
Geometric Algebra Computing on the CUDA Platform

Christian Schwinn
TU Darmstadt, Germany

Department of Computer Science

schwinn@rbg.informatik.tu-

darmstadt.de

Andreas Görlitz
TU Darmstadt, Germany

Department of Computer Science

A.Goerlitz@stud.tu-darmstadt.de

Dietmar Hildenbrand
TU Darmstadt, Germany

Department of Computer Science

dhilden@gris.informatik.tu-

darmstadt.de

ABSTRACT

Geometric Algebra (GA) is a mathematical framework that allows a compact, geometrically intuitive description of

geometric relationships and algorithms. These algorithms require significant computational power because of the

intrinsically high dimensionality of geometric algebras. Algorithms in an n-dimensional GA require 2n elements to

be computed for each multivector. GA is not restricted to a maximum of dimensions, so arbitrary geometric alge-

bras can be constructed over a vector space Vn. Since computations in GA can be highly parallelized, the benefits

of a parallel computing architecture can lead to a significant speed-up compared to standard CPU implementations,

where elements of the algebra have to be calculated sequentially. An upcoming approach of coping with parallel

computing is to use general-purpose computation on graphics processing units (GPGPU). In this paper, we focus

on the Compute Unified Device Architecture (CUDA) from NVIDIA [9]. We present a code generator that takes

as input the description of an arbitrary geometric algebra and produces an implementation of geometric products

for the underlying algebra on the CUDA platform.

Keywords: Geometric Algebra, Geometric Computing, GPU, CUDA.

1 INTRODUCTION

Geometric Algebra (GA) has become more and more

popular in different fields of research. Using GA makes

it possible to develop very compact algorithms while

keeping them geometrically intuitive. One major draw-

back is the reduced performance when executing GA

algorithms without further processing. But recent re-

search has shown that it is possible to speed up GA al-

gorithms drastically by means of static code optimiza-

tion and switching to parallel computing architectures

like field-programmable gate arrays (FPGA), for in-

stance. Moreover, this can lead to performance im-

provements compared to standard implementations [8].

Applications written in GA require a very large num-

ber of calculations to be processed, e.g. feature extrac-

tion algorithms [11]. In many cases it is necessary to

define highly customized non-standard algebras in or-

der to fit the problem statement. What these problems

have in common is a remarkable amount of paralleliza-

tion required to fulfill the constraints of reduction. In

theory, it is possible to decrease the order of time com-

plexity for certain applications which, in turn, requires

virtually infinite operations to be executed in parallel.

In this paper, we investigate the potential of executing

GA operations on parallel architectures. As a very first

approach we focus on the implementation of arbitrary

geometric products on the CUDA platform as a means

for evaluating the performance of parallel computing in

GA compared to standard implementations. We imple-

ment the calculation of the geometric product without

any restrictions to the underlying algebra and associated

metric and signature. We exploit the property that ele-

ments of the result multivector can be easily computed

in parallel, e.g. each one in a separate (parallel) thread

on a CUDA-enabled GPU. Therefore, we implement a

code generator producing parallel CUDA code calculat-

ing the geometric product of the related algebra. This

code can be used to speed up algorithms.

Our approach takes as input the description of an

n-dimensional algebra in terms of a metric or signa-

ture and calculates a data structure describing the el-

ementary product of all possible combinations of ba-

sis blades. This can be seen as a lookup table that

is first optimized according to GA simplifications and

then used to generate expressions for the individual re-

sult multivector components that only depend on the

coefficients of the input multivectors to be multiplied.

This corresponds to a table based compilation process

as described in [5]. Finally, these expressions are trans-

lated into parallel CUDA code that calculates the result

multivector and can be used for efficient calculation of

the geometric product.

As a result, we evaluate the performance of the par-

allelized geometric product to get an estimation on the

impact of parallel computing on problems in GA.

2 CONTRIBUTION

We present a code generator which translates the de-

scription of an arbitrary geometric algebra with associ-

ated signature and metric into CUDA code that imple-

ments the geometric product for the specified algebra.

This code is a building block that can be used in GA

algorithms to calculate the geometric product with the

GraVisMa 2009

111 Communication papers



help of a NVIDIA GPU. The code generator is written

in Java, allowing the integration into a future versions

of the Gaalop [6] optimizer.

Our approach consists of the steps outlined below:

1. Input description of signature and metric for the ge-

ometric algebra to be optimized.

2. Computation and optimization of a lookup data

structure representing elementary products of basis

blades for the given algebra.

3. Calculation of expressions for each component of

the result multivector.

4. Code generation for optimized output code imple-

menting the geometric product.

2.1 Specification of Algebra

We support arbitrary geometric products to be opti-

mized by our compiler. Therefore, it must be possible

to specify an arbitrary n-dimensional geometric algebra

by means of a signature and metric description. From

this information we derive a n×n matrix describing the

geometric product of basis vectors with eij = eiej .

2.2 Computation of Data Structure

Using the information from the previous step, we calcu-

late a lookup data structure that describes the geomet-

ric product of all possible basis blades that can be con-

structed over the n basis vectors from the algebra. This

data structure has the form of a matrix with 2n × 2n

entries. Note that an arbitrary geometric algebra is non-

euclidean, i.e. its metric is not diagonal. So, in general,

a single entry of the lookup matrix consists not only of

a simple product of basis vectors but rather of a sum of

expressions. In the 5D conformal algebra, for example,

e0e∞ = −1+ e0∧ e∞. The maximum number of sum-

mands in this algebra is 2, namely the scalar -1 and the

2-blade e0 ∧ e∞.

Each entry in the lookup data structure can be viewed

as a list of references to basis blades named E1 to EN

with N = 2n. For a three-dimensional algebra, for

example, the basis blades are named as shown in the

following table.

E1 1

E2 e1
E3 e2
E4 e3
E5 e1 ∧ e2
E6 e1 ∧ e3
E7 e2 ∧ e3
E8 e1 ∧ e2 ∧ e3

Table 1: Naming of basis blades.

The internal representation can be made very com-

pact using a bitwise encoding for "active" basis vectors

in a blade, e.g. 101 for E6 = e1∧ e3 as used in Gaigen

[4], for instance. We assume a canonical ordering of

blades, starting with scalars, 1-blades, 2-blades and so

on, labeled with E1, E2, ...EN .

Exploiting geometric algebra properties such as anti-

commutativity (ei ∧ ej = −ej ∧ ei) and the knowledge

of the inner product of basis vectors from the first step,

it is possible to simplify the entries in the lookup matrix.

The goal is to have only very few references to signed

(+/-) basic blades. This applies to euclidean algebras,

for instance, where the metric is diagonal and each

entry consists of a single blade. The following table

gives an example for the optimized lookup table of a 2-

dimensional euclidean algebra. More details about the

table-based approach of implementing and optimizing

geometric algebra operations like the geometric prod-

uct can be found in [5].

b E1 E2 E3 E4

a 1 e1 e2 e12

E1 1 E1 E2 E3 E4

E2 e1 E2 E1 E4 E3

E3 e2 E3 -E4 E1 -E2

E4 e12 E4 -E3 E2 -E1

Table 2: Example of a lookup table.

We calculate the lookup table using the freely avail-

able reference implementation of Gaigen [3], which is

implemented in Java and provides basic functionality

without performance considerations but serves our pur-

poses. After the calculation of the lookup table, we get

a list of basis blades for each entry of the table con-

taining only non-zero references to the basis blades Ei.

Each entry represents a part of the expression that con-

tributes to the coefficient of the result multivector. For

each reference to basis blades Ei in the entry, the in-

put coefficients associated with the row and column of

the position in the lookup table contribute to the final

coefficient of blade Ei in the result multivector.

2.3 Multivector Components

From the information stored in the lookup table, expres-

sions for each component of the result multivector can

be determined. Each multivector consists of a combi-

nation of 2n basis blades and associated coefficients,

where the i-th coefficient is multiplied by Ei. Since

only coefficients of the input multivectors are of inter-

est, the references to basis blades found in the lookup

table have to be translated. For each multivector com-

ponent i, the references to the Ei are looked up in the

table.

Let a, b be the input multivectors with coefficients

a1, a2, . . . aN and b1, b2, . . . bN . Then for an entry Ei in

GraVisMa 2009

112 Communication papers



the lookup table the coefficients are selected according

to the column and row where the entry has been found.

So, for the first occurrence of E1 in the example from

Table 2, which is placed in the first column and first row,

indices a1 and b1 have to be selected. We will associate

the row index with multivector a and the column index

with multivector b, as indicated by Table 2. The sign to

be used corresponds directly to the sign of the reference

to the basis blade found in the table.

The final expressions for the coefficients of the result

multivector c from the above example are shown below.

c1 = a1b1 + a2b2 + a3b3 − a4b4

c2 = a1b2 + a2b1 − a3b4 + a4b3

c3 = a1b3 + a2b4 + a3b1 − a4b2

c4 = a1b4 + a2b3 − a3b2 + a4b1.

Note that these expressions only consist of a sum of

products of coefficients. The GPU which will finally

calculate these coefficients and therefore does not re-

quire any knowledge about geometric algebra opera-

tions like outer or inner product, for example.

2.4 Code generation

The last step in the code generation process is creat-

ing the CUDA output. We parallelize the calculation of

each multivector component, so each component is cal-

culated in a separate thread. This is possible since each

thread only depends on the input coefficients of multi-

vectors a and b. For an n-dimensional algebra there will

be 2n threads executed in parallel. In practice, the ac-

tual number of parallel threads depends on the amount

of processing units on the target platform.

In fact, the parallelization scheme is application-

dependent. For a single application calculating a single

geometric product at a time, the above principle is

sufficient. But for applications which might have a

large number of geometric products to be calculated in

parallel at the same time, this principle might be inap-

propriate. In this case, other concepts like streaming,

working queues or warp-level parallelization should

be more useful. As a first attempt of a GPU-based

implementation in this paper, we stick to the first

method for parallelization, calculating one coefficient

per thread.

Expressions for different multivector components

differ as well in the coefficients to be multiplied as in

the structure. Depending on the underlying algebra,

some multivector components could be always zero

while others consist of a large expression with multiple

additions and subtractions. In order to distribute

parallel threads calculating different components, it

is therefore necessary to find a generic representation

of such an expression, since parallel threads have to

execute the same code1. To cope with differences in

the length and structure of these expressions, we define

a meta data structure which will be used in the CUDA

code produced by the code generator. From this data

structure, parallel threads can look up which elements

of the input multivectors have to be multiplied and

added or subtracted to the current result.

The meta data structure consists of two parts. The

first one represents a single summand in the expression

for a multivector component, e.g. a1b3. Since these

summands can also be counted negatively, there is an

additional sign field. This structure is modeled as a C

struct Summand keeping track of the indices of the in-

put multivectors and the sign. To minimize the memory

footprint, the code generator generates summand struc-

tures only for summands that actually will be used in

the calculations. All the summands are finally stored

sequentially in an array. A thread calculating the i-th

multivector component must know which summands to

select from this array. Therefore, the second part of

the meta data structure keeps track of which summands

correspond to which expression. This is modeled in an-

other C struct Info which stores the offset to the rel-

evant summands. This requires the code generator to

store summands in the correct order. For each multivec-

tor component there is exactly one info object, so each

thread selects the info object according to its thread in-

dex. The number of summand objects to be involved in

the calculation is determined by the current offset and

the offset of the next component or the maximum num-

ber of summand objects in the case of the last index.

Calculation of the meta data structure can be done

before the actual calculation of the geometric product

since the related information is static and not depen-

dent on concrete coefficients of the input multivectors.

Finally, each thread needs references to

• input multivectors a, b,

• result multivector c,

• array of summands and

• the array of info objects.

From this information each thread selects the info ob-

ject of the multivector component to be calculated, from

which it gets offset and length of the summand objects

to involve. Then for each summand object the coeffi-

cients of a and b are multiplied according to the index

in the summand info and signed accordingly. This tem-

porary result is aggregated until all relevant summand

objects have been processed. The final result is written

to the result multivector c. The calculation of a multi-

vector coefficient ci is illustrated in Figure 1.

1 This is in fact a shortcoming of CUDA-based applications: It is not

possible to access the GPU’s parallel processing units to be used for

different tasks at the same time.

GraVisMa 2009

113 Communication papers



�
�
������

�
������

�
������

�
������

�
��������������

	



�



�



�



�



�

�



	

��

�

�

�

Figure 1: Calculation scheme for coefficient ci

2.5 Implementation details

When generating CUDA code, it is important to con-

sider the structure of the underlying hardware. The

main aspect to be concerned is the memory hierarchy.

Depending on the amount of data and the way data

is accessed, it is very important to specify which data

should be stored in which parts of the device memory.

For details on the memory hierarchy, please refer to the

CUDA Programming Guide [9].

Listing 1 shows an exemplary CUDA code which is

executed by each thread. Variables a and b are vec-

tors containing the input coefficients, c is used to store

the results. The offset to the array of summand ob-

jects is obtained by the current thread index. Accord-

ing to the index and current offset, the number of sum-

mands to be used is determined. Then, for each rele-

vant summand, the indices to the input multivectors are

retrieved, and the corresponding coefficients are multi-

plied and signed. The final result is written into c.

_ _ g l o b a l _ _ void C a l c u l a t e ( f l o a t ∗ a ,

f l o a t ∗ b ,

f l o a t ∗ c ) {

i n t i = blockDim . x∗ b l o c k I d x . x+ t h r e a d I d x . x ;

f l o a t r e s = 0 . 0 ;

i n t o f f s e t = o f f s e t s [ i ] ;

i n t l e n g t h ;

i f ( i == N−1) {

l e n g t h = num_summands−o f f s e t ;

} e l s e {

l e n g t h = o f f s e t s [ i +1]− o f f s e t ;

}

f o r ( i n t j = 0 ; j < l e n g t h ; j ++)

{

Summand s = summands [ o f f s e t + j ] ;

i f ( s . s i g n ) {

r e s += a [ s . i n d e x _ a ]∗ b [ s . i ndex_b ] ;

} e l s e {

r e s −= a [ s . i n d e x _ a ]∗ b [ s . i ndex_b ] ;

}

}

c [ i ] = r e s ;

}

Listing 1: Kernel code executed by each thread

This way it is possible that each kernel executes the

same code although the expressions for different multi-

vector components are variable.

The formal parameters to the kernel function, a, b and

c, reside in the shared device memory automatically.

Since they have to be passed from host side each time a

geometric product should be calculated, this is already

the place as close to the multiprocessor as possible.

Since the meta data structure consisting of the sum-

mand array and the offset objects has to be used in each

thread, it is necessary to keep this data in the global de-

vice memory. Here, it is important to know that the

meta data becomes very large, dependent on the di-

mension of the algebra. So, for algebras with dimen-

sions larger than 6, other portions of the device memory

like shared memory or constant memory are too small.

Passing the meta data each time on a kernel call would

place the data in the shared memory, which is restricted

in size on the one hand and available only for a set of

threads from one block on the other hand. Constant

memory is cached, so there is in general a performance

benefit over global device memory. But constant mem-

ory is restricted to 64 KB, which is far too less for large

algebras. Details on memory and time consumption

will be shown in section 3.

Another problem related to the meta data is the setup

procedure, which has to be done before the actual com-

putation can begin. This step is required only once, af-

terwards an arbitrary number of geometric products can

be calculated without the overhead of setting up the data

structure again. For each multivector component, there

is a variable number of summands to be included in the

calculation. Each summand object, which consists of

the indices to the input multivectors and the correspond-

ing sign, has to be added to the array of summands.

Since in the worst case there are 2n ∗ 2n summands in

total, 22n objects have to be created and added to the

array. This is a considerable amount of code to be pro-

duced, because an exponential number of lines of code

has to be processed. If the dimension were too high,

the produced code would be so large that most compil-

ers would have problems compiling this code. It can

therefore be necessary to swap this information out of

the program source code, i.e. in a separate file which

has to be read at runtime. Doing this leads to a constant

size of the actual source code, whereas the size of the

input file to be read during the setup increases exponen-

tially with the number of dimensions.

3 EVALUATION

The approach presented in this paper is to be seen as

a very first attempt to implement geometric algebra on

a multiprocessor platform like GPUs. As a proof of

concept, no optimizations have been applied at all. So,

allowing to implement the geometric product of an ar-

bitrary algebra requires to assume worst case scenarios

GraVisMa 2009

114 Communication papers



� � � � � � � �

	
		

�
		

�	
		

��
		

�	
		

��
		

�	
		

� � � � � � � �

	
		

�	
		

�		
		

��	
		

�		
		

��	
		

�		
		

� � � � � � � �

	
		

�		
		

�			
		

��		
		

�			
		

��		
		

Figure 2: Comparison of time consumption (y-axis) for 10 (left), 100 (middle) and 1000 (right) geometric products.

Times are measured in milliseconds. Values on the x-axis specify the dimension of the algebra.

where multivectors all have non-zero coefficients and

lookup tables are fully occupied with no entries being

zero. Consequently, a euclidean geometric algebra of

dimension n is expected to have a lookup table with

exactly 2n ∗ 2n = 22n elements, each one represent-

ing one summand in the different sum-of-product ex-

pressions for every coefficient of the result multivector

component. Due to this exponential growth and the as-

sumption that multivectors have non-zero coefficients,

the meta data required to represent these expressions

becomes very large, even for small dimensions.

Performance considerations

Memory

Restricting the maximum dimension of the algebra to

15 allows to encode a summand of some coefficient into

a single integer value in the following way2:

• 1 bit for sign (e.g. 0 for positive, 1 for negative),

• 15 bits for the index to the first multivector,

• 15 bits for the index to the second multivector and

• 1 unused bit for padding.

Consequently, for an algebra of dimension 15, there

would be 215 multivector elements, requiring 215 in-

dices. A summand object, consisting of two indices and

the sign would therefore occupy 31 bits of a 32-bit in-

teger variable. As argued above, this would mean to

create 22∗15 = 230 summand objects, each one requir-

ing the space of a single integer, i.e. 4 bytes. The total

amount of memory would therefore be 230 ∗ 22 = 232

bytes = 4 Gbyte.

Obviously, the memory footprint is the limiting factor

in this approach. Without optimizations, high dimen-

sions are not feasible at all, because more time would

2 Note that otherwise the meta data would be about three times larger,

making the application infeasible due to the memory overhead.

be spent copying the data back and forth from and to the

device memory while losing the advantages of parallel

processing.

Time

Figure 2 shows three graphs plotting the time to cal-

culate 10, 100 and 1000 geometric products over the

dimension of the algebra. For dimensions ≤ 7 with

moderate memory footprint, time rises linearly with the

number of dimensions. Since memory consumption

rises exponentially, higher dimensions have a lot more

influence on the computation time, as indicated in the

plots. Comparing the plots with respect to the number

of geometric products shows that increasing the num-

ber of products by factor 10 results in an increase in

time consumption by approximately factor 10, too.

These results give a hint that the time required to cal-

culate a number of products is influenced by the mem-

ory needed to store the structure of expressions for the

different multivector components, which itself depends

on the dimension.

Comparison to CPU-based Calculation

The main disadvantage of a GPU-based approach is the

necessity to copy data back and forth to and from the

device, because the GPU has its own set of memory,

registers and caches. Besides copying the meta data re-

quired to represent the instructions required to calculate

a result coefficient, which has to be done only once per

application lifetime, it is necessary to copy the vectors

representing the input coefficients onto the device and

output coefficients from the device. As opposed to the

static meta data, this information changes in each call

to the kernel function, so copying has to be performed

on each calculation. The effort for copying input and

output data is directly related to the dimension of the

algebra, due to the fact that each vector of input and

output coefficients has 2n elements, i.e. 2n times the

GraVisMa 2009

115 Communication papers



size of the data type, e.g. 2n ∗ 4 bytes in the case of

floats. As an example, calculating the product in an 8-

dimensional algebra, 3 ∗ 28∗sizeof(float)= 3 KB of in-

put and output data have to be copied for each product.

This is a significant amount which has to be considered

when measuring the performance of the implementa-

tion. In our benchmarks, the time spent for I/O oper-

ations between host and device took up to 25% of the

overall computation time.

Gaigen [4] is a CPU-based implementation generator

for geometric algebra. Gaigen uses advanced optimiza-

tion techniques and uses specializations that tell the tool

where further optimizations can be made, according to

the type of multivector. As a CPU-only application,

Gaigen does not suffer from memory overhead which is

inevitable on parallel platforms as GPUs, for instance.

This is why Gaigen is about factor 10 faster than our

approach without any optimizations. In turn, Gaigen

suffers from a similar problem as outlined in section

2.5, what makes Gaigen unusable for dimensions larger

than 6 because the generated code becomes too large so

compilers have problems compiling it.

Without considering the memory overhead, our ap-

proach is slightly faster than Gaigen, even without ap-

plying further optimizations on the structure of multi-

vectors. With a certain knowledge about the types of

multivectors which are about to be multiplied, a lot of

computation time can be saved by removing parts from

the meta data that are actually zero. For example, let the

second half of both multivectors be always zero. Then

75% of the lookup table are zero and meta data shrinks

to 25% of the worst case, which finally leads to better

overall performance. For details, please refer to [5].

Moreover, our approach targets applications using

high-dimensional geometric algebras. Only in cases

where the dimension is high enough, memory overhead

can be compensated by exploiting the parallel architec-

ture, i.e. keeping the device fully loaded.

4 CONCLUSION

We have shown a very first approach of implement-

ing geometric algebra on the GPGPU platform CUDA.

We implemented a code generator producing an imple-

mentation of the geometric product on the CUDA plat-

form. Applications running CUDA-enabled hardware

are therefore able to use this implementation to make

use of the computational power of modern GPUs. With-

out optimizations it is currently theoretically possible

to calculate geometric products in algebras of dimen-

sion up to 15 without exceeding device memory restric-

tions3. In practice, this is not usable, since there would

be too much memory overhead for this number of di-

mensions.

3 For dimensions > 10 it is necessary to put input and output multivec-

tors in global memory since shared memory where kernel parameters

reside is limited to 16 KB.

Supporting arbitrary algebras while always consider-

ing the worst case of full multivectors with non-zero co-

efficients is too limiting. For most applications, e.g. us-

ing the 5D conformal geometric algebra, more than half

of the multivector coefficients are usually zero. This is

important to know in advance, because multiplication

tables as mentioned in section 2.2 can be reduced to a

large extent. This is a nice property which has to be ex-

ploited as much as possible. Otherwise, there is far too

much "infrastructure" required to manage the calcula-

tion for different multivector components, as outlined in

the previous sections. Since time consumption depends

directly on the number of dimensions and the related

amount of meta data required for calculation, reducing

the lookup data and related memory consumption on

the device to the minimum possible value is the most

important step to achieve reasonable performance while

supporting high-dimensional algebras. Of course, this

requires the knowledge of multivectors to be multiplied.

One solution is to tell the code generator which special-

izations of multivectors will be used. This is done in

Gaigen, for instance. But creating specializations re-

quires the user to know the structure of multivectors in

advance. In complex algorithms, there might be situ-

ations where it is hard to decide which parts of multi-

vectors might always be zero. It is therefore desirable

to have a tool that optimizes parts of algorithms auto-

matically like Gaalop [6]. This is why the integration

of a code generator for parallel platforms into Gaalop is

planned for future releases.

5 FUTURE WORK

Our next step will be to investigate the potential for

minimization of memory needed to store and process

multiplication tables. This can be done automatically

by using the algorithm optimizer tool Gaalop, which

optimizes algorithms written in the interactive visual-

ization and calculation tool CLUCalc [10] and produces

different output formats like C++, for instance. With

the help of Gaalop, it will be possible to detect the

structure of multivectors and to optimize multiplication

tables according to the automatically detected special-

izations as described in [5].

Gaalop [6] makes it possible to optimize algorithms

in GA rather than single calculations. Therefore, the

code generator for parallel architectures will be inte-

grated into the Gaalop optimizer software.

Furthermore, we will study existing libraries for ge-

ometric computing like described in [1] to find new

methods how to generate optimized code for arbitrary

algebras and dimensions.

A new standard for parallel computing, OpenCL [7],

has recently been released. Using OpenCL makes it

possible to address multiple computing devices like

CPUs, GPUs or cell processors to be used for general-

purpose computing. This standard generalizes vendor-

GraVisMa 2009

116 Communication papers



specific GPGPU approaches like CUDA or ATI Stream

[2], for example. We see this as an important step

for future developments of general-purpose computing.

Since as from now OpenCL drivers are officially re-

leased by NVIDIA and OpenCL is supported in the

latest version 10.6 of the Mac OS operating system,

we will extend our code generator to produce OpenCL

code in order to support different hardware platforms

automatically.

REFERENCES
[1] John Browne. The GrassmannAlgebra Book Home Page.

Available at http://grassmannalgebra.info/

grassmannalgebra/book/, 2002.

[2] AMD Corp. The ATI Stream Technology home

page. http://www.amd.com/US/PRODUCTS/

TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/

stream-technology.aspx, 2009.

[3] Leo Dorst and Daniel Fontijne. Geometric Algebra for Com-

puter Science. http://www.geometricalgebra.net/

reference_impl.html, 2009.

[4] Daniel Fontijne. Gaigen 2: A Geometric Algebra Implementa-

tion Generator. In GPCE’06. ACM, 2006.

[5] Dietmar Hildenbrand. Geometric Algebra Computers. submit-

ted to the proceedings of the GraVisMa workshop, Plzen, 2009.

[6] Dietmar Hildenbrand and Joachim Pitt. The Gaalop home page.

http://www.gaalop.de, 2008.

[7] Khronos-Group. The OpenCL home page. http://www.

khronos.org/opencl/, 2009.

[8] H. Lange, F. Stock, D. Hildenbrand, and A. Koch. Acceleration

and Energy Efficiency of a Geometric Algebra Computation us-

ing Reconfigurable Computers and GPUs. FCCM, 2009.

[9] NVIDIA. The CUDA home page. http://www.nvidia.

com/object/cuda\_home.html, 2009.

[10] Christian Perwass. The CLU home page. HTML document

http://www.clucalc.info, 2008.

[11] M. T. Pham, K. Tachibana, E. M. S. Hitzer, T. Yoshikawa, and

T. Furuhashi. Classification and Clustering of Spatial Patterns

with Geometric Algebra. AGACSE, 2008.

GraVisMa 2009

117 Communication papers


