
From Grassmann’s vision to
Geometric Algebra Computing

Dietmar Hildenbrand

1. Introduction

What mathematicians often call Clifford algebra is called geometric algebra if
the focus is on the geometric meaning of the algebraic expressions and opera-
tors. Geometric algebra is a mathematical framework to easily describe geomet-
ric concepts and operations. It allows us to develop algorithms fast and in an
intuitive way. Geometric algebra is based on the work of Hermann Grassmann

Figure 1. Two trends towards what we call geometric algebra computing.

[Grassmann, 1862] and his vision of a general mathematical language for geometry.
William Clifford combined Grassmann’s exterior algebra and Hamilton’s quater-
nions [Clifford, 1882a], [Clifford, 1882b]. Pioneering work has been done by David
Hestenes, who first applied geometric algebra to problems in mechanics and physics
[Hestenes and Sobczyk, 1984] [Hestenes, 1986]. His work was culminating some
years ago in the invention of conformal geometric algebra [Hestenes, 2001]. Grass-
mann’s outer product leads to high dimensional multivectors. Currently, we can



2 Dietmar Hildenbrand

recognize a shift from single processor platforms to parallel computing platforms
which are able to treat these multivectors in an efficient way. During the past
decades, especially from 1986 until 2002, processor performance doubled every 18
months. Currently, this improvement law is no longer valid because of technical
limitations. The new trend to parallel systems will most likely dominate the future.
Thanks to multi-core architectures or powerful graphics boards for instance based
on the CUDA technology from NVIDIA, the ATI stream technology of AMD or on
the future Larrabee technology of INTEL, one can expect impressive results using
the powerful language of geometric algebra. We call this combination of applying
geometric algebra on parallel platforms geometric algebra computing.

In this chapter we highlight some benefits of conformal geometric algebra
and present some examples of geometric algebra computing on different parallel
computing platforms.

2. Benefits of Conformal Geometric Algebra

Figure 2. Spheres and lines are basic entities of geometric alge-
bra to compute with. Operations such as the intersection of them
are easily expressed with the help of their outer product. In a ray
tracing application, for instance, the result of the intersection of
a ray and a (bounding) sphere is another geometric entity: the
point pair of the two points of the line intersecting the sphere.
The sign of the square of the point pair easily indicates whether
there is a real intersection or not.

Geometric algebra as a general mathematical system unites many mathe-
matical concepts such as vector algebra, quaternions, Plücker coordinates and
projective geometry, and it easily deals with geometric objects, operations and
transformations. Many applications in computer graphics, computer vision and
other engineering areas can benefit from these properties. In a ray tracing appli-
cation, for instance, the intersection of a ray and a bounding sphere is needed.
According to Figure 2, this can be easily expressed with the help of the outer
product of these two geometric entities.

As follows we highlight some of the properties of geometric algebra that make
it advantageous for many engineering applications.



From Grassmann’s vision to Geometric Algebra Computing 3

2.1. Unification of mathematical systems

Table 1. Multiplication table of the 2D geometric algebra. This
algebra consists of basic algebraic objects of grade (dimension) 0,
the scalar, of grade 1, the two basis vectors e1 and e2 and of grade
2, the bivector e1∧e2, which can be identified with the imaginary
number i squaring to -1

1 e1 e2 e1 ∧ e2

1 1 e1 e2 e1 ∧ e2

e1 e1 1 e1 ∧ e2 e2

e2 e2 -e1 ∧ e2 1 -e1

e1 ∧ e2 e1 ∧ e2 -e2 e1 -1

In the wide range of engineering applications many different mathematical
systems are currently used. One notable advantage of geometric algebra is that it
subsumes mathematical systems such as vector algebra, complex analysis, quater-
nions or Plücker coordinates. Table 1, for instance, describes how complex numbers
can be identified within the 2D geometric algebra. This algebra does not only con-
tain the two basis vectors e1 and e2, but also basis elements of grade (dimension)
0 and 2. The grade 0 represents the scalar. With the help of the rules of geometric
algebra it can be shown quite easily that the element e1∧e2 (of grade 2) squares to
-1 and can be identified with the imaginary unit i. The linear combination of these
two elements describe all the complex numbers. This imaginary unit as well as all
the imaginary units of quaternions, describing 3D rotations, can be identified in
Figure 4 as elements in the conformal geometric algebra, the geometric algebra of
conformal space.

2.2. Intuitive handling of geometric objects

Conformal geometric algebra is a 5D geometric algebra based on the 3D basis
vectors e1, e2 and e3 as well as on the two additional base vectors e0 representing
the origin and e∞ representing infinity. This algebra is able to easily treat different
geometric objects. Table 2 shows the representation of points, spheres, planes,
circles and lines as the same entities algebraically. Consider the spheres of Figure
3, for instance. These spheres are simply represented by

S = P − 1
2
r2e∞ (2.1)

based on their center point P, their radius r and the basis vector e∞. The circle
of intersection of two spheres is then easily computed using the outer product to
operate on the spheres as simply as if they were vectors.

Z = S1 ∧ S2 (2.2)

This way of computing with conformal geometric algebra clearly benefits
engineering applications.



4 Dietmar Hildenbrand

Table 2. List of the basic geometric primitives provided by the
5D conformal geometric algebra. The bold characters represent
3D entities (x is a 3D point, n is a 3D normal vector and x2 is
the scalar product of the 3D vector x). The two additional basis
vectors e0 and e∞ represent the origin and infinity. Based on the
outer product, circles and lines can be described as intersections of
two spheres, respectively two planes. The parameter r represents
the radius of the sphere and the parameter d the distance of the
plane to the origin.

entity representation

Point P = x + 1
2x

2e∞ + e0

Sphere S = P − 1
2r2e∞

Plane π = n + de∞
Circle Z = S1 ∧ S2

Line L = π1 ∧ π2

Figure 3. Spheres and circles are basic entities of geometric alge-
bra. Operations such as the intersection of two spheres are easily
expressed.

2.3. Intuitive handling of geometric operations

Looking more into the details of conformal geometric algebra, it consists of blades
with grades (dimension) 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade (blade
of grade 0). The element of grade five is called the pseudoscalar. A linear com-
bination of blades is called a k-vector. So a bivector is a linear combination of
blades with grade 2. Other k-vectors are vectors (grade 1), trivectors (grade 3)
and quadvectors (grade 4). Furthermore, a linear combination of blades of dif-
ferent grades is called a multivector. Multivectors are the general elements of a
geometric algebra. Figure 4 lists all the 32 blades of conformal geometric alge-
bra. It shows the power of algebraic expressions of geometric algebra in describing
different geometric objects as well as geometric operations. Operations such as ro-
tations, translations (see [Hildenbrand et al., 2004]) and reflections can be easily
treated within the algebra. There is no need to change the way of describing them



From Grassmann’s vision to Geometric Algebra Computing 5

Figure 4. The blades of conformal geometric algebra. Spheres
and planes, for instance, are vectors. Lines and circles can be rep-
resented as bivectors. Other mathematical systems like complex
numbers or quaternions can be identified based on their imagi-
nary units i, j, k. This is why also transformations like rotations
can be handled within the algebra.

with other approaches (vector algebra, for instance, additionally needs matrices in
order to describe transformations).

2.4. Robotics application example

Figure 5. Computation of P1

Let us look, for instance, at an inverse kinematics application of the simple
robot of Figure 5. Assuming that we already know the locations of the joints P0 and



6 Dietmar Hildenbrand

P2, we have to compute the P1 in the next step. Computing this point is usually
a difficult task. However, using conformal geometric algebra we can determine it
by intersecting the spheres S1 and S2

S1 = P0 − 1
2
d2
2e∞, (2.3)

S2 = P2 − 1
2
d2
3e∞, (2.4)

with the plane π1 (describing the plane the joints are acting in)

Pp1 = S1 ∧ S2 ∧ π1. (2.5)

The result is a point pair Pp1 and we have to choose one point from this point
pair.

Please find the complete algorithm in [Hildenbrand, 2005].

3. Geometric Algebra Computing Technology

The power of geometric algebra as described in the previous section comes along
with a complex algebraic structure of high dimensional multivectors. Fortunately,
this algebraic structure offers a high potential for optimization and parallelization
that we can advantageously use for highly efficient implementations on current
parallel processor platforms.

Multivectors of a n-dimensional geometric algebra are 2n-dimensional. At
first glance, this seems to be computationally very expensive. But, there is a lot
of potential for optimization and parallelization of multivectors by symbolically
pre-computing geometric algebra expressions. Since all of the coefficients of the
multivectors can be computed in parallel, geometric algebra computations benefit
significantly from parallel structures.

This is why we separate geometric algebra computing in two layers
• geometric algebra (GA) compilation layer
• platform layer

At the GA compilation layer, geometric algebra operations such as geometric prod-
uct, outer product, inner product, dual and reverse on multivectors are handled.
These operations are compiled to the platform layer. On this layer only basic arith-
metic operations on multivectors with a high potential for efficient computations
on parallel platforms are available.

Our geometric algebra computing architecture is presented in Figure 6. Al-
gorithms (described by the geometric algebra programming language CLUCalc
[Perwass, 2005]) are compiled to an intermediate representation using an adequate
compilation approach. Based on this representation implementations for different
sequential and parallel platforms can be derived.

We are just developing a compiler for reconfigurable hardware using the
Maple based compilation approach (see section 3.1). A proof-of-concept of our
approach has been done with the help of a FPGA(field programmable gate array)



From Grassmann’s vision to Geometric Algebra Computing 7

Figure 6. Geometric algebra computing architecture. Algo-
rithms are compiled to an intermediate representation for the
compilation to different computing platforms.

implementation of an inverse kinematics algorithm. Naively implemented, the in-
verse kinematics algorithm was initially slower than the conventional one. However,
with our symbolic computation optimization approach the software implementa-
tion became three times faster [Hildenbrand et al., 2006] and with a hardware
implementation about 300 times faster [Hildenbrand et al., 2008] (3 times by soft-
ware optimization and 100 times by additional hardware optimization) than the
conventional software implementation. Herewith, we could show for the first time
that implementations of geometric algebra algorithms can be faster than solutions
based on standard mathematics.

Please find some examples for geometric algebra computing based on current
parallel architectures in section 3.2. They vary in different parallelization concepts
such as multi-core or SIMD (single instruction multiple data).

3.1. Compilation

In order to achieve highly efficient implementations, geometric algebra algorithms
have to be optimized at first. Currently we use a Maple based compilation ap-
proach. It needs the commercial Maple system [MAP, 2009] as well as a specific
geometric algebra package [AbÃlamowicz and Fauser, 2009]and is restricted to geo-
metric algebras with dimension <= 9. The Maple based compilation uses the
powerful symbolic computation feature of Maple . Since all of the results of geo-
metric algebra operations on multivectors are again multivectors we symbolically
compute and simplify the resulting multivectors in order to determine which of the
coefficients are actually needed and what is the most simple expression for each
coefficient. The following short algorithm, for instance,

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
c=a*b;

computes the geometric product of two 3D vectors and assigns it to the multivec-
tor c. The compiler optimizes this algorithm in the following form



8 Dietmar Hildenbrand

c[1]=a1*b1+a2*b2+a3*b3;
c[5]=a1*b2-a2*b1;
c[6]=a2*b3-a3*b2;
c[7]=a1*b3-a3*b1;

with simple arithmetic operations for each coefficient which is needed for the mul-
tivector c.

3.2. Adaptation to different parallel processor platforms

One goal of this research proposal is to adapt geometric algebra computing to the
best suitable parallel processor platforms. Here are some examples how this could
work from the point-of-view of the programming languages of different example
architectures.

OpenMP

OpenMP can be used in order to parallelize GA algorithms. The programming
language C can be extended with OpenMP directives for an incremental approach
to parallelizing code. For details on OpenMP, please refer to [Chapman et al., 2008].

OpenMP supports task parallel computations. The data of all the different
threads is shared by default. This is why the coefficients of multivectors can be
computed in parallel (as well as independent multivectors). Using OpenMP for C,
parallel sections can be programmed as follows

#pragma omp parallel {
#pragma omp sections {

#pragma omp section
... Section 1 ...
#pragma omp section
... Section 2 ...

#pragma omp section
... Section 3 ...

}/*End of sections block */

} /*End of parallel region */

Each section consists of computations of different coefficients of a multivector
as well as of computations of independent multivectors.

Intels Ct

Intel researchers are developing Ct, or C/C++ for Throughput Computing
[Intel, 2009] in order to support their new multi-core platforms.

Ct offers parallelism on so-called indexed vectors suitable for sparse multivec-
tors. The fist step of our example generates a multivector which can be described
as the following indexed vector



From Grassmann’s vision to Geometric Algebra Computing 9

c= [(1 -> a1*b1+a2*b2+a3*b3),
(5 -> a1*b2-a2*b1),
(6 -> a2*b3-a3*b2),
(7 -> a1*b3-a3*b1),
(_ -> 0)

]

Note that the underscore denotes a default value for empty coefficients.
All operators on indexed vectors are implicitly parallel. This is why the ad-

dition of multivectors
d=a+c;

can be done very easily in Ct.

ATI stream
The ATI stream technology combines multiple thread computing with parallel

computing within the threads. The following sample code computes the geometric
product of the above example with the help of float4 vectors.

kernel void MV (float4 a<>,
float4 b<>,
out float4 c<>){

float4 result;
result.x=a.x*b.x+a.y*b.y+a.z*b.z;
result.y=a.x*b2-a2*b.x;
result.z=a.y*b.z-a.z*b.y;
result.w=a.x*b.z-a.z*b.x;
c=result;

}

The 4 computations for the coefficients x,y,z,w are computed in parallel.

CUDA
CUDA [NVIDIA, 2009] is Nvidias technology for their parallel computing

platforms. It is supporting multiple threads which are able to run the same code
with different data on many parallel processors. This SIMD (single instruction
multiple data) technology can be used - as usual - for geometric algebra algorithms
tasks with the same code operating on different data.

For high dimensional algebras, there is also another advantage. The results
of products in n-dimensional geometric algebras are always 2n-dimensional multi-
vectors. Using multiplication tables, each of the 2n coefficients can be computed
as a sum of (signed or unsigned) products of coefficients of the multivectors to be
multiplied. These computations can be distributed to 2n threads, each computing
one coefficient. The kernel code can be identical for all the threads, assuming that
each threads knows its individual part of the multiplication table.



10 Dietmar Hildenbrand

4. Conclusion

Geometric algebra and especially the 5D conformal geometric algebra can be ap-
plied in a wide range of engineering applications with geometric background. It
is a very powerful mathematical framework in terms of geometric intuitiveness,
compactness and simplicity. Who can benefit from the properties of geometric al-
gebra ? There is no need for students of learning different mathematical systems
and the translations between them since a lot of other mathematical systems are
already included in geometric algebra. Researchers can benefit when developing
new solutions in their field of research. They are able to gain new insights based
on this more global mathematical system. From the academic point of view, geo-
metric algebra computing is a very inter-disciplinary topic between mathematics,
computer science and engineering. It is still a basic research topic, but with a high
potential for engineering applications in industry. For companies, geometric alge-
bra technology can lead to an enhancement of quality as well as to a reduction of
costs for the development, documentation and maintenance of their products and
solutions.

Last but not least there is a longer term vision based on geometric algebra
technology: For the hardware industry the need of suitable parallel architectures
is quite evident. After the adaption of geometric algebra algorithms to current
hardware architectures, future architectures can even be influenced and driven by
geometric algebra computing technology.

Acknowledgements

This work was supported by the DFG (Deutsche Forschungsgemeinschaft) project
HI 1440/1-1.

References

[AbÃlamowicz and Fauser, 2009] AbÃlamowicz, R. and Fauser, B. (2009). Clifford/bigebra,
a maple package for clifford (co)algebra computations. c©1996-2009, RA&BF.

[Chapman et al., 2008] Chapman, B., Jost, G., and van der Pas, R. (2008). Using
OpenMP : portable shared memory parallel programming. The MIT Press.

[Clifford, 1882a] Clifford, W. K. (1882a). Applications of grassmann’s extensive algebra.
In Tucker, R., editor, Mathematical Papers, pages 266–276. Macmillian, London.

[Clifford, 1882b] Clifford, W. K. (1882b). On the classification of geometric algebras. In
Tucker, R., editor, Mathematical Papers, pages 397–401. Macmillian, London.

[Grassmann, 1862] Grassmann, H. (1862). Die Ausdehnungslehre. Verlag von Th. Chr.
Fr. Enslin, Berlin.

[Hestenes, 1986] Hestenes, D. (1986). New Foundations for Classical Mechanics. Dor-
drecht.



From Grassmann’s vision to Geometric Algebra Computing 11

[Hestenes, 2001] Hestenes, D. (2001). Old wine in new bottles : A new algebraic frame-
work for computational geometry. In Bayro-Corrochano, E. and Sobczyk, G., editors,
Geometric Algebra with Applications in Science and Engineering. Birkhäuser.

[Hestenes and Sobczyk, 1984] Hestenes, D. and Sobczyk, G. (1984). Clifford Algebra to
Geometric Calculus: A Unified Language for Mathematics and Physics. Dordrecht.

[Hildenbrand, 2005] Hildenbrand, D. (2005). Geometric computing in computer graphics
using conformal geometric algebra. Computers & Graphics, 29(5):802–810.

[Hildenbrand et al., 2004] Hildenbrand, D., Fontijne, D., Perwass, C., and Dorst, L.
(2004). Tutorial geometric algebra and its application to computer graphics. In Eu-
rographics conference Grenoble.

[Hildenbrand et al., 2006] Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., and Dorst,
L. (2006). Competitive runtime performance for inverse kinematics algorithms using
conformal geometric algebra. In Eurographics conference Vienna.

[Hildenbrand et al., 2008] Hildenbrand, D., Lange, H., Stock, F., and Koch, A. (2008).
Efficient inverse kinematics algorithm based on conformal geometric algebra using re-
configurable hardware. In GRAPP conference Madeira.

[Intel, 2009] Intel (2009). Ct: C for throughput computing home page. Available at
http://techresearch.intel.com/articles/Tera-Scale/1514.htm.

[MAP, 2009] MAP (2009). The homepage of maple. Available at
http://www.maplesoft.com/products/maple. 615 Kumpf Drive, Waterloo, Ontario,
Canada N2V 1K8.

[NVIDIA, 2009] NVIDIA (2009). The CUDA home page. Available at
http://www.nvidia.com/object/cuda home.html.

[Perwass, 2005] Perwass, C. (2005). The CLU home page. Available at
http://www.clucalc.info.



12 Dietmar Hildenbrand

5. Abstract

The foundation of geometric algebra was laid in 1844 and 1862 by Hermann Grass-
mann whose 200th birthday we are celebrating this year. His vision of a mathemat-
ical language for geometry culminated some years ago in the invention of conformal
geometric algebra by David Hestenes. Grassmann’s outer product leads to high di-
mensional multivectors. Currently, we can recognize a shift to parallel computing
platforms which are able to treat these multivectors in an efficient way. We call this
combination of applying geometric algebra on parallel platforms geometric algebra
computing. In this chapter we highlight some properties of conformal geometric
algebra and present some examples of geometric algebra computing on different
parallel computing platforms.

Dr. Dietmar Hildenbrand
Educational background : Study and Ph. D. in computer science
Current position: senior scientist at TU Darmstadt
Main research interest : the application of geometric algebra in computer graphics,
computer vision and robotics, the efficient implementation of geometric algebra
algorithms
Selected publications: ”Geometric Computing in Computer Graphics using Con-
formal Geometric Algebra” (2005), Computers and Graphics
”Efficient Inverse Kinematics Algorithm Based on Conformal Geometric Algebra
Using Reconfigurable Hardware” (2008) with Holger Lange, Florian Stock and
Andreas Koch, Grapp conference
book chapter ”Gaalop - High Performance Parallel Computing based on Confor-
mal Geometric Algebra” (2009) with Joachim Pitt and Andreas Koch in Geometric
Algebra Computing for Engineering and Computer Science, Springer Verlag

Dietmar Hildenbrand
Address: TU Darmstadt, Hochschulstr. 10, 64289 Darmstadt
e-mail: dhilden@gris.informatik.tu-darmstadt.de


