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Abstract— This paper presents a solution to solve the inverse
kinematics for the legs of a humanoid robot using conformal
geometric algebra. We geometrically intuitively develop the algo-
rithm with the freely available CLUCalc software and optimize
it with the help of the computer algebra system Maple and the
Clifford package for geometric algebras. We describe our Gaalop
code generator which produces executable C code with just
elementary expressions leading to a very efficient implementation.

I. INTRODUCTION

The main contribution of this paper are the high-level
description of the inverse kinematics of the leg of a humanoid
robot using conformal geometric algebra.

’Mr. DD Junior 2’ (see figure 1) is a humanoid robot
of about 38 cm total height. It was used for the 2005
RoboCup competition [2] where robots play soccer completely
autonomously. Its legs have six degrees of freedom each:
from hip to foot, the first joint rotates about the forward
oriented axis, the next three joints about the sidewards oriented
axis, and the last two joints about the forward and upward
oriented axis. This is different from standard configuration
of humanoid robot legs, where the joint that rotates about
the upward oriented axis usually is located in the hip. The
robot is equipped with a camera for vision, a pocket PC for
computation and servo motors for actuation. The robot must
localize itself on the field which has color-coded landmarks,
identify other players, the location of the ball and the goal.
For walking, Mr. DD Junior 2 uses the following inverse
kinematics approach: The motion of the hips and feet are given
by smooth trajectories, that are described by several parame-
ters and the joint angle trajectories of the legs are computed
from the hips and feet trajectories by inverse kinematics. This
computation is done online on the pocket PC, which also is
used for image processing.

Even for more advanced methods of generating offline refer-
ence trajectories like model based optimal control [1], inverse
kinematics is used for computation of starting trajectories in
the iterative process of optimizing the motion trajectories and
to reduce the number of degrees of freedom in the optimization
model.

In this paper, we develop the inverse kinematics algorithm in
section III using the geometrically very intuitive mathematical
language of conformal geometric algebra as briefly introduced
in section II. In section IV we port it to the computer
algebra system Maple with the Clifford package for geometric
algebras. In section V we describe our Gaalop code generator
generating executable C code and CLUCalc [10] code with
just elementary expressions.

For the foundations of conformal geometric algebra and
its application to kinematics please refer to [8] for instance,
[5] and to the tutorials [6] and [4]. Runtime performance
for inverse kinematics algorithms using conformal geometric
algebra has been discussed in the paper [7].
Another code generator for geometric algebra with a different
approach is Gaigen 2 [3]. While Gaigen 2 uses optimizations
on the level of geometric objects and operations our code
generator optimizes parts of algorithms combining steps of
the algorithm to optimized statements.

II. FOUNDATIONS OF CONFORMAL GEOMETRIC ALGEBRA

Blades are the basic computational elements and the basic
geometric entities of the geometric algebra. For example, the
5D conformal geometric algebra provides a great variety of
basic geometric entities to compute with. It consists of blades
with grades 0, 1, 2, 3, 4 and 5, whereby a scalar is a 0-blade
(blade of grade 0). There exists only one element of grade five
in the conformal geometric algebra. It is therefore also called
the pseudoscalar. Table II lists all the 32 blades of conformal
geometric algebra. The indices indicate 1: scalar, 2..6: vector
7..16: bivector, 17..26: trivector, 27..31: quadvector, 32: pseu-
doscalar. A linear combination of blades is called a k-vector.
So a bivector is a linear combination of blades with grade 2.
Other k-vectors are vectors (grade 1), trivectors (grade 3) and
quadvectors (grade 4). Furthermore, a linear combination of
blades of different grades is called a multivector. Multivectors
are the general elements of a Geometric Algebra.

Table I presents the basic geometric entities of conformal
geometric algebra, points, spheres, planes, circles, lines and
point pairs. The si represent different spheres and the πi
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Fig. 1. The robot Mr. DD Junior 2 of the RoboCup team, the Darmstadt
Dribbling Dackels (DDD)

TABLE I

REPRESENTATIONS OF THE CONFORMAL GEOMETRIC ENTITIES

entity standard representation direct representation

Point P = x+ 1
2 x2e∞ + e0

Sphere s = P− 1
2 r2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Plane π = n+de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3
Line l = π1 ∧π1 l∗ = x1 ∧ x2 ∧ e∞
Point Pair Pp = s1 ∧ s2 ∧ s3 P∗p = x1 ∧ x2

different planes. The two representations are dual to each
other. In order to switch between the two representations,
the dual operator which is indicated by ’∗’, can be used. For
instance in standard representation a sphere is represented with
the help of its center point P and its radius r, while in the
direct representation it is constructed by the outer product
’∧’ of four points xi that lie on the surface of the sphere
(x1∧x2∧x3∧x4). In standard representation the dual meaning
of the outer product is the intersection of geometric entities.
For instance a circle is defined by the intersection of two
spheres (s1∧ s2).

TABLE II

THE 32 BLADES OF THE 5D CONFORMAL GEOMETRIC ALGEBRA

Index blade grade
1 1 0

2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1

7 e1 ∧ e2 2
8 e1 ∧ e3 2
9 e1 ∧ e∞ 2
10 e1 ∧ e0 2
11 e2 ∧ e3 2
12 e2 ∧ e∞ 2
13 e2 ∧ e0 2
14 e3 ∧ e∞ 2
15 e3 ∧ e0 2
16 e∞ ∧ e0 2

17 e1 ∧ e2 ∧ e3 3
18 e1 ∧ e2 ∧ e∞ 3
19 e1 ∧ e2 ∧ e0 3
20 e1 ∧ e3 ∧ e∞ 3
21 e1 ∧ e3 ∧ e0 3
22 e1 ∧ e∞ ∧ e0 3
23 e2 ∧ e3 ∧ e∞ 3
24 e2 ∧ e3 ∧ e0 3
25 e2 ∧ e∞ ∧ e0 3
26 e3 ∧ e∞ ∧ e0 3

27 e1 ∧ e2 ∧ e3 ∧ e∞ 4
28 e1 ∧ e2 ∧ e3 ∧ e0 4
29 e1 ∧ e2 ∧ e∞ ∧ e0 4
30 e1 ∧ e3 ∧ e∞ ∧ e0 4
31 e2 ∧ e3 ∧ e∞ ∧ e0 4

32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

III. THE INVERSE KINEMATICS OF THE LEG OF A

HUMANOID ROBOT

The following inverse kinematics algorithm has been devel-
oped using conformal geometric algebra to solve the 6 DOF
kinematic chain for the leg of the humanoid robot ‘Mr. DD
Junior 2’ (see figure 2). The leg consists of joints with one
degree of freedom each. The hip (P1) defines the first joint
and lies in the origin, rotating about the x-axis. Three joints
rotating about the y-axis, one rotating about the x-axis and a
final one rotating about the z-axis follow, leading to the foot-
point (P7). The coordinates of the foot (Px,Py,Pz), the normal
of the foot (n) and the length of the links (l1, l2, l3, l4, l5, l6) are
needed to solve the inverse kinematics chain. Please refer to
table III for a list of the input and output parameters of the
algorithm.

A. Computation of the positions of link 5 and 6 in the
kinematics chain

Since there is only a rotation about the z-axis, link 5 and 6
(P5,P6) are on the normal (n) of the foot. The translator T is
needed to translate P7 about l6 in direction of n.

T = 1−

(
1
2

n l6

)
e∞

P6 = T P7 T̃ (1)



Fig. 2. The leg of the robot ‘Mr. DD Junior 2’ with the indication of the
points P1 to P7

TABLE III

INPUT/OUTPUT OF THE INVERSE KINEMATICS ALGORITHM

Input
var description
Px foot x-value
Py foot y-value
Pz foot z-value

normal of foot x-value
n normal of foot y-value

normal of foot z-value
l1 length of 1st link
l2 length of 2nd link
l3 length of 3rd link
l4 length of 4th link
l5 length of 5th link
l6 length of 6th link

Output
var description
ang1 angle at P1
ang2 angle at P2
ang3 angle at P3
ang4 angle at P4
ang5 angle at P5
ang6 angle at P6

Please notice that a translator is defined by the expression
T = 1− 1

2 tvec e∞ with tvec being the 3D translation vector
and that a translation is defined by a multiplication of the
translator from the left and of its reverse from the right.
Another translator (T ) is necessary to compute P5, where the
distance to P7 is l5 + l6.

T = 1−

(
1
2

n (l5 + l6)
)

e∞

P5 = T P7 T̃ (2)

Fig. 3. Step A. - translating P7 by l6 and l5 in direction of n to get P6 and
P5

B. Computation of the position of link 4

By taking a closer look at the kinematic chain, one will
notice, that P1, P2, P3, P4, P5 define a plane π3, which includes
the x-axis. Since the joints in P2, P3 and P4 all rotate about
the y-axis, these and the joints directly connected to them (P1

and P5), are all on one plane. Every plane can be defined by
3 points, which here are P1, P5 and the auxiliary point on the
x-axis PH2. Another plane, defined by the points P4, P5, P6, P7,
is orthogonal to plane π3. So the projection of the line through
P5 and P7 onto the plane π3 yields LPro j, which intersects the
sphere S5 (center: P5, radius: l4), resulting in a point pair.
Function pp_get2nd selects link 4 (P4) from it.

S5 = Sphere(P5, l4))
π3 = (PH2∧P1∧P5∧ e∞)∗

π3 =
π3

|π3|

LP5P7 = (P5∧P7∧ e∞)∗

LPro j =
(π3 ·LP5P7)

π3

P4 = pp get2nd((S5∧LPro j)∗) (3)

The used function Sphere generates a sphere around
parameter 1 with the radius of parameter 2.

Sphere(x,r) = x−
1
2

r2 e∞ (4)

The functions pp_get1st and pp_get2nd each pick one
point out of a point pair.

pp get1st(x) =

√
|x · x|− x

e∞ · x
(5)

pp get2nd(x) =
−
√
|x · x|+ x

e∞ · x
(6)



Fig. 4. Step B. - Projection of the line through P7 and P5 onto the green
plane defined by P1,P5 and an auxiliary point on the x-axis. Intersection of
the Sphere around P5 with radius l4 and the projected line returns P4

C. Computation of the position of link 2

Link 1 and 2 are located on the yz-plane π1 respectively, so
the intersection of planes π1 and π3 results in a line, with P1

and P2 on it. The distance between P2 and P1 is l1, hence the
intersection of the sphere S1 around P1 with radius l1 results
in a point pair, from which P2 can be selected.

π1 = e1

S1 = Sphere(P1, l1)
L1 = π1∧π3

P2 = pp get1st((L1∧S1)∗) (7)

Fig. 5. Step C. - Intersecting the sphere around P1 with radius l1 with the
intersection of the plane π3 and the yz-plane returns P2

D. Computation of the position of link 3

The intersection of the two spheres S2 and S4 results in a
circle Z3. P3 must be located on circle Z3 and on plane π3 as

well, thus the intersection of Z3 and π3 results in a point pair
again, from which P3 can be selected.

S2 = Sphere(P2, l2)
S4 = Sphere(P4, l3)
Z3 = S2∧S4

P3 = pp get1st((Z3∧π3)∗) (8)

Fig. 6. Step D. - The intersection of the spheres around P2 with radius l2
and around P4 with radius l3 results in the red circle. Intersecting the circle
with the plane π3 returns P3

E. Compute the angles of the links

Since a line is defined by 2 points, 3 points are necessary
to generate 2 intersecting lines and to compute the angle in
between. To compute the angle of the first link, a point above
the origin (0,0,1) is used as a parameter.

angle(x,y,z) = π− arccos

(
(x∧ y∧ e∞) · (z∧ y∧ e∞)
|x∧ y∧ e∞| |z∧ y∧ e∞|

)
(9)

IV. GEOMETRIC ALGEBRA COMPUTATIONS WITH MAPLE

The most important feature of Maple [9] we use, is its
symbolic calculation functionality. In order to deal with the
computation of conformal geometric algebra, the Clifford
package is used, which was developed by Rafal Ablamowicz
and Bertfried Fauser. The most important operations of the
Clifford package are presented in table IV. For the inner
product we use the left contraction LC operation.

TABLE IV

NOTATION OF GA-OPERATIONS

Notation Maple Notation Meaning
ab a &c b geometric product

a∧b a &w b outer product
a ·b LC(a,b) inner product
a∗ -(a) &c e12345 dualization
ã reversion(a) reversion



Besides the main operations in table IV, the functions
scalarpart() and vectorpart() for extracting the
scalar or the vector part of a multivector are also needed. In
order to use conformal geometric algebra computation we have
to load the Clifford package, set the metric of Clifford algebra,
set aliases to basic blades and define e0 and e∞.

> with(Clifford);
> B:=linalg[diag](1, 1, 1, 1, -1);
> eval(makealiases(5, "ordered"));
> e0 := -0.5*e4+0.5*e5;
> einf := e4+e5;

We define some often needed functions:

> dual := proc(x)
> local dual;
> global e12345;
> dual:= -x &c e12345;
> RETURN(dual);
> end:

> angle := proc(x,y,z)
> local angle,a,b;
> global einf;
> a := x &w y &w einf;
> b := z &w y &w einf;
> angle := Pi-arccos(scalarpart(a &c b)

/ (sqrt(scalarpart(a &c a))
* sqrt(scalarpart(b &c b))));

> RETURN(angle);
> end:

> VecN3 := proc(x,y,z)
> global e0,e1,e2,e3,einf;
> local vector;
> vector := x*e1 + y*e2 + z*e3

+ 0.5*(xˆ2+yˆ2+zˆ2)*einf+e0;
> RETURN(vector);
> end:

The function dual computes the dual representation using
the geometric product as described in table IV. The function
angle used in (9), computes the angle between two lines,
that are created each with 2 points on it and e∞ according to
the direct representation in table I. Since both lines share one
point, the angle between the lines is computed in this point.
The function VecN3 generates a conformal point according
to the standard representation in table I and is conform to the
correspondent CLUCalc instruction.

> P1 := VecN3(0,0,0);
> P7 := VecN3(-px,py,pz);

> PH1 := VecN3(0,1,0);
> PH2 := VecN3(-1,0,0);

> normal := FNorm[1] &c e1
- FNorm[2] &c e2
- FNorm[3] &c e3;

> normal := normal / mul_abs(normal);

Hip (P1), foot (P7) and two auxiliary points (PH1 and PH2)
are set. The normal of the foot is generated and normalized.

> T := 1 - ((normal * (len[6]))/2) &c einf;
> P6 := vectorpart(T &c P7

&c reversion(T),1);

A translator T is created to compute the position of P6, which
is located on the normal of the foot (1).

> T := 1 - ((normal * (len[5]+len[6]))/2)
&c einf;

> P5 := vectorpart(T &c P7
&c reversion(T),1);

P5 is computed (2).

> S5 := Sphere(P5,len[4]);
> Plane3 := dual(PH2 &w e0 &w P5 &w einf);
> Plane3 := Plane3 / mul_abs(Plane3);
> LP5P7 := dual(P5 &w P7 &w einf);
> LProj := LC(Plane3,LP5P7)

&c inverses(Plane3);
> S5LProj := S5 &w LProj;
> dual_S5LProj := dual(S5LProj);
> P4 := pp_get2nd(dual_S5LProj);

According to (3) S5, π3 (Plane3), LP5P7, LPro j and P4

are computed. For maple calculation issues, we fragment the
equation:

P4 = pp get2nd((S5∧LPro j)∗) (10)

> Plane1 := e1;
> S1 := Sphere(P1,len[1]);
> Line1 := Plane1 &w Plane3;
> Line1S1 := Line1 &w S1;
> dual_Line1S1 := dual(Line1S1);
> P2 := pp_get1st( dual_Line1S1 );

Corresponding to (7) π1 (Plane1), S1, L1 (Line1) and P2

are computed. Again for calculation issues, we fragment the
following equation

P2 = pp get1st((L1∧S1)∗) (11)

> S2 := Sphere(P2,len[2]);
> S4 := Sphere(P4,len[3]);
> Z3 := S2 &w S4;
> pp_P3 := Z3 &w Plane3;
> dual_pp_P3 := dual(pp_P3);
> P3 := pp_get1st( dual_pp_P3 );

In accordance with (8) S2, S4, Z3 and P3 are computed.
Again for calculation issues, we fragment the following equa-
tion

P3 = pp get1st((Z3∧π3)∗) (12)

> ang[1] := angle(PH1,P1,P2);
> ang[2] := angle(P1,P2,P3);
> ang[3] := angle(P2,P3,P4);
> ang[4] := angle(P3,P4,P5);
> ang[5] := angle(P4,P5,P6);

and compute the angles at the links according to (9).



V. CODE GENERATOR

Our Gaalop [11] code generator is a tool that communicates
with Maple to simplify expressions symbolically. Its input is a
Maple or CLUCalc algorithm like the one just described, pro-
ducing executable C code, CLUCalc code or LaTeX formulas
as output.

The main data structure of our code generator is the
multivector using the basic blades blade1, · · · ,blade32 as listed
in table II. For performance measures and future plans con-
cerning hardware, our Gaalop tool splits up the calculations
for the resulting expressions to their components of the 32
blades they contain. These blades only consist of elementary
expressions with no multivector operations.

Every dissected expression is rebuilt of its 32 blades. Regard
that only few coefficients have a value other than zero. The
optionally following symbolic simplifications use the rebuilt
expressions instead of the original ones, which then lead to
shorter expressions.

The algorithm now only consists of elementary expressions
and does not have to deal with (multi)vectors.

As an example, lets have a look at the code generated for
the following equation, which is part of of (3)

LP5P7 = (P5∧P7∧ e∞)∗ (13)

This line through the points P5 and P7 is represented by the
following line of Maple code

> LP5P7 := dual(P5 &w P7 &w einf);

as an assignment to the multivector LP5P7. We automatically
generate the following code with assignments to the corre-
sponding array LP5P7:

LP5P7[7] = P5[4]-pz*P5[6];
LP5P7[8] = P5[3]-py*P5[6];
LP5P7[9] = P5[4]*py-P5[3]*pz;
LP5P7[11] = px*P5[6]+P5[2];
LP5P7[12] = P5[4]*px+P5[2]*pz;
LP5P7[14] = -P5[2]*py-P5[3]*px;

Only blades within the range blade7, · · · ,blade16 appear,
which are all of grade 2. This matches the definition of lines,
since these are bivectors. P5[2], P5[3], P5[4] and P5[6]
were already computed in a previous step, px, py and pz are
the foot values according to table III.

Please notice that, with these optimization results, equation
(13) could also be written as follows

LP5P7 = LP5P7[7] · (e1∧ e2)+LP5P7[8] · (e1∧ e3)
+LP5P7[9] · (e1∧ e∞)+LP5P7[11] · (e2∧ e3)

+LP5P7[12] · (e2∧ e∞)+LP5P7[14] · (e3∧ e∞)

by using the computed coefficients and their corresponding
blades.

VI. RESULTS AND FUTURE WORK

We optimized the previously used inverse kinematics algo-
rithm by hand resulting in approximately 200 additions, 300
multiplications and about 30 other operations like square roots.

The comparison with the automatically generated implemen-
tation based on the described code generator resulted in the
same magnitude of basic operations.

Compared with the original robot algorithm, our visually
developed inverse kinematics algorithm, based on optimized
code, turned out to be about ten times slower concerning
multiplications and additions. This is due to several still
optimizable intermediate steps and redundancy in some of our
expressions. Since our focus lies on moving towards parallel
architectures like FPGAs and graphic cards, the redundant
computations do not matter to us. We still see a lot of potential
in what is possible with future automatic optimization to get
the same magnitude of basic operations or even better.

VII. CONCLUSION

Inverse kinematics is an important topic in robotics. It does
not have analytical solutions for all joint configurations, and
also if it has, efficient computation often is difficult. Conformal
geometric algebra gives an geometrically intuitive approach
for solving it. Furthermore, our Gaalop code generator is able
to automatically generate an implementation that is able to
compete with optimizations done by hand.
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