
Advanced Geometric Approach for Graphics
and Visual Guided Robot Object Manipulation

Dietmar Hildenbrand
Interactive Graphics Systems Group

University of Technology
Darmstadt, Germany

dhilden@gris.informatik.tu-darmstadt.de

Eduardo Bayro-Corrochano and Julio Zamora
Computer Science Department

Centro de Investigación y de Estudios Avanzados
Guadalajara, Jalisco 44550, Mexico

edb,jzamora@gdl.cinvestav.mx

Abstract— This paper presents an approach to deal with
standard tasks of computer animations and robotics based on
Conformal Geometric Algebra. We will show that this algebra
is very well suitable for applications of all kind of robot
manipulator kinematics, representation and visualization and
object robot manipulation. Due to its geometric intuitiveness
and simplicity Conformal Geometric Algebra appears to be
a promising mathematical tool for building intelligent man-
machine interfaces.

Index Terms— Inverse Kinematics, Geometric Algebra,
Grasping

I. FOUNDATIONS OF CONFORMAL GEOMETRIC
ALGEBRA

Blades are the basic computational elements and the
basic geometric entities of the Geometric Algebra. For
example, the 5D Conformal Geometric Algebra provides a
great variety of basic geometric entities to compute with. It
consists of blades with grades 0, 1, 2, 3, 4 and 5, whereby
a scalar is a 0-blade (blade of grade 0). There exists only
one element of grade five in the Conformal Geometric
Algebra. It is therefore also called the pseudoscalar. A
linear combination of k-blades is called a k-vector (also
called vectors, bivectors, trivectors ...). Furthermore, a
linear combination of blades of different grades is called
a multivector. Multivectors are the general elements of a
Geometric Algebra.

A. Spheres and Planes

The equation of a sphere of radius ρ centered at point
pe ∈ R

n can be written as

(xe − pe)2 = ρ2. (1)

Since xc · yc = − 1
2 (xe −ye)2, we can rewrite the formula

above in terms of homogeneous coordinates as.

xc · pc = −1
2
ρ2. (2)

Since xc · e∞ = −1 we can factor the expression above to

xc · (pc −
1
2
ρ2e∞) = 0. (3)

Which finally yields the simplified equation for the
sphere as s = pc − 1

2ρ2e∞. Alternatively, the dual of the
sphere is represented as 4-vector s∗ = sI−1. The advantage

of the dual form is that the sphere can be directly computed
from four points (in 3D) as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (4)

If we replace one of these points for the point at infinity
we get the equation of a plane

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (5)

So that π becomes in the standard form

π = I−1π∗ = n + de∞ (6)

Where n is the normal vector and d represents the Hesse
distance.

B. Circles and Lines

A circle z can be regarded as the intersection of two
spheres s1 and s2 as z = (s1 ∧ s2). The dual form of the
circle (in 3D) can be expressed by three points lying on it
as

z∗ = xc1 ∧ xc2 ∧ xc3 . (7)

Similar to the case of planes, lines can be defined by
circles passing through the point at infinity as:

L∗ = xc1 ∧ xc2 ∧ e∞. (8)

The standard form of the line (in 3D) can be expressed
by

L = l + e∞(t · l), (9)

the line in the standard form is a bivector, and it has six
parameters (Plucker coordinates), but just four degrees of
freedom.

TABLE I
STANDARD REPRESENTATION OF THE CONFORMAL GEOMETRIC

ENTITIES

entity standard representation grade
Point P = x + 1

2
x2e∞ + e0 1

Sphere s = P − 1
2
r2e∞ 1

Plane π = n + de∞ 1
Circle z = s1 ∧ s2 2
Line l = π1 ∧ π1 2
Point Pair Pp = s1 ∧ s2 ∧ s3 3

Table I lists the standard representation of the geometric
entities of the Conformal Geometric Algebra. Please find

details in [5]. The {si} represent different spheres and the
{πi} different planes. A sphere is represented with the
help of its center point P and its radius r. Note that the
representation of a point is simply a sphere with radius
zero. Similarly, a plane is a sphere with infinite radius. A
circle is generated with the help of the outer product ∧ of
two spheres. In this table x and n are marked bold since
they represent 3D entities (x as the original 3D point that
has to be extended to a 5D-vector with additional 2 base
vectors e∞ and e0 representing the point at infinity and
the origin, n as the 3D normal vector of the plane π).
Table II lists the dual representation of the Conformal

TABLE II
DUAL REPRESENTATION OF THE CONFORMAL GEOMETRIC ENTITIES

entity dual representation grade
Sphere s∗ = x1 ∧ x2 ∧ x3 ∧ x4 4
Plane π∗ = x1 ∧ x2 ∧ x3 ∧ e∞ 4
Circle z∗ = x1 ∧ x2 ∧ x3 3
Line l∗ = x1 ∧ x2 ∧ e∞ 3
Point Pair P ∗

p = x1 ∧ x2 2

Geometric Algebra. E. g. a sphere is represented with the
help of 4 points that lie on it.
Both representations are dual to each other. It depends on
the application which representation is more convenient to
use.

II. THE INVERSE KINEMATICS OF A HUMAN-ARM-LIKE
KINEMATIC CHAIN

The following algorithm has been originally developed
for a computer animation application with human figures
but can be used for human-arm-like robots as well.
Our model of the human arm is a 7 DOF kinematic chain
according to [7] with 3 degrees of freedom (θ1, θ2, θ3) at
the shoulder, 1 degree of freedom at the elbow (θ4) and
3 degrees of freedom at the wrist (θ5, θ6, θ7).
While in former analytic algorithms a lot of mathematical
knowledge about trigonometry, rotation matrices etc. has
to available, in our advanced approach only some basic
operations with basic entities are needed.

A. compute the swivel plane

Our goal is to reach the chosen point pw with the wrist.
An arbitrary orientation of the gripper is not investigated
in this paper. Please refer to the algorithm of paper [3] for
the inverse kinematics a robot with 5 DOF also handling
the orientation and grasping of the gripper.
According to [7], the swivel angle can be used as one free
degree of redundancy. It is denoted by φ.
The swivel plane is the plane rotated by φ around the line
lsw through shoulder (at the origin) and pw.

lsw = (e0 ∧ pw ∧ e∞)∗ (10)

Note that the dual of a line is defined with the help of 2
points and the point at infinity (see table II).
The rotation operator Rswivel is defined by

Rswivel = e−
1
2 φ lsw (11)

For details please refer to [5].
Initially the swivel plane is defined with the help of the
origin, the point pw, the point P (e2) and the point at
infinity (see table II).

πswivel = (e0 ∧ P (e2) ∧ pw ∧ e∞)∗ (12)

with P (e2) being the 5D-vector representation of the 3D
point x =(0,1,0) (see table I)

P (e2) = e2 +
1
2
e∞ + e0 (13)

Its final rotated location is

πswivel = Rswivel πswivel
˜Rswivel (14)

Fig. 1. swivel plane

B. Step 1 : the elbow point pe

Fig. 2. Step 1

With the help of the two spheres

S1 = pw − 1
2
L2

2e∞ (15)

and
S2 = e0 −

1
2
L2

1e∞ (16)

with center points pw and e0 and radii L2, L1 we are able
to compute the circle determining all the possible locations
of the elbow as the intersection of the spheres (see table
I).

Ce = S1 ∧ S2 (17)

The intersection with the swivel plane delivers the point
pair

Pp = Ce ∧ πswivel (18)

and we decide for one of the two possible elbow points.
Please refer to [5] for details about extracting points out of
point pairs.

C. Step 2 : the elbow angle θ4

The elbow angle θ4 is computed with the help of the
line lse through the shoulder and the elbow

lse = (e0 ∧ pe ∧ e∞)∗ (19)

and the line lew through the shoulder and the wrist

lew = (pe ∧ pw ∧ e∞)∗ (20)

θ4 = angle(l∗se, l
∗
ew) (21)

according to

angle(o∗1, o
∗
2) = arccos

o∗1 · o∗2
|o∗1| |o∗2|

(22)

D. Step 3 : elevate to the rotation plane including the
elbow point pe

Fig. 3. Step 3

Now we have to elevate the arm in order that the rotation
plane for the next angle includes the elbow point pe. This
is done with the help of the line in z direction

lz = (e0 ∧ P (e3) ∧ e∞)∗ (23)

and the projection of the line lse onto the plane in y and z
direction (with normal vector e1 and zero distance to the
origin, see table II)

πyz = e1 (24)

lproj = proj(lse, πyz) (25)

θ1 = angle(l∗z , l∗proj) (26)

E. Step 4 : rotate until the elbow position matches

Fig. 4. Step 4

The angle θ2 is computed with the help of the line in x
direction and the line lse through shoulder and elbow.

lx = (e0 ∧ P (e1) ∧ e∞)∗ (27)

θ2 = angle(l∗x, l∗se) (28)

F. Step 5 : rotate until the wrist location is reached

Fig. 5. Step 5

θ3 is computed with the help of the y-z-plane rotated by
the two angles θ1 and θ2 and the swivel plane.

πyz2 = Rθ1,θ2 πyz
˜Rθ1,θ2 (29)

θ3 = angle(π∗
yz2, π

∗
swivel) (30)

III. THE INVERSE KINEMATICS OF A PAN-TILT UNIT.

Fig. 6. Point p2 given by intersection of the plane π1 and the spheres
s1 and s2.

The problem consists in determining the angles θtilt and
θpan of stereo-head, so that the cameras fix at the point
pt. We will now show how we find the values of θpan and
θtilt using the conformal approach. The problem will be
divided in three steps to be solved.
Step 1: Determine the point p2.

When the θtilt rotes and the base rotates (θpan) around
the ly (see Fig.6), the point p2 describes a sphere s1. This
sphere has center at the point p1 and radius d2.

S1 = p1 −
d2
2

2
e∞ (31)

Also the point pt can be locked from every point around
it, that means the point p2 is in the sphere:

S2 = pt −
d2
3

2
e∞ (32)

Where d3 is the distance between point pt and the cameras,
and we can calculate d3 using a Pythagorean theorem d2

3 =
D2−d2

2, where D is the direct distance between pt and p1.
We have restricted the position of the point p2, but there

is another restriction: the vector going from the p2 to the
point pt must lie on the plane π1 generated by the ly axis
(l∗y = p0 ∧p1 ∧ e∞) and the point pt, as we can see in Fig.
6. So that p2 can be determined by intersecting the plane
π1 with the spheres s1 and s2 as follows

π∗
1 = l∗y ∧ pt, (33)

Pp2 = s1 ∧ π1 ∧ s2. (34)

Step 2: Determine the lines and planes.
Once p2 have been determined, the line l2 and the plane

π2 can be defined. This line and plane will be useful to
calculate the angles θtilt and θpan.

l∗2 = p1 ∧ p2 ∧ e∞, (35)
π∗

2 = l∗y ∧ e3. (36)

Step 3: Find the angles θtilt and θpan.
Once we have all the geometric entities, the computation

of the angles is a trivial step.

cos(θpan) =
π∗

1 · π∗
2

|π∗
1 | |π∗

2 |
, cos(θtilt) =

l∗1 · l∗y
|l∗1|

∣
∣l∗y

∣
∣
. (37)

IV. LINE OF INTERSECTION OF TWO PLANES

In the industry, mainly in the sector dedicated to car
assembly, it is often required to weld pieces. However,
due to several factors, these pieces are not always in
the same position complicating this task and making this
process almost impossible to automate. In many cases the
requirement is to weld straight lines when no points on
the line are available. This is the problem to solve in the
following experiment.

If we do not have points on the line of interest, then we
find this line via the intersection of two planes (the welding
planes). In order to determine each plane, we need three
points. These points are triangulated by standard means
yielding a configuration like the one shown in Fig. 7.

Fig. 7. Images acquired by the binocular system of the robot “Geometer”
showing the points on each plane.

Once the points in space have been triangulated, we can
find each plane with π∗ = x1 ∧ x2 ∧ x3 ∧ e∞, and π′∗ =
x′

1 ∧ x′
2 ∧ x′

3 ∧ e′∞. The line of intersection is computed
with l = π′∧π. In Fig. 8 we show a simulation of the arm

Fig. 8. Simulation of the arm following the path of a line produced by
the intersection of two planes.

following the line produced by the intersection of these two
planes.

Once the line of intersection l is computed, it suffices
with translating it on the plane ψ = l∗∧e2 (see Fig. 9) using
the translator T1 = 1 + γe2e∞, in the direction of e2 (the
y axis) a distance γ. Furthermore, we build the translator
T2 = 1 + d3e2e∞ with the same direction (e2), but with a
separation d3 which corresponds to the size of the gripper.
Once the translators have been computed, we find the lines
l′ and l′′ by translating the line l with l′ = T1lT

−1
1 , and

l′′ = T2l
′T−1

2 .

Fig. 9. Guiding lines for the robotic arm produced by the intersection
of planes and vertical translation.

The next step after computing the lines, is to find the
points pt and p2 which represent the places where the arm
will start and finish its motion, respectively. These points
were given manually, but they may be computed with the
intersection of the lines l′ and l′′ with a plane that defines
the desired depth. In order to make the motion over the
line, we build a translator TL = 1−∆Lle∞ with the same
direction as l as shown in Fig. 8.b. Then, this translator is
applied to the points p2 = TLp2T

−1
L and pt = TLptT

−1
L

in an iterative fashion to yield a displacement ∆L on the
robotic arm.

By placing the end point over the lines and p2 over the
translated line, and by following the path with a translator
in the direction of l we get a motion over l as seen in the

image sequence of Fig. 10.

Fig. 10. Image sequence of a linear-path motion.

V. FOLLOWING A SPHERICAL PATH

This experiment consists in following the path of a
spherical object at a certain fixed distance from it. For this
experiment, only four points on the object are available
(see Fig. 11).

Fig. 11. Points over the sphere as seen by the robot “Geometer”.

After acquiring the four 3D points, we compute the
sphere S∗ = x1 ∧ x2 ∧ x3 ∧ x4. In order to place the point
p2 in such a way that the arm points towards the sphere,
the sphere was expanded using two different dilators. This
produces a sphere that contains S∗ and ensures that a fixed
distance between the arm and S∗ is preserved, as shown
in Fig. 12.

Fig. 12. Guiding spheres for the arm’s motion.

The dilators are produced with

Dγ = e−
1
2 ln(γ+ρ

ρ)E , and (38)

Dd = e−
1
2 ln(

d3+γ+ρ
ρ)E . (39)

The spheres S1 and S2 are computed by dilating St:

S1 = DγStD
−1
γ , (40)

S2 = DdStD
−1
d . (41)

We decompose each sphere in their parametric form as

pt = M1(ϕ)M1(φ)ps1M
−1
1 (φ)M−1

1 (ϕ), (42)
p2 = M2(ϕ)M2(φ)ps2M

−1
2 (φ)M−1

2 (ϕ). (43)

Where ps is any point on the sphere. In order to simplify
the problem, we select the upper point on the sphere. To
perform the motion on the sphere, we vary the parameters
ϕ and φ and compute the corresponding pt and p2 using
Eqs. 42 and 43. The results of the simulation are shown in
Fig. 13, whereas the results of the actual experiment can
be seen in Figs. 14.

Fig. 13. Simulation of the motion over a sphere.

Fig. 14. Two of the images in the sequence of the actual experiment.

VI. GRASPING AN OBJECT

We begin with four non-coplanar points belonging to the
corners of the object and use them to build a circle. With
this circle, we can make πt and pt to take the object. The
procedure is described next.

Fig. 15. Points on the object as seen from the robot.

1) Take a calibrated stereo pair of images of the object.
2) Extract four non-coplanar points from these images

(see for example Fig. 15).

3) Compute the corresponding 3D points xi, i = 1, .., 4
using triangulation.

4) Briefly the direct distance is the vector which has the
minimum Euclidean distance between two entities
(see [1]). Compute the directed distances:

d1 = Dist(x1, x2 ∧ x3 ∧ x4 ∧ e∞),
d2 = Dist(x2, x1 ∧ x3 ∧ x4 ∧ e∞),
d3 = Dist(x3, x2 ∧ x1 ∧ x4 ∧ e∞),
d4 = Dist(x4, x2 ∧ x3 ∧ x1 ∧ e∞).

5) Select the point with the greatest distance as the apex
xa and label the rest xb1 , xb2 , xb3 as belonging to the
base of the object.

6) Compute the circle zb = xb1 ∧ xb2 ∧ xb3 .
7) Compute the directed distance da from zb to xa.
8) Translate the circle z in the direction and magnitude

of da to produce the grasping plane πt.
9) Compute the inverse kinematics

Fig. 16. The robot “Geometer” grasping a wooden cube.

Some points of the previous algorithm can be explained
in more detail. For example, for the object in Fig. 17.a,
the base circle is z∗b = x1 ∧ x2 ∧ x3, whereas the main
axis of the object is computed with jzb

= zb ∧ e∞. The
translator that moves zb is produced as T = 1 + 1

4d4e∞.
The grasping circle can be computed with z∗t = Tz∗b T−1.
The point of contact is the closest point from the circle to
the y axis. Finally, the grasping plane is π∗ = z∗t ∧ e∞.
Note that this last algorithm may take the object regardless
of its being in a horizontal or vertical position. We illustrate
this algorithm with a simulation shown in Fig. 17.b.

Fig. 17. a) Regular prism with height d4 and main axis jzb . b) Simulation
of the algorithm showing the robotic arm grasping the object.

Conformal Geometric Algebra is very well suitable for
describing physical parameters like forces. The dynamical

equation for combined rotational and translational motion
takes a very compact form. For details please refer to [4].

VII. CONCLUSION

In the previous sections we could see examples high-
lighting some nice properties of the Conformal Geomet-
ric Algebra. Since we are able to easily compute with
geometric entities like spheres, planes and circles a lot
of geometric problems in all kind of engineering can be
handled in a straightforward and intuitive way.

REFERENCES

[1] Bayro-Corrochano E. 2001. Geometric Computing for Perception
Action Systems, Springer Verlag, Boston.

[2] Bayro-Corrochano E. and Banarer V. 1999. Computing depth, shape
and motion using invariants and incidence algebra. Proc. Int. Conf
on Pattern Recognition, ICPR’2000, Barcelona 2000

[3] Julio Zamora and Bayro-Corrochano E., Inverse kinematics, fixa-
tion and grasping using conformal geometric algebra. CINVESTAV,
Unidad Guadalajara, GEOVIS Lab., Mexico,IROS 2004, Sendai,
Japan.

[4] Hestenes D. 2001. Old Wine in New Bottles: A New Algebraic
Framework for Computational Geometry, in Geometric Algebra with
applications in science and engineering Editors Bayro-Corrochano E.
and Sobczyk G. Birkhauser, Boston, 2001

[5] Hildenbrand D., Fontijne D., Perwass Ch., Dorst L. , Geometric
Algebra and its Application to Computer Graphics. Tutorial notes
of the EUROGRAPHICS conference 2004 in Grenoble.

[6] Lasenby, J., Lasenby, A.N., Lasenby, Doran, C.J.L and Fitzgerald,
W.J. ‘New geometric methods for computer vision – an application to
structure and motion estimation’. International Journal of Computer
Vision, 26(3), 191-213. 1998.

[7] Tolani D., Goswami A., Badler N. , Real-time inverse kinematics
techniques for anthopomorphic limbs. University of Pennsylvania,
2000

