloud rendered at

2.6 fps on an AMD HD4850 GPU. The viewport size is

640 by 480. The model consists of 166162 surfels.

the surfels AABB volume. A result of our kd-tree build-

ing process is that several of the trees node AABBs will

intersect each other which does not happen in a real kd-

tree. Furthermore we have to use a larger memory foot-

print than is necessary for the usual kd-tree because we

save six coordinates for two corner points of the nodes

AABBs instead of only saving one coordinate for the

splitting plane and its direction. To traverse the kd-tree

we use a stack in OpenCLs shared memory. On our

hardware shared memory is emulated in global mem-

ory. A result of this is that on our hardware the large

memory footprint is not such a big problem. Instead of

reading the AABB information from the stack like one

would do it with the usual kd-tree we read the coordi-

nates from our kd-tree data structure. Both data sources

are in global memory.

6 RESULTS

We chose two different architectures to benchmark our

algorithms. We implemented a CPU version to measure

the impact of choosing one of the algebras for the ray-

tracing application directly. Our second architecture are

AMD 45xx series GPUs. The AMD GPUs can be seen

as a parallel processor for one invocation of the raytrac-

ing algorithm for one pixel. For further details we refer

to section 6.2.

6.1 Raytracing on CPUs

Our CPU implementation of the raytracing algortihm

is written in plain C/C++. We do not use any vector

extensions like SSE since we are interested in the per-

formance of LA and GA based on their mathematical

effort. To speed the algorithm invocation up we split

the calculations for the pixel array of the final image up

among multiple CPU cores with OpenMP pragmas.

6.2 Raytracing on GPUs

We decided to use the AMD Stream Technology for our

benchmarks on GPUs to get two advantages. First the

AMD processing elements that compute a single thread

of our GPU raytracing kernel have a 5-way VLIW De-

sign (very long instruction word). The processing ele-

ments can compute up to five floating point additions or

multiplications simultaneously which make up most of

the calculations of our GA raytracing algorithm. Sec-

ond with AMD Stream Kernel Analyzer we can disas-

semble the compiled code for the GPU. Let’s look at the

example of calculating the reflection in Linear Algebra.

In listing 1 you can see the according kernel written in

the Brook+ language.

kernel void reflection(float4 incident_ray<>,

float4 normal<>, out float4 reflected_ray<>){

float factor;

float4 ret;

factor = 2.f∗(incident_ray.x∗normal.x +

incident_ray.y∗normal.y+

incident_ray.z∗normal.z);

ret.x = incident_ray.x − normal.x ∗ factor;

ret.y = incident_ray.y − normal.y ∗ factor;

ret.z = incident_ray.z − normal.z ∗ factor;

ret.w = 0.f;

reflected_ray = ret;

}

Listing 1: Brook+ kernel that calculates the reflection

in Linear Algebra

The disassembly of the compiled code can be seen in

listing 2. There are five instructions denoted by the

numbers 2 to 6. The characters x, y, z, w and t show

which of the five ALUs are active in one instruction. In

instruction 2 there are four active ALUs of which three

calculate a multiplication while ALU t issues a move

operation. In contrast instruction 3 has only one active

ALU.

2 x: MUL_e∗2 T0.x, R1.z, R0.z

2 z: MUL_e∗2 ____, R1.y, R0.y

2 w: MUL_e∗2 ____, R1.x, R0.x

2 t: MOV R2.w, 0.0f

3 y: ADD ____, PV2.w, PV2.z

4 w: ADD ____, PV3.y, T0.x

5 x: MUL_e ____, R0.z, PV4.w

5 y: MUL_e ____, R0.y, PV4.w

5 z: MUL_e ____, R0.x, PV4.w

6 x: ADD R2.x, R1.x, −PV5.z

6 y: ADD R2.y, R1.y, −PV5.y

6 z: ADD R2.z, R1.z, −PV5.x

Listing 2: The computational part of the reflection dis-

sassembly

With the advantages of parallel execution of operations

inside a thread and the possibility to dissassmble the

GraVisMa 2009

37



compiled code we can directly measure the impact of

the parallel nature of GA multivector calculations com-

pared to an algorithm in Linear Algebra. The measure-

ment is possible both in terms of instruction count by

using the disassemblies of the according kernels and in

terms of execution time during a benchmark. The re-

sults in table 3 show that our theoretical considerations

which lead to the conclusion that the GA algorithm has

advantages on parallel architectures compared to LA

were right.

LA inst GA inst GA/LA inst GA/LA op

II 9 12 1.33 1.29

IP 13 17 1.3 2.0

RF 5 12 2.1 5.2

Table 3: GA/LA instructions and operations in compar-

ision for Intersection Indicator (II), Intersection Point

(IP) and Reflection (RF)

The table compares the instruction count of both

algebras (LA inst and GA inst). Furthermore the ratio

for the instruction count (GA/LA inst) and the observed

ratio for the operation count (GA/LA op), which was

derived in section 4, between them is shown. It is

obvious that the instruction ratio for the intersection

point and especially for the reflection vector is signif-

icantly smaller than the operation ratio. So the GA

multivectors can profit from AMDs architecture that

puts up to five operations into one instruction. The

value for the intersection indicator doesn’t change

because its computation can’t be parallelized like

shown in section 4.

6.3 Performance

We use artificial scenes and real world point clouds for

our benchmarks. The artificial scenes are designed to

show the impact of different stages in our raytracing

algorithm. For the intersection indicator we create a

scene consisting of 400 spheres. The spheres are placed

in a screen aligned 2D grid with a distance of their cen-

ter equal to 1.4 times their radius. As a result every

ray through a pixel of the image intersects at most two

spheres. The scene designed for the intersection con-

sists of 100 screen filling spheres that are placed one be-

hind the other to get a high depth complexity. A single

screen filling sphere is used to benchmark the impact

of the reflection calculation for shading. The real world

scenes are covered by the Egea model and a reduced

version of the chameleon point cloud with around 4500

points.

The CPU implementation is consistent with our the-

oretical observations in section 4. Table 4 shows that

the GA needs more time to render the same scene than

LA. The difference is not that high like in theory be-

cause there is a mixture of different parts of the algo-

rithm even if the scene is designed to show the impact

II IP RF CH EG

GA 2320 2190 270 21700 39089

LA 2000 1901 140 19580 34931

GA/LA 1.2 1.2 1.9 1.1 1.1

Table 4: Timings in milliseconds for different scenes on

an AMD Athlon 5600+ dual core at 2.8 GHz. Intersec-

tion Indicator (II), Intersection Point (IP) and Reflec-

tion (RF) are artificial scenes to benchmark the different

parts of the raytracing algorithm. The real world scenes

are Chameleon (CH) and Egea (EG). The viewport size

is 320 by 240

of one special part of the raytracing algorithm. Fur-

thermore the timings show the need for a spacial data

structure to render real world scenes.

II IP RF Chameleon Egea

GA 52 49 14 770 1402

LA 68 62 32 810 1322

GA/LA 0.76 0.79 0.43 0.95 1.06

Table 5: Timings in milliseconds for different scenes

on an AMD HD4850 GPU of the brute force approach.

Intersection Indicator (II), Intersection Point (IP) and

Reflection (RF) are artificial scenes to benchmark the

different parts of the raytracing algorithm. The view-

port size is 640 by 480

Looking at the results of the GPU brute force imple-

mentation presented in table 5 we were somehow sur-

prised. The GA algorithm does not only perform com-

parable to the LA implementation but is in some cases

even faster. An investigation of the dissasemblies of

both kernels shows a 5,26% increase in ALU instruc-

tions and a 28% increase in control flow instructions

for the LA implementation compared to GA. The in-

crease in control flow instructions seems to affect only

the artificial scenes with its low object count. The real

world scenes are rendered with nearly equal speed.

Bunny Max Planck Dragon

surfel count 19336 96208 166162

time (ms) 160 220 380

Table 6: Performance of the final implementation using

OpenCL on an AMD HD4850 GPU. The surfel models

were computed from the Standford Bunny, Max Planck

and original version of the Phlegmatic Dragon point

clouds. The viewport size is 640 by 480

The performance of our final OpenCL implementa-

tion presented in table 6 shows that we get interactive

frame rates for small and medium sized scenes.

7 CONCLUSION

We were able to show that it is possible to optimize GA

code in a way, that its amount of primitive operations is

GraVisMa 2009

38



comparable to that of LA solutions, with a little draw-

back for GA. In some cases we had to do some hand-

work to improve the results obtained by Gaalop even

further. In the field of reflections it does not seem to

be possible to reach a comparable count of operations

in the case of conformal space. To clearly increase the

performance we have to use the 3D case with the draw-

back to transform between spaces and to loose some

part of the elegance and compactness of GA. So there

exists always the task of finding a trade-off between

performance and elegance/compactness depending on

the kind of application which is developed.

Furthermore by using parrallel architectures one can

reach comparable speed for algorithm in GA and LA

even without additional handwork. Though the differ-

ence in speed for both algebras does not only depend on

mathematical effort but on other factors like the amount

of control flow instructions.

8 FUTURE WORK

We aim to implement our GA raytracing procedure on

a FPGA. Important questions to answer will be how to

partition the algorithm between FPGA and a CPU, what

spacial data structure to use and the relation between

pipeline and parallel architecture. Existing raytracing

procedures and GA co-processors on FPGAs reached

the capacity of the hardware very fast. So the challenge

will be to combine both tasks on a single component.

We also want to compare our introduced surfel model

to other surface representations to render point clouds.

We aim to improve the visual quality of our model by

interpolating neighboring surfels to get a smooth sur-

face without discontinuities. To enhance the render-

ing speed, which is about an order of magnitude below

other algorithms to render point clouds, we will inves-

tigate which spatial data structure is suited better to our

model than the presented kd-tree.

REFERENCES

[1] AMD. The AMD Stream Technol-

ogy home page. HTML document

http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-

TECHNOLOGY/Pages/stream-technology.aspx, 2009.

[2] Robert Davies. The Newmat home page. HTML document

http://www.robertnz.net/nm_intro.htm, 2009.

[3] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for

Computer Science, An Object-Oriented Approach to Geometry.

Morgan Kaufman, 2007.

[4] Joshua Fender. A high-speed ray tracing engine built on

a field-programmable system. In Proc. Int. conf. on Field-

Programmable Technology, IEEE, pages 188–195, 2003.

[5] D. Fontijne, T. Bouma, and L. Dorst. Gaigen

2: A geometric algebra implementation generator.

http://staff.science.uva.nl/ fontijne/gaigen2.html.

[6] Daniel Fontijne. Efficient Implementation of Geometric Alge-

bra. PhD thesis, University of Amsterdam, 2007.

[7] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impas-

tato, F. Sorbello, G. Vassallo, and S. Vitabile. A sliced copro-

cessor for native Clifford algebra operations. In Euromico Con-

ference on Digital System Design, Architectures, Methods and

Tools (DSD), 2007.

[8] Gaël Guennebaud and Markus Gross. Algebraic point set sur-

faces. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,

page 23, New York, NY, USA, 2007. ACM.

[9] D. Hildenbrand. Geometric computing in computer graphics

using conformal geometric algebra. Computers & Graphics,

29(5):802–810, 2005.

[10] D. Hildenbrand, H. Lange, Florian Stock, and Andreas Koch.

Efficient inverse kinematics algorithm based on conformal geo-

metric algebra using reconfigurable hardware. In GRAPP con-

ference Madeira, 2008.

[11] D. Hildenbrand and Joachim Pitt. The Gaalop home page.

HTML document http://www.gaalop.de, 2008.

[12] Dietmar Hildenbrand. Geometric Computing in Computer

Graphics and Robotics using Conformal Geometric Algebra.

PhD thesis, Darmstadt University of Technology, 2006.

[13] Intel. The Ct: C for Throughput Computing home page.

HTML document http://techresearch.intel.com/articles/Tera-

Scale/1514.htm, 2009.

[14] Takashi Kanai, Yutaka Ohtake, Hiroaki Kawata, and Kiwamu

Kase. Gpu-based rendering of sparse low-degree implicit sur-

faces. In GRAPHITE ’06: Proceedings of the 4th international

conference on Computer graphics and interactive techniques in

Australasia and Southeast Asia, pages 165–171, New York, NY,

USA, 2006. ACM Press.

[15] David M. Mount and Sunil Arya. The ANN home page. HTML

document http://www.cs.umd.edu/ mount/ANN/, 2009.

[16] NVIDIA. The CUDA home page. HTML document

http://www.nvidia.com/object/cuda_home.html, 2009.

[17] Yutaka Ohtake, Alexander Belyaev, and Marc Alexa. Sparse

low-degree implicit surfaces with applications to high quality

rendering, feature extraction, and smoothing.

[18] C. Perwass. The CLU home page. HTML document

http://www.clucalc.info, 2008.

[19] C. Perwass, C. Gebken, and G. Sommer. Implementation of a

Clifford algebra co-processor design on a field programmable

gate array. In R. Ablamowicz, editor, CLIFFORD ALGE-

BRAS: Application to Mathematics, Physics, and Engineer-

ing, Progress in Mathematical Physics, pages 561–575. 6th Int.

Conf. on Clifford Algebras and Applications, Cookeville, TN,

Birkhäuser, Boston, 2003.

[20] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multireso-

lution point rendering system for large meshes. In Proceedings

of ACM SIGGRAPH 2000, pages 343–352, July 2000.

[21] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor –

a hardware architecture for ray tracing. In Proceedings of the

conference on Graphics Hardware 2002, pages 27–36. Saar-

land University, Eurographics Association, 2002. available at

http://www.openrt.de.

[22] C. Stoll, S. Gumhold, and H.-P. Seidel. Incremental raycast-

ing of piecewise quadratic surfaces on the gpu. Symposium on

Interactive Ray Tracing, 0:141–150, 2006.

[23] John Vince. Geometric algebra: An algebraic system for com-

puter games and animation. London: Springer. xviii, 195 p,

2009.

GraVisMa 2009

39


