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Abstract We present Gaalop (Geometric algebra algorithms optimizer), our tool for
high performance computing based on conformal geometric algebra. The main goal
of Gaalop is to realize implementations that are most likely faster than conventional
solutions. In order to achieve this goal, our focus is on parallel target platforms like
FPGA (field-programmable gate arrays) or the CUDA technology from NVIDIA.
We describe the concepts, the current status, as well as the future perspectives of
Gaalop dealing with optimized software implementations, hardware implementa-
tions as well as mixed solutions. An inverse kinematics algorithm of a humanoid
robot is described as an example.

1 Introduction

In recent years, geometric algebra, and especially the 5D Conformal geometric alge-
bra, has proved to be a powerful tool for the development of geometrically intuitive
algorithms in a lot of engineering areas like robotics, computer vision and computer
graphics. However, runtime performance of these algorithms was often a problem.

In this chapter, we present our approach for the automatic generation of high
performance implementations with a focus on parallel target platforms like FPGA
or CUDA. In the sections 2 and 3, we present some related work as well as the basics
of conformal geometric algebra.
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Our main goal with Gaalop is to realize implementations that are most likely
faster than conventional solutions. The main concepts combining both approaches
for the optimization of software and of hardware implementations are presented
in section 4. The corresponding architecture of Gaalop is described in section 5.
An inverse kinematics algorithm for the leg of a humanoid robot is presented in
section 6 as a complex example for the use of Gaalop. The current status of Gaalop
as well as its future perspectives can be found in section 7.

2 Related Work

Despite the tremendous expressive power of geometric algebra, it has only seen lim-
ited use in practical applications. One of the reasons for this might be that the ac-
tual processing of geometric algebra algorithms requires significant computational
effort. Related tools with the intention of optimizing geometric algebra implemen-
tations focus either on pure software or pure hardware solutions.

2.1 Software Implementations

The most advanced pure software solution is Gaigen developed at the university of
Amsterdam (see [2] and [4]). You can find some benchmarks comparing Gaigen
with other software implementations in [4].

2.2 Hardware Implementations

To resolve the above mentioned quandary, it is promising to look at dedicated hard-
ware architectures for the acceleration of geometric algebra algorithms. Current
integrated circuit technology offers a means to achieve this in the form of field-
programmable gate arrays (FPGAs). These reconfigurable devices allow the im-
plementation of a wide variety of digital logic circuits without the need for a very
expensive photochemical circuit fabrication. Furthermore, the same device is able
to realize different logic circuits by reconfiguring them onto the same silicon area.

2.2.1 Prior Attempts

The first serious approach is described by Perwass et al. [17]. That accelerator re-
alizes the geometric product implemented on a 20 MHz FPGA connected via the
PCI bus to the host computer. Due to the limited capacity of the FPGA employed,
techniques such as wide parallel or pipelined processing, and the use of fast on-chip
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memories, were not exploited. Similarly, subspace coefficients consist only of 24
bit integers, other fixed or floating point formats are not supported. The architec-
ture is able to process multivectors of up to eight dimensions, with smaller vec-
tors being processed faster. While the resulting accelerator does achieve a speedup
over a conventional software programmable processor when counting clock cycles,
comparisons with actual clock cycles lead to a practical slow-down when using the
FPGA-based solution over simple software running on a conventional computer.

A different approach was presented by Gentile et al. [6]: This accelerator sup-
ports functions beyond the geometric product, namely, the outer product, contrac-
tions etc., each being implemented on a dedicated hardware unit. The architecture
is limited to multivectors of three to four dimensions. As before, the coefficients are
limited to integers, in this case 16 bit wide. The FPGA implementation requires a
lot of communication with the host computer over the PCI bus. And additionally,
when taking the different clock frequencies into account to compute the real world
execution times, this approach does not lead to a speedup compared to a software
implementation.

An update of this work is given by Franchini et al. [5]: the operation-specific
hardware units have now been replaced by a variable number of so-called slices.
Each slice is able to compute all operations of the four-dimensional geometric al-
gebra. The coefficients have now been extended to 32 bit integers. In terms of hard-
ware, a slice consists of a 32 bit wide arithmetic logic unit capable of addition,
subtraction, multiplication, and logical computations. The geometric algebra oper-
ations are decomposed into these primitive calculations, with their execution being
orchestrated step-by-step by on-chip software (microcode). The FPGA implemen-
tation achieves a clock frequency of 45 MHz and runs by a factor 3x to 4x faster
than a software programmable processor when counting cycles. When actually con-
sidering the 2 GHz clock frequency of the reference processor, the actual execution
time again slows down by a factor of 9x to 12x versus software.

The first coprocessor to lift the integer limitation on coefficients is the custom-
fabricated integrated circuit (ASIC) implementation introduced by Mishra and Wil-
son [13], which allows two-dimensional multivectors with double precision floating-
point coefficients. At its core, it consists of a floating point adder and multiplier each,
supported by smaller hardware units to compute the product of basis blades. While
pipeline-parallel execution is employed within these compute units, actual geomet-
ric algebra operations (geometric product, rotor, etc) are again computed sequen-
tially by decomposing them into primitive calculations controlled by microcode.
The experimental evaluation of the system in [14] shows a real wall-clock speed-up
of 3x over a software programmable processor.

2.3 Our Proof-of-Concept Approach

In [9] we could show that an approach with symbolic simplification of geometric
algebra algorithms is able to lead to an implementation which is three times faster
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than a conventional solution. In a second stage we implemented this inverse kine-
matics algorithm also on hardware and got an additional speedup of more than 100
times (see [10]).

When studying all of the prior hardware attempts, it is obvious that most of them
lead to an application slowdown instead of the hoped-for acceleration. The major
reason for this disappointing result is due to the architectural choices made. The
discrepancy in achievable clock frequencies of conventional processors (which are
now into multiple gigahertz), and that of FPGAs (which currently top out at 500-
600 MHz), implies the need for massive parallelism in the FPGA to achieve better
performance.

As a proof-of-concept, we implemented an accelerator [10] for a specific geomet-
ric algebra algorithm, namely the inverse kinematics of the arm of a virtual human.
It is a completely different architectural approach compared to the approaches de-
scribed above. Instead of coarse granular computation units capable of handling en-
tire geometric algebra operators, we decomposed the geometric algebra description
into the underlying scalar equations. These equations are optimized symbolically
and employ only basic arithmetic operators. The resulting set of equations was then
implemented one arithmetic operator at a time. For each of these arithmetic oper-
ators, we carefully examined the range of values to be processed for the specific
problem. With this data, and external requirements on computational precision (in
this case, the positional accuracy of the hand), we determined for each operator the
optimal numerical representation (e.g., values in the range of 0 to 100 with 1/16mm
of accuracy would be represented as 11 bit unsigned fixpoint numbers). The circuits
of the operators were then optimally matched to their representation as well as to
one of their operands being the constant.

The resulting accelerator, which exploits parallelism between multivector com-
ponents, between fine-grained arithmetic operators, and in a pipelined fashion over
the entire computation, achieves currently a real-world speedup in execution time of
185x over a conventional processor with a 1.5 GHz clock frequency. The compute
pipeline consists of 363 stages with an average of 12 arithmetic operators per stage.
This extreme degree of parallelism allows the real-world acceleration even though
the FPGA device (which is by now two generations out of date) only runs at 100
MHz clock frequency.

One of the aims of the Gaalop project is to develop a tool flow for automatically
executing the optimization and hardware generation which we had to perform man-
ually for our reference design. Before giving an overview of the planned flow, we
will first give a brief introduction into geometric algebra.

3 Conformal geometric algebra

While points and vectors are normally used as basic geometric entities, in the 5D
conformal geometric algebra we have a wider variety of basic objects. For example,
spheres and circles are simply represented by algebraic objects. To represent a circle
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you only have to intersect two spheres, which can be done with a basic algebraic
operation. Alternatively you can simply combine three points to obtain the circle
through these three points.

Table 1 lists the two representations of the geometric entities in conformal geo-
metric algebra. In this table x and n are marked bold to indicate that they represent
3D entities as linear combination of the 3D base vectors e1,e2 and e3.

x = x1e1 + x2e2 + x3e3 (1)

The additional two base vectors are indicated by

• e0 representing the 3D origin
• e∞ representing the point at infinity

The {si} represent different spheres and the {πi} different planes.

Table 1 Representations of the conformal geometric entities

entity standard representation direct representation
Point P = x+ 1

2 x2e∞ + e0

Sphere s = P− 1
2 r2e∞ s∗ = x1∧ x2∧ x3∧ x4

Plane π = n+de∞ π∗ = x1∧ x2∧ x3∧ e∞
Circle z = s1∧ s2 z∗ = x1∧ x2∧ x3
Line l = π1∧π1 l∗ = x1∧ x2∧ e∞
Point Pair Pp = s1∧ s2∧ s3 P∗p = x1∧ x2

The two representations are dual to each other. In order to switch between the
two representations, the dual operator which is indicated by ’∗’, can be used. For
example in the standard representation a sphere is represented with the help of its
center point P and its radius r, while in the direct representation it is constructed
by the outer product ’∧’ of four points xi that lie on the surface of the sphere (x1∧
x2∧x3∧x4). In standard representation the dual meaning of the outer product is the
intersection of geometric entities. For example a circle is defined by the intersection
of two spheres (s1∧ s2).

Blades are the basic computational elements and the basic geometric entities of
geometric algebras. The 5D conformal geometric algebra consists of blades with
grades 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade (blade of grade 0). The
element of grade five is called the pseudoscalar. A linear combination of blades is
called a k-vector. So a bivector is a linear combination of blades with grade 2. Other
k-vectors are vectors (grade 1), trivectors (grade 3) and quadvectors (grade 4). Fur-
thermore, a linear combination of blades of different grades is called a multivector.
Multivectors are the general elements of a geometric algebra. Table 2 lists all the 32
blades of conformal geometric algebra. The indices indicate 1: scalar, 2 . . .6: vector,
7 . . .16: bivector, 17 . . .26: trivector, 27 . . .31: quadvector, 32: pseudoscalar.
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A point P = x1e1 + x2e2 + x3e3 + 1
2 x2e∞ + e0 (see table 1 and equation (1) ) for

instance can be written in terms of a multivector as the following linear combination
of blades

P = x1 ∗blade[2]+ x2 ∗blade[3]+ x3 ∗blade[4]+ 1
2 x2 ∗blade[5]+blade[6] (2)

For more details please refer for instance to the book [2] as well as to the tutori-
als [8] and [7].

Table 2 The 32 blades of the 5D conformal geometric algebra

index blade grade
1 1 0
2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1
7 e1∧ e2 2
8 e1∧ e3 2
9 e1∧ e∞ 2

10 e1∧ e0 2
11 e2∧ e3 2
12 e2∧ e∞ 2
13 e2∧ e0 2
14 e3∧ e∞ 2
15 e3∧ e0 2
16 e∞∧ e0 2

index blade grade
17 e1∧ e2∧ e3 3
18 e1∧ e2∧ e∞ 3
19 e1∧ e2∧ e0 3
20 e1∧ e3∧ e∞ 3
21 e1∧ e3∧ e0 3
22 e1∧ e∞∧ e0 3
23 e2∧ e3∧ e∞ 3
24 e2∧ e3∧ e0 3
25 e2∧ e∞∧ e0 3
26 e3∧ e∞∧ e0 3
27 e1∧ e2∧ e3∧ e∞ 4
28 e1∧ e2∧ e3∧ e0 4
29 e1∧ e2∧ e∞∧ e0 4
30 e1∧ e3∧ e∞∧ e0 4
31 e2∧ e3∧ e∞∧ e0 4
32 e1∧ e2∧ e3∧ e∞∧ e0 5

4 Concepts

The main goal of Gaalop is the combination of the elegance of algorithms using
geometric algebra with the generation of implementations that are most likely faster
than conventional implementations. Depending on the application these can be ei-
ther optimized software implementations or optimized hardware implementations
or a mixture between them.

For that purpose we propose a two-stage approach with

• symbolic optimization
• use of the inherent fine-grained parallel structure

of geometric algebra algorithms. Algorithms can vary from just a set of formulas to
complex control flows.
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4.1 Symbolic Optimization

We use the symbolic computation functionality of Maple (together with a library
for geometric algebras [1]) in order to optimize the geometric algebra algorithm.
Algorithms can be developed visually with CLUCalc [16] and afterwards be opti-
mized with Gaalop. Gaalop parses and translates the CLUCalc code to Maple code.
A small Maple library provided with Gaalop implements correspondent CLUCalc
functions in Maple. Maple computes the coefficients of the desired variable symbol-
ically, returning an efficient implementation depending just on the input variables.

As an example the following CLUCalc code computes the intersection circle C
of two spheres S1 and S2. While CLUCalc requires the definition of the variables
x1, x2, x3, y1, y2, y3, r1 and r2, we don’t want to compute with fixed values for
these variables. So just the second part is needed for Gaalop.

DefVarsN3();
:IPNS;

x1 = 0.2; x2 = 0.3; x3 = 0.5; r1 = 0.7;
y1 = 0.7; y2 = 1.1; y3 = 1.3; r2 = 0.9;

// Gaalop uses the code below

P1 = x1*e1 +x2*e2 +x3*e3 +1/2*(x1*x1+x2*x2+x3*x3)*einf +e_0;
P2 = y1*e1 +y2*e2 +y3*e3 +1/2*(y1*y1+y2*y2+y3*y3)*einf +e_0;

S1 = P1 - 1/2 * r1*r1 * einf;
S2 = P2 - 1/2 * r2*r2 * einf;

?C = S1 ˆ S2;

A question mark in CLUCalc at the beginning of a line prints the result after
evaluation of the corresponding line in the output window. Gaalop interprets these
question marks almost the same, as it computes and prints out the coefficients of the
following variable symbolically, depending on the previous input.

The computation of the conformal points P1 and P2 and the spheres S1 and S2
correspond to table 1.

The resulting C code generated by Gaalop for the intersection circle C is as fol-
lows and only depends on the variables x1, x2, x3, y1, y2, y3, r1 and r2:

float C [32] = {0.0};

C[7] = x1*y2-x2*y1;
C[8] = x1*y3-x3*y1;

C[9] = -0.5*y1*x1*x1-0.5*y1*x2*x2-0.5*y1*x3*x3+0.5*y1*r1*r1
+0.5*x1*y1*y1+0.5*x1*y2*y2+0.5*x1*y3*y3-0.5*x1*r2*r2;

C[10] = -y1+x1;
C[11] = -x3*y2+x2*y3;
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C[12] = -0.5*y2*x1*x1-0.5*y2*x2*x2-0.5*y2*x3*x3+0.5*y2*r1*r1
+0.5*x2*y1*y1+0.5*x2*y2*y2+0.5*x2*y3*y3-0.5*x2*r2*r2;

C[13] = -y2+x2;

C[14] = -0.5*y3*x1*x1-0.5*y3*x2*x2-0.5*y3*x3*x3+0.5*y3*r1*r1
+0.5*x3*y1*y1+0.5*x3*y2*y2+0.5*x3*y3*y3-0.5*x3*r2*r2;

C[15] = -y3+x3;

C[16] = -0.5*y3*y3+0.5*x3*x3+0.5*x2*x2+0.5*r2*r2
-0.5*y1*y1-0.5*y2*y2+0.5*x1*x1-0.5*r1*r1;

Gaalop always computes optimized 32-dimensional multivectors. Since a circle is
described with the help of a bivector, only the blades 7 to 16 (see table 2) are used.
As you can see, all the corresponding coefficients of this multivector are very simple
expressions with basic arithmetic operations. A more complex example is described
in section 6.

4.2 Use of Inherent Fine-Grained Parallel Structure

With the help of symbolic optimization the geometric algebra algorithm is trans-
formed into an algorithm computing the coefficients of 32D multivectors using only
basic arithmetical operations. This can be implemented very efficiently in digital
logic on silicon devices such as FPGAs using parallel computation of coefficients
of multivectors, deeply pipelined processing, and the exploitation of constant val-
ues by propagating them directly into the circuit. These techniques are described in
section 2.3 and in more detail in [10] for an inverse kinematics example.

5 The Architecture of Gaalop

Figure 1 shows an overview over the architecture of Gaalop. Its input is a geometric
algebra algorithm written in CLUCalc (see [16]). Via symbolic simplification it is
transformed into a generic intermediate representation (IR) that can be used for the
generation of different output formats. Gaalop supports sequential platforms such as
C and Java as well as parallel platforms such as CUDA [15] or FPGA descriptions
(as a structural hardware description, currently written in the Verilog language).
CLUCalc can also be used as an output format in order to visualize the optimized
results (see [16]).

The basis of the mapping the IR, which is expressed on an abstract mathemat-
ical/behavioral level, to a hardware accelerator is the technology already used in
the COMRADE compiler [12]. COMRADE is designed to translate from ANSI
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C (complete language, no additional user annotations required) into hybrid hard-
ware/software applications, with the hardware parts being executed on an FPGA.
Since geometric algebra algorithms are far more abstract than C (which contains,
e.g. pointers and gotos), they are considerably easier to optimize and translate effi-
ciently to an FPGA-based accelerator.

Fig. 1 Architecture of Gaalop

6 Inverse Kinematics of the Leg of a Humanoid Robot

In this section we present an inverse kinematics algorithm for the leg of the hu-
manoid robot ‘Mr. DD Junior 2’ (see figure 2). We use CLUCalc code as an exam-
ple for the input language of Gaalop. Parts of the generated C code are shown as an
example for a target implementation of Gaalop.

‘Mr. DD Junior 2’ is a humanoid robot of about 38 cm total height and was
used for the 2005 RoboCup competition [3] where robots play soccer completely
autonomously. Its legs have six degrees of freedom each: from hip to foot, the first
joint rotates about the forward oriented axis, the next three joints about the sidewards
oriented axis, and the last two joints about the forward and upward oriented axis.
This is different from the standard configuration of humanoid robot legs, where the
joint that rotates about the upward oriented axis usually is located in the hip. The
robot is equipped with a camera for vision, a pocket PC for computation and servo
motors for actuation. The robot must localize itself on the field which has color-
coded landmarks, identify other players, the location of the ball and the goal. For
walking, ‘Mr. DD Junior 2’ uses the following inverse kinematics approach: The
motion of the hips and feet are given by smooth trajectories, that are described by
several parameters and the joint angle trajectories of the legs are computed from the
hips and feet trajectories by inverse kinematics. This computation is done online on
the pocket PC, which also is used for image processing.
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Fig. 2 The robot ‘Mr. DD Junior 2’ of the RoboCup team, the Darmstadt Dribbling Dackels (DDD)

6.1 Solving the Inverse Kinematics Algorithm

The following inverse kinematics algorithm has been developed using conformal
geometric algebra to solve the 6 DOF kinematic chain for the leg of the humanoid
robot ‘Mr. DD Junior 2’ (see figure 3). The leg consists of joints with one degree
of freedom each. The hip (P1) defines the first joint and lies in the origin, rotating
about the x-axis. Three joints rotating about the y-axis, one rotating about the x-axis
and a final one rotating about the z-axis follow, leading to the foot-point (P7). The
coordinates of the foot (Px,Py,Pz), the normal of the foot (n) and the length of the
links (l1, l2, l3, l4, l5, l6) are needed to solve the inverse kinematics chain. Please refer
to table 3 for a list of the input and output parameters of the algorithm.
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Fig. 3 The leg of the robot ‘Mr. DD Junior 2’ with the indication of the points P1 to P7

Table 3 Input/Output of the inverse kinematics algorithm

Input
var description
Px foot x-value
Py foot y-value
Pz foot z-value

n
normal of foot x-value
normal of foot y-value
normal of foot z-value

l1 length of 1st link
l2 length of 2nd link
l3 length of 3rd link
l4 length of 4th link
l5 length of 5th link
l6 length of 6th link

Output
var description
ang1 angle at P1
ang2 angle at P2
ang3 angle at P3
ang4 angle at P4
ang5 angle at P5
ang6 angle at P6



12 Dietmar Hildenbrand, Joachim Pitt, Andreas Koch

6.1.1 Computation of the positions of link 5 and 6 in the kinematics chain

Since there is only a rotation about the z-axis in P6, link 5 and 6 (in P5 and in P6) are
on the normal (n) of the foot. The translator T1 is needed to translate P7 about l6 in
direction of n.

T1 = 1−
(

1
2

n l6

)
e∞

P6 = T1 P7 T̃1 (3)

Please notice that a translator is defined by the expression T = 1− 1
2 tvec e∞ with tvec

being the 3D translation vector and that a translation is defined by a multiplication
of the translator from the left and of its reverse from the right. Another translator
(T2) is necessary to compute P5, where the distance to P7 is l5 + l6.

T2 = 1−
(

1
2

n (l5 + l6)
)

e∞

P5 = T2 P7 T̃2 (4)

Fig. 4 Step A. - translating P7 by l6 and l5 in direction of n to get P6 and P5

6.1.2 Computation of the position of link 4

By taking a closer look at the kinematic chain, one will notice, that P1, P2, P3, P4,
P5 define a plane π3, which includes the x-axis. Since the joints in P2, P3 and P4 all
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rotate about the y-axis, these and the joints directly connected to them (P1 and P5),
are all in one plane. Every plane can be defined by 3 points, which here are P1, P5
and the auxiliary point on the x-axis PH2. Another plane, defined by the points P4,
P5, P6, P7, is orthogonal to plane π3. So the projection of the line through P5 and P7
onto the plane π3 yields LPro j, which intersects the sphere S5 (center: P5, radius: l4),
resulting in a point pair. Function pp_get2nd selects link 4 (P4) from it.

S5 = Sphere(P5, l4))
π3 = (PH2∧P1∧P5∧ e∞)∗

π3 =
π3

|π3|
LP5P7 = (P5∧P7∧ e∞)∗

LPro j =
(π3 ·LP5P7)

π3

P4 = pp get2nd((S5∧LPro j)∗) (5)

Sphere(x,r) generates a sphere around x with the radius r.

Sphere(x,r) = x− 1
2

r2 e∞ (6)

The functions pp get1st and pp get2nd each pick one point out of a point pair.

pp get1st(x) =

√
|x · x|− x
e∞ · x (7)

pp get2nd(x) =
−

√
|x · x|+ x
e∞ · x (8)

6.1.3 Computation of the position of link 2

Link 1 and 2 are located on the yz-plane π1 respectively, so the intersection of planes
π1 and π3 results in a line, with P1 and P2 on it. The distance between P2 and P1 is
l1, hence the intersection of the sphere S1 around P1 with radius l1 results in a point
pair, from which P2 can be selected.

π1 = e1

S1 = Sphere(P1, l1)
L1 = π1∧π3

P2 = pp get1st((L1∧S1)∗) (9)
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Fig. 5 Step B. - Projection of the line through P7 and P5 onto the green plane defined by P1,P5
and an auxiliary point on the x-axis. Intersection of the Sphere around P5 with radius l4 and the
projected line returns P4

Fig. 6 Step C. - Intersecting the sphere around P1 with radius l1 with the intersection of the plane
π3 and the yz-plane returns P2

6.1.4 Computation of the position of link 3

The intersection of the two spheres S2 and S4 results in a circle Z3. P3 must be located
on circle Z3 and on plane π3 as well, thus the intersection of Z3 and π3 results in a
point pair again, from which P3 can be selected.
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S2 = Sphere(P2, l2)
S4 = Sphere(P4, l3)
Z3 = S2∧S4

P3 = pp get1st((Z3∧π3)∗) (10)

Fig. 7 Step D. - The intersection of the spheres around P2 with radius l2 and around P4 with radius
l3 results in the red circle. Intersecting the circle with the plane π3 returns P3

6.1.5 Compute the angles of the links

Since a line is defined by 2 points, 3 points are necessary to generate 2 intersecting
lines and to compute the angle in between. To compute the angle of the first link, a
point above the origin (0,0,1) is used as a parameter.

angle(x,y,z) = π− arccos
(

(x∧ y∧ e∞) · (z∧ y∧ e∞)
|x∧ y∧ e∞| |z∧ y∧ e∞|

)
(11)
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6.2 Symbolic optimization of the kinematic chain

In this section, we present the CLUCalc code for the just described inverse kinemat-
ics algorithm as an example for the input language of Gaalop. Parts of the generated
C code are presented as an example for a target implementation of Gaalop.
CluCalc models the first part of the inverse kinematics algorithms as follows:

PH3 = VecN3(hx-1,hy,hz);
:P1 = VecN3(hx,hy,hz);
:P7 = VecN3(-px,py,pz);

norm1 = FNorm[1]*e1 - FNorm[2]*e2 - FNorm[3]*e3;
?norm2 = 1/abs(norm1);
norm3 = norm1 * norm2;

//generate translator and compute P6
tvec = (norm3*(len[6]))/2;
T1 = 1 - tvec * einf;
?P6 = T1 * P7 * ˜T1;

tvec = (norm3*(len[5]+len[6]))/2;
T2 = 1 - tvec * einf;
?P5 = T2 * P7 * ˜T2;

S5 = Sphere(P5,len[4]);
Pi3 = *(PH3 ˆ e0 ˆ P5 ˆ einf);
?Pi3a = 1/abs(Pi3);
?Pi3b = Pi3 * Pi3a; // Pi3/abs(Pi3)

Gaalop optimizes the above CLUCalc code (see section 4.1 for details about the
optimization approach) and generates the following C code:

float norm2_opt[32] = {0.0};
norm2_opt[1]=1/sqrt(FNorm[1]*FNorm[1]+FNorm[2]*FNorm[2]

+FNorm[3]*FNorm[3]);

float P6_opt[32] = {0.0};
P6_opt[2]=-px+FNorm[1]*norm2_opt[1]*len[6];
P6_opt[3]=py-FNorm[2]*norm2_opt[1]*len[6];
P6_opt[4]=pz-FNorm[3]*norm2_opt[1]*len[6];
P6_opt[5]=0.5*FNorm[1]*FNorm[1]*norm2_opt[1]*norm2_opt[1]

*len[6]*len[6]+0.5*py*py+0.5*pz*pz-FNorm[1]

*norm2_opt[1]*len[6]*px+0.5*FNorm[3]*FNorm[3]

*norm2_opt[1]*norm2_opt[1]*len[6]*len[6]+0.5

*px*px+0.5*FNorm[2]*FNorm[2]*norm2_opt[1]

*norm2_opt[1]*len[6]*len[6]-FNorm[2]*norm2_opt[1]

*len[6]*py-FNorm[3]*norm2_opt[1]*len[6]*pz;
P6_opt[6]=1;

float P5_opt[32] = {0.0};
P5_opt[2]=-px+FNorm[1]*norm2_opt[1]*len[5]

+FNorm[1]*norm2_opt[1]*len[6];
P5_opt[3]=-FNorm[2]*norm2_opt[1]*len[5]
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-FNorm[2]*norm2_opt[1]*len[6]+py;
P5_opt[4]=-FNorm[3]*norm2_opt[1]*len[5]

-FNorm[3]*norm2_opt[1]*len[6]+pz;
P5_opt[5]=0.5*FNorm[2]*FNorm[2]*norm2_opt[1]*norm2_opt[1]

*len[6]*len[6]+0.5*FNorm[3]*FNorm[3]*norm2_opt[1]

*norm2_opt[1]*len[6]*len[6]+0.5*FNorm[1]*FNorm[1]

*norm2_opt[1]*norm2_opt[1]*len[6]*len[6]-FNorm[3]

*norm2_opt[1]*pz*len[5]-FNorm[1]*norm2_opt[1]*px

*len[5]-FNorm[2]*norm2_opt[1]*py*len[5]+0.5*py*py
+0.5*pz*pz+FNorm[2]*FNorm[2]*norm2_opt[1]

*norm2_opt[1]*len[5]*len[6]+FNorm[1]*FNorm[1]

*norm2_opt[1]*norm2_opt[1]*len[5]*len[6]+FNorm[3]

*FNorm[3]*norm2_opt[1]*norm2_opt[1]*len[5]*len[6]
+0.5*px*px-FNorm[1]*norm2_opt[1]*len[6]*px
-FNorm[3]*norm2_opt[1]*len[6]*pz-FNorm[2]

*norm2_opt[1]*len[6]*py+0.5*FNorm[1]*FNorm[1]

*norm2_opt[1]*norm2_opt[1]*len[5]*len[5]
+0.5*FNorm[2]*FNorm[2]*norm2_opt[1]*norm2_opt[1]

*len[5]*len[5]+0.5*FNorm3*FNorm3*norm2_opt[1]

*norm2_opt[1]*len[5]*len[5];
P5_opt[6]=1;

float Pi3a_opt[32] = {0.0};
Pi3a_opt[1]=1/sqrt(hy*hy*P5_opt[4]*P5_opt[4]-2*hy*P5_opt[4]

*hz*P5_opt[3]+hz*hz*P5_opt[3]*P5_opt[3]
+P5_opt[4]*P5_opt[4]*hx*hx-2*P5_opt[4]*hx*hz

*P5_opt[2]-2*P5_opt[4]*P5_opt[4]*hx+hz*hz

*P5_opt[2]*P5_opt[2]+2*hz*P5_opt[2]*P5_opt[4]
+P5_opt[4]*P5_opt[4]+P5_opt[3]*P5_opt[3]*hx*hx
-2*P5_opt[3]*hx*hy*P5_opt[2]-2*P5_opt[3]

*P5_opt[3]*hx+hy*hy*P5_opt[2]*P5_opt[2]+2*hy

*P5_opt[2]*P5_opt[3]+P5_opt[3]*P5_opt[3]);

float Pi3b_opt[32] = {0.0};
Pi3b_opt[2]=-Pi3a_opt[1]*(-P5_opt[4]*hy+hz*P5_opt[3]);
Pi3b_opt[3]=Pi3a_opt[1]*(-P5_opt[4]*hx+hz*P5_opt[2]

+P5_opt[4]);
Pi3b_opt[4]=-Pi3a_opt[1]*(-P5_opt[3]*hx+hy*P5_opt[2]

+P5_opt[3]);

As you can see the optimized code is very complex in terms of length. Therefore
we only list the CLUCalc code for the second part of the algorithm below.

LP5P7 = *(P5 ˆ P7 ˆ einf);
LProj = (Pi3b.LP5P7)/Pi3b;
:P4 = pick2nd( *(S5 ˆ LProj) );

Pi1 = e1;
S1 = Sphere(P1,len(1));
L1 = Pi1 ˆ Pi3:Red;
:P2 = pick1st(*(L1 ˆ S1));

S2 = Sphere(P2,len(2));
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S4 = Sphere(P4,len(3));
C3 = S2 ˆ S4;
?P3 = pick1st(*(C3 ˆ Pi3));

?angle(VecN3(0,1,0),P1,P2);
?angle(P1,P2,P3);
?angle(P2,P3,P4);
?angle(P3,P4,P5);
?angle(P4,P5,P6);

From the runtime performance point-of-view, our optimized C code achieved re-
sults comparable to the conventional algorithm. This is why the actual speedup that
Gaalop can provide for this inverse kinematics application will result from future
implementations on parallel platforms.

Because of the similarity of this inverse kinematics algorithms to our proof-of-
concept application (see section 2.3 and [9]) we expect for a FPGA implementation
a comparable hardware speedup of about 100 times.

7 Current Status and Future Perspectives

Gaalop is currently able to handle sequential conformal geometric algebra algo-
rithms. The algorithm is currently transformed into C code as well as CLUCalc
code and simple LATEXformulas. Please find always the latest news on the Gaalop
homepage [11].

We are just extending Gaalop in order to handle control flow with loops, condi-
tions etc. We are also developing generators for additional output formats like Java
code, CUDA [15] and FPGA descriptions.

One focus will lie on on mixed solutions handling reasonable combinations of
software and hardware implementations.

8 Conclusion

Geometric algebra is applicable in many different engineering scenarios and pro-
vides a straightforward and intuitive problem solving approach. With the help of
our Gaalop tool these algorithms can be automatically transformed into high run-
time performance implementations. With these results, we are convinced that con-
formal geometric algebra will be able to become more and more fruitful in a great
variety of engineering applications.
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