
Geometric Algebra Computers

Dietmar Hildenbrand
TU Darmstadt, Germany

dhilden@gris.informatik.tu-

darmstadt.de

ABSTRACT

Geometric algebra covers a lot of other mathematical systems like vector algebra, complex numbers, Plücker coordinates,

quaternions etc. and it is geometrically intuitive to work with. Furthermore there is a lot of potential for optimization and

parallelization.

In this paper, we investigate computers suitable for geometric algebra algorithms. While these geometric algebra computers

are working in parallel, the algorithms can be described on a high level without thinking about how to parallelize them. In this

context two recent developments are important. On one hand, there is a recent development of geometric algebra to an easy

handling of engineering applications, especially in computer graphics, computer vision and robotics. On the other hand, there

is a recent development of computer platforms from single processors to parallel computing platforms which are able to handle

the high dimensional multivectors of geometric algebra in a better way.

We present our geometric algebra compilation approach for current and future hardware platforms like reconfigurable hardware,

multi-core architectures as well as modern GPGPUs.

Keywords: Geometric algebra, GPGPU, multi-core-architecture, Verilog, OpenCL, CUDA, OpenMP, Ct, Larrabee.

1 INTRODUCTION

The foundation of geometric algebra was laid in 1844

and 1862 by Hermann Grassmann [8] whose 200th

birthday we were celebrating in 2009 [25]. His work

was continued by the English mathematician W. K.

Clifford in 1878 [2]. Due to the early death of Clifford,

the vector analysis of Gibbs and Heaviside dominated

most of the 20th century, and not the geometric algebra.

Geometric algebra has found its way into many areas of

science, since David Hestenes treated the subject in the

’60s [9]. In particular, his aim was to find a unified

language for mathematics, and he went about to show

the advantages that could be gained by using geomet-

ric algebra in many areas of physics and geometry [12],

[10], [13] culminating in the development of the con-

formal geometric algebra [11]. Many other researchers

followed and showed that applying geometric algebra

in their field of research can be advantageous, e.g. in

engineering areas like computer graphics, computer vi-

sion and robotics. Please find a survey on geometric

algebra algorithms in [26].

During the past decades, especially from 1986 until

2002, processor performance doubled every 18 months.

Currently, this improvement law is no longer valid be-

cause of technical limitations. Now, we can recognize a

shift to parallel systems and most likely these systems

will dominate the future. Thanks to multi-core architec-

tures or powerful graphics boards for instance based on

the CUDA technology from NVIDIA or on the future

Larrabee technology of INTEL, one can expect impres-

sive results using the powerful language of geometric

algebra.

There is already a very advanced pure software so-

lution called Gaigen (see [4] and [5]) as well as some

pure hardware solutions geometric algebra algorithms

(see for instance [24], [21] and [7] and a survey in [17]).

We propose to combine the advantages of both soft-

ware and hardware solutions. We use a two-stage com-

pilation approach for geometric algebra algorithms. In

a first step we optimize geometric algebra algorithms

with the help of symbolic computing. This kind of op-

timization results in very basic algorithms leading to

highly efficient software implementations. These al-

gorithms, foster a high degree of parallelization which

are then used for hardware optimizations in a second

step. As examples for geometric algebra computing we

present

• a FPGA(field programmable gate array) implemen-

tation of an inverse kinematics algorithm.

• examples on how to implement geometric algebra

algorithms on multi-core architectures. Since all

of the coefficients of high dimensional multivectors

can be computed in parallel, geometric algebra com-

puting benefits a lot from highly parallel structures.

• a OpenCL/CUDA implementation for arbitrary ge-

ometric products using 2n-dimensional multivectors

of n-dimensional geometric algebras.

2 GEOMETRIC ALGEBRA COMPUT-

ING APPROACH

Geometric algebra offers some very interesting proper-

ties like

• it is geometrically intuitive to work with

• it is easy to handle geometric objects like spheres,

circles, planes etc. as well as geometric operations

like rotations, reflections etc.

GraVisMa 2009

1



• geometric algebra algorithms are very compact

• it covers a lot of other mathematical systems like

vector algebra, complex numbers, Plücker coordi-

nates, quaternions etc.

How can we combine these properties with highly

performant implementations? Multivectors of a n-

dimensional geometric algebra are 2n-dimensional.

At first glance, this seems to be computationally

very expensive. But, there is a lot of potential for

optimization and parallelization of multivectors:

• the possibility of precomputing geometric algebra

expressions

– determine which of the coefficients are needed

for the resulting multivector

– symbolic simplification of the remaining coeffi-

cient computations

• Since all of the remaining coefficients can be com-

puted in parallel, geometric algebra computations

benefit a lot from parallel structures.

This is why we propose to separate geometric algebra

computing in two layers

• geometric algebra (GA) compilation layer

• platform layer

At the GA compilation layer geometric algebra opera-

tions like geometric product, outer product, inner prod-

uct, dual and reverse on multivectors are handled. This

is compiled in a second step to the platform layer. On

this layer only basic arithmetic operations on multivec-

tors with a high potential for efficient computations on

parallel platforms are available.

Figure 1: Geometric algebra computing architecture.

Algorithms are compiled to an intermediate represen-

tation for the compilation to different computing plat-

forms.

Our geometric algebra computing architecture is pre-

sented in Figure 1. Algorithms (described by the geo-

metric algebra programming language CLUCalc [23])

are compiled to an intermediate representation using a

Maple based or a table based approach (see sections

3.1 and 3.2). Based on this representation implemen-

tations for different sequential and parallel platforms

can be derived. See some examples for geometric al-

gebra computer platforms based on FPGA- Multicore-

and OpenCL/CUDA-architecture in sections 4.1 to 4.5.

3 GEOMETRIC ALGEBRA COMPILA-

TION

In order to achieve highly efficient implementations,

geometric algebra algorithms have to be optimized first.

We use two different compilation approaches. The

Maple based compilation needs the commercial Maple

package and is restricted to geometric algebras with di-

mension <= 9. The table based compilation is able to

handle higher dimensional algebras but it is currently

not as powerful as the Maple based compilation.

3.1 Maple Based Compilation

The Maple based compilation uses the powerful sym-

bolic computation feature of Maple [20]. Since all of

the results of geometric algebra operations on multivec-

tors are again multivectors we symbolically compute

and simplify the resulting multivectors in order to deter-

mine which of the coefficients are actually needed and

what is the most simple expression for each coefficient

(in the Maple sense).

There is already a first implementation of a compiler

for geometric algebra algorithms called Gaalop (Geo-

metric algebra algorithms optimizer) working with this

approach. Please find some information in [17]. You

are able to download Gaalop from [16].

3.2 Table Based Compilation

The table based compilation approach uses precom-

puted multiplication tables inspired by the code gen-

erator Gaigen [6] from the university of Amsterdam.

While Gaigen needs explicit specialization of multivec-

tors this is done automatically in our approach (see the

example below).

Multiplication tables In order to compute geometric

algebra algorithms, the rules for the computation of the

products of multivectors have to be known. These prod-

ucts of specific geometric algebras can be summarized

(and precomputed) in multiplication tables describing

the product of different blades of the algebra. You can

find some examples of multiplication tables in the ap-

pendix. Table 1, for instance, describes the geometric

product of the 8 = 23 blades of the 3D Euclidean geo-

metric algebra. Based on this information the geomet-

ric product of two multivectors, each defined as a linear

combination of all the blades mv = ∑mviEi can be eas-

ily derived as described in the caption of Table 1.

The same procedure can be used for other products.

Table 2, for instance, describes the outer product of the

GraVisMa 2009

2



mv1 mv2 mv3 mv4 mv5 mv6 mv7 mv8

E1 E2 E3 E4 E5 E6 E7 E8

1 e1 e2 e3 e12 e23 e13 e123

3D Euclidean geometric algebra. Note that a lot of en-

tries are zero corresponding to the outer product of two

identical blades.

Example Let us compile the following CLUCalc script

step by step:

a=a1*e1+a2*e2+a3*e3;

b=b1*e1+b2*e2+b3*e3;

?c=a*b;

d=a+c;

?f=a^d;

It computes the geometric product of two 3D vectors,

adds two multivectors and computes the outer product

of two multivectors.

The first two lines are used for the definition as well

as for an automatic specialization of the two multivec-

tors a

1 2 3 4 5 6 7 8

a1 a2 a3

and b

1 2 3 4 5 6 7 8

b1 b2 b3

For both, only the entries 2, 3 and 4 are needed since

they correspond to the three basis vectors e1,e2,e3 (see

Table 1).

The question mark in the third line of the CLUCalc

script indicates an explicit evaluation of this line, the

geometric product of the two multivectors a and b. Ta-

ble 3 shows the corresponding multiplication table for

this product. It is derived from the Table 1 with empty

rows and columns for multivector entries not needed

for a and b. The resulting multivector c needs only the

coefficients for the blades E1,E5,E6,E7 (see Table 3).

c[1]=a1*b1+a2*b2+a3*b3;

c[5]=a1*b2-a2*b1;

c[6]=a2*b3-a3*b2;

c[7]=a1*b3-a3*b1;

Each coefficient c[k] can be computed by summing up

the products ±ai ∗ b j based on the Ek table entries, for

instance c1 = a1 ∗b1 +a2 ∗b2 +a3 ∗b3.

1 2 3 4 5 6 7 8

c[1] a1 a2 a3 c[5] c[6] c[7]

In the fourth line of the CLUCalc script, two multi-

vectors are added resulting in the following multivector

d:

The evaluation of the outer product of a with this just

computed multivector d leads to

f[2]=a1*c[1];

f[3]=a2*c[1];

f[4]=a3*c[1];

f[5]=a1*a2-a2*a1;

f[6]=a2*a3-a3*a2;

f[7]=a1*a3-a3*a1;

f[8]=-a2*c[7]+a3*c[5]+a1*c[6];

For this computation you can use the multiplication ta-

ble 2. Associating the rows with the multivector a and

the columns with d we are able to set the rows 1, 5, 6,

7, 8 as well as the column 8 to zero. We recognize that

the remaining entries are for the coefficients 2, 3, 4, 5,

6, 7 and 8, E2 for instance in the second row and the

first column associated with the product a1 ∗ c[1].
Note that the multivector entries 5, 6 and 7 lead to

zero entries. This can be either recognized at compile

time or at runtime. In both cases the resulting multivec-

tor f has the following form:

1 2 3 4 5 6 7 8

f [2] f [3] f [4] f [8]

4 GEOMETRIC ALGEBRA COMPUT-

ERS

Here, computers suitable for geometric algebra algo-

rithms, are called geometric algebra computers (GA

computers).

Figure 2: The mathematical development to geometric

algebra and the computer development to parallel com-

puting platforms leading to GA computers

GraVisMa 2009

3



There are mainly two recent developments leading to

GA computers (see Figure 2):

• the development of mathematics from Grassmann´s

exterior algebra to Clifford´s algebra to the geomet-

ric algebra of David Hestenes and especially the 5D

conformal model leading to a lot of applications for

instance in computer graphics, computer vision and

robotics.

• the recent development of computer platforms for

the mass market from single processors to parallel

computing platforms which are able to handle the

high dimensional multivectors of geometric algebra

in a better way.

Figure 3 shows one example of an architecure able to

compute the coefficients of a multivector in parallel.

Figure 3: Computing architecture with a number of par-

allel processors, each consisting of local program mem-

ory. All the processors are able to communicate via

global shared memory.

With the compilation approaches described in

sections 3.1 and 3.2, geometric algebra algorithms

are compiled into a description suitable for parallel

computer platforms. In a next compilation step, the

different platforms require different descriptions for

their specific architecture. As follows, we describe

solutions for a reconfigurable hardware implementation

using Verilog, multi-core architectures using OpenMP

and Ct as well as a GPGPU implementation using

OpenCL/CUDA.

4.1 FPGA/Verilog implementation of a

geometric algebra algorithm

There are general FPGA (field programmable gate ar-

rays) implementations for geometric products ([24] and

[7]). Our approach differs from these general solu-

tions as we compile geometric algebra algorithms first

into simplified algorithms that can be handled easily by

FPGA´s. This is why we are not so much restricted in

the length of the expressions to compute as well as in

the dimension of the algebra.

Our FPGA implementations are always application

specific. As one proof-of-concept for our approach we

Figure 4: Pipeline schedule for the coefficient pex of

a multivector. All the computations according to equa-

tion (1) of all the pipeline stages can be done in parallel.

implemented an inverse kinematics algorithm. First, we

used our Maple based compilation approach (see sec-

tion 3.1) and the software implementation of the op-

timized algorithm became three times faster than the

conventional solution [14]. The FPGA implementation

of the optimized algorithm used the Verilog program-

ming language. See Figure 4 for the data flow and the

pipeline schedule of the computation of the following

part of the algorithm (one coefficient of one multivec-

tor)

pex = (PPj(PP34 −PP35)+PPk(PP25 −PP24 (1)

+tmpsqrt(PP15 −PP14))/ein f _PP.

This implementation became about 300 times faster

[15] (3 times by software optimization and 100 times

by additional hardware optimization). The main advan-

tage of this kind of implementation on reconfigurable

hardware is that we are able to realize parallelism in

two dimensions

• compute all the coefficients of one (or more) multi-

vectors in parallel

• use the pipeline structure (computations in all

pipeline stages at the same time).

4.2 OpenMP

OpenMP can be used in order to parallelize GA algo-

rithms. The programming language C can be extended

with OpenMP directives for an incremental approach to

parallelizing code. For details on OpenMP, please refer

to [1].

OpenMP supports task parallel computations. The

data of all the different threads is shared by default.

This is why the coefficients of multivectors can be com-

puted in parallel (as well as independent multivectors).

Using OpenMP for C, our above mentioned example

looks as follows

#pragma omp parallel {

GraVisMa 2009

4



#pragma omp sections {

#pragma omp section

c[1]=a1*b1+a2*b2+a3*b3;

#pragma omp section

c[5]=a1*b2-a2*b1;

#pragma omp section

c[6]=a2*b3-a3*b2;

#pragma omp section

c[7]=a1*b3-a3*b1;

}/*End of sections block */

#pragma omp sections

{

#pragma omp section

f[2]=a1*c1;

#pragma omp section

f[3]=a2*c[1];

#pragma omp section

f[4]=a3*c[1];

#pragma omp section

f[5]=a1*a2-a2*a1;

#pragma omp section

f[6]=a2*a3-a3*a2;

#pragma omp section

f[7]=a1*a3-a3*a1;

#pragma omp section

f[8]=-a2*c[7]+a3*c[5]+a1*c[6];

}/*End of sections block */

} /*End of parallel region */

Each of the two multivectors c and f have to be com-

puted sequentially because f needs the result of c for its

computation (while all of their coefficients can be com-

puted in parallel). In case of no dependance of the com-

putations, multivectors can also be computed in paral-

lel.

4.3 Ct

Intel researchers are developing Ct, or C/C++ for

Throughput Computing [18] in order to support their

new multi-core platform (code name Larrabee).

Ct offers parallelism on so-called indexed vectors

suitable for sparse multivectors. The fist step of our

example of section 3 generates a multivector which can

be described as the following indexed vector

c= [(1 -> a1*b1+a2*b2+a3*b3),

(5 -> a1*b2-a2*b1),

(6 -> a2*b3-a3*b2),

(7 -> a1*b3-a3*b1),

(_ -> 0)

]

Note that the underscore denotes a default value for

empty coefficients.

All operators on indexed vectors are implicitly par-

allel. This is why the addition of multivectors of our

example

d=a+c;

can be done very easily in Ct.

4.4 ATI stream

The ATI stream technology combines multiple thread

computing with parallel computing within the threads.

The following sample code computes the geometric

product of the above example with the help of float4

vectors. The 4 computations for the coefficients x,y,z,w

are computed in parallel.

kernel void MV (float4 a<>,

float4 b<>,

out float4 c<>){

float4 result;

result.x=a.x*b.x+a.y*b.y+a.z*b.z;

result.y=a.x*b2-a2*b.x;

result.z=a.y*b.z-a.z*b.y;

result.w=a.x*b.z-a.z*b.x;

c=result;

}

Please find an investigation about a ray tracing applica-

tion using this technology in [3].

4.5 OpenCL/CUDA implementation of

arbitrary geometric products

Figure 5: The result of a product of two multivectors

a, b is again a multivector. Each of its coefficients is a

sum of (signed or unsigned) products of coefficients of

a and b.

OpenCL [19] is an open standard for parallel pro-

gramming of heterogeneous systems. It is inspired by

Nvidia´s CUDA technology [22]. Both, are supporting

GraVisMa 2009

5



multiple threads which are able to run the same code

with different data on many parallel processors.

The result of products of a n-dimensional geometric

algebra are always 2n-dimensional multivectors. Each

of the 2n coefficients can be computed as a sum of

(signed or unsigned) products of coefficients of the mul-

tivectors to be multiplied (as indicated in Figure 5). We

distribute this computation to 2n threads, each comput-

ing one coefficient.

Figure 6: Pseudo code for the computation of one coef-

ficient of a geometric product.

Figure 6 describes the specific kernel code for

one thread, each computing one coefficient of the

2n-dimensional multivector.

Please find some details on this application in [27].

5 RESULTS

Our geometric algebra computing approach is able to

generate implementations for different sequential and

parallel platforms (see Figure 3). While some of the

described implementations are still work in progress,

we already have results for implementations in C, for a

FPGA and for CUDA.

Our first test case was the inverse kinematics of the

arm of a virtual character in a virtual reality applica-

tion. Naively implemented on a sequential processor

platform, the first geometric algebra algorithm was ini-

tially slower than the conventional one. However, with

our Maple based optimization approach the software

implementation became three times faster [14] than the

conventional solution. The hardware implementation

on a FPGA (as described in section 4.1) became even

300 times faster [15].

The results of our CUDA implementation of arbitrary

geometric products can be found in [27].

Recently we investigated the runtime performance of

a robotics grasping algorithm described in geometric al-

gebra [28]. It turned out that the implementation on

a sequential processor was 14 times faster and on the

CUDA platform 44 times faster than the solution with

conventional mathematics.

6 CONCLUSION AND FUTURE

WORK

We presented the currently most suitable geometric al-

gebra computing platforms. For the adaptation of the

algorithms to the different platforms we presented our

compilation approach. While the Maple based compi-

lation approach is able to handle algebras up to a di-

mension of 9, the table based approach is restricted by

the memory needed for the size of the multiplication

tables. These tables are exponentially increasing with

the dimension of the algebra. In this context, investi-

gations for lower amounts of memory are needed, for

instance the implementation on a multiplicative basis

as described in [5].

Currently, the presented parallel computing platforms

can be seen as approximations to perfect GA comput-

ers. As a long-term vision, we hope that this research

will lead to computing platforms optimally supporting

GA computers in the future.

ACKNOWLEDGEMENTS

This work was supported by the DFG (Deutsche

Forschungsgemeinschaft) project HI 1440/1-1.

GraVisMa 2009

6



A MULTIPLICATION TABLES

Table 1: Multiplication table describing the geometric product of two multivectors a = ∑aiEi and b = ∑biEi for the

3D euclidean GA. Each entry describes the geometric product of two basis blades Ei and E j expressed in terms of

the basis blades Ek. Each coefficient ck of the product c = ab can be computed by summing up the products ±ai∗b j

based on the Ek table entries, for instance c1 = a1∗b1 +a2∗b2 +a3∗b3 +a4∗b4−a5∗b5−a6∗b6−a7∗b7−a8∗b8

for the E1 table entries
b E1 E2 E3 E4 E5 E6 E7 E8

a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 E1 E2 E3 E4 E5 E6 E7 E8

E2 e1 E2 E1 E5 E7 E3 E8 E4 E6

E3 e2 E3 -E5 E1 E6 -E2 E4 -E8 -E7

E4 e3 E4 -E7 -E6 E1 E8 -E3 -E2 E5

E5 e12 E5 -E3 E2 E8 -E1 E7 -E6 -E4

E6 e23 E6 E8 -E4 E3 -E7 -E1 E5 -E2

E7 e13 E7 -E4 -E8 E2 E6 -E5 -E1 E3

E8 e123 E8 E6 -E7 E5 -E4 -E2 E3 -E1

Table 2: Multiplication table describing the outer product of two general multivectors a = ∑aiEi and b = ∑biEi

for the 3D euclidean GA. b E1 E2 E3 E4 E5 E6 E7 E8

a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 E1 E2 E3 E4 E5 E6 E7 E8

E2 e1 E2 0 E5 E7 0 E8 0 0

E3 e2 E3 -E5 0 E6 0 0 -E8 0

E4 e3 E4 -E7 -E6 0 E8 0 0 0

E5 e12 E5 0 0 E8 0 0 0 0

E6 e23 E6 E8 0 0 0 0 E5 0

E7 e13 E7 0 -E8 0 0 0 0 0

E8 e123 E8 0 0 0 0 0 0 0

Table 3: Multiplication table describing the geometric product of two vectors a = a1e1 + a2e2 + a3e3 and b =
b1e1 +b2e2 +b3e3 for the 3D euclidean GA. Note that all the rows and columns for basis blades not needed for the

vectors are set to 0. b b1 b2 b3

E1 E2 E3 E4 E5 E6 E7 E8

a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 0 0 0 0 0 0 0 0

a1 E2 e1 0 E1 E5 E7 0 0 0 0

a2 E3 e2 0 -E5 E1 E6 0 0 0 0

a3 E4 e3 0 -E7 -E6 E1 0 0 0 0

E5 e12 0 0 0 0 0 0 0 0

E6 e23 0 0 0 0 0 0 0 0

E7 e13 0 0 0 0 0 0 0 0

E8 e123 0 0 0 0 0 0 0 0

GraVisMa 2009

7



REFERENCES

[1] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using

OpenMP : portable shared memory parallel programming. The

MIT Press, 2008.

[2] William Kingdon Clifford. Applications of Grassmann’s Exten-

sive Algebra, volume 1 of American Journal of Mathematics,

pages 350–358. The Johns Hopkins University Press, 1878.

[3] Crispin Deul, Michael Burger, Dietmar Hildenbrand, and An-

dreas Koch. Raytracing point clouds using geometric algebra.

In submitted to the proceedings of the GraVisMa workshop,

Plzen, 2010.

[4] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Al-

gebra for Computer Science, An Object-Oriented Approach to

Geometry. Morgan Kaufman, 2007.

[5] Daniel Fontijne. Efficient Implementation of Geometric Alge-

bra. PhD thesis, University of Amsterdam, 2007.

[6] Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen 2:

A geometric algebra implementation generator. Available

at http://staff.science.uva.nl/~fontijne/

gaigen2.html, 2007.

[7] Antonio Gentile, Salvatore Segreto, Filippo Sorbello, Giorgio

Vassallo, Salvatore Vitabile, and Vincenzo Vullo. Cliffosor, an

innovative fpga-based architecture for geometric algebra. In

ERSA 2005, pages 211–217, 2005.

[8] Hermann Grassmann. Die Ausdehnungslehre. Verlag von Th.

Chr. Fr. Enslin, Berlin, 1862.

[9] David Hestenes. Space-Time Algebra (Documents on Modern

Physics). Gordon and Breach, 1966.

[10] David Hestenes. New Foundations for Classical Mechanics.

Dordrecht, 1986.

[11] David Hestenes. Old wine in new bottles : A new algebraic

framework for computational geometry. In Eduardo Bayro-

Corrochano and Garret Sobczyk, editors, Geometric Alge-

bra with Applications in Science and Engineering. Birkhäuser,

2001.

[12] David Hestenes and Garret Sobczyk. Clifford Algebra to Ge-

ometric Calculus: A Unified Language for Mathematics and

Physics. Dordrecht, 1984.

[13] David Hestenes and Renatus Ziegler. Projective Geometry with

Clifford Algebra. Acta Applicandae Mathematicae, 23:25–63,

1991.

[14] Dietmar Hildenbrand, Daniel Fontijne, Yusheng Wang, Marc

Alexa, and Leo Dorst. Competitive runtime performance for

inverse kinematics algorithms using conformal geometric alge-

bra. In Eurographics conference Vienna, 2006.

[15] Dietmar Hildenbrand, Holger Lange, Florian Stock, and An-

dreas Koch. Efficient inverse kinematics algorithm based on

conformal geometric algebra using reconfigurable hardware. In

GRAPP conference Madeira, 2008.

[16] Dietmar Hildenbrand and Joachim Pitt. The Gaalop home page.

Available at http://www.gaalop.de, 2008.

[17] Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch. Gaalop

- high performance parallel computing based on conformal ge-

ometric algebra. In Eduardo Bayro-Corrochano and Gerik

Scheuermann, editors, Geometric Algebra Computing for En-

gineering and Computer Science. Springer, 2009.

[18] Intel. Ct: C for throughput computing home page. Available

at http://techresearch.intel.com/articles/Tera-Scale/1514.htm,

2009.

[19] Khronos-Group. The OpenCL home page. Available at http:

//www.khronos.org/opencl/, 2009.

[20] The homepage of maple. Available at

http://www.maplesoft.com/products/maple, 2009. 615 Kumpf

Drive, Waterloo, Ontario, Canada N2V 1K8.

[21] Biswajit Mishra and Peter Wilson. Hardware implementation of

a geometric algebra processor core. In Proceedings of IMACS

International Conference on Applications of Computer Algebra

(in press), Nara, Japan, 2005.

[22] NVIDIA. The CUDA home page. Available at

http://www.nvidia.com/object/cuda_home.html, 2009.

[23] Christian Perwass. The CLU home page. Available at

http://www.clucalc.info, 2005.

[24] Christian Perwass, Christian Gebken, and Gerald Sommer. Im-

plementation of a clifford algebra co-processor design on a field

programmable gate array. In Rafal Ablamowicz, editor, CLIF-

FORD ALGEBRAS: Application to Mathematics, Physics, and

Engineering, Progress in Mathematical Physics, pages 561–

575. 6th Int. Conf. on Clifford Algebras and Applications,

Cookeville, TN, Birkhäuser, Boston, 2003.

[25] Hans-Joachim Petsche. The Grassmann Bicentennial

Conference home page. Available at http://www.uni-

potsdam.de/u/philosophie/grassmann/Papers.htm, 2009.

[26] Alyn Rockwood and Dietmar Hildenbrand. Engineering graph-

ics in geometric algebra. In Eduardo Bayro-Corrochano and

Gerik Scheuermann, editors, Geometric Algebra Computing for

Engineering and Computer Science. Springer, 2009.

[27] Christian Schwinn, A Goerlitz, and Dietmar Hildenbrand. Ge-

ometric algebra computing on the cuda platform. In submitted

to the proceedings of the GraVisMa workshop, Plzen, 2010.

[28] Florian Wörsdörfer, Bayro-Corrochano Eduardo Stock, Flo-

rian, and Dietmar Hildenbrand. Optimization and performance

of a robotics grasping algorithm described in geometric alge-

bra. In Iberoamerican Congress on Pattern Recognition 2009,

Guadalajara, Mexico, 2009.

GraVisMa 2009

8


