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Abstract. This paper introduces a new non-Euclidean geometry, which is the generalization of
conformal geometryG4,1. In this geometry, it is possible to handle not only spheres but also
quadric surfaces and their intersections easily as well. The Clifford algebraG6,3 is being used
as framework, which allows for the creation of a nine dimensional geometry with some new
transformations like anisotropic dilatation. This geometry also eases the use of ”Quadratic
strings”’ (the intersection of quadric surfaces) including conics in the3D space.
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1 INTRODUCTION

The use of conformal geometryG4,1 allows us to easily resolve geometric problems. Un-
fortunately, this five dimensional geometry is limited to perform operations between spheres,
planes, circles, lines, and points. There are many more problems involving more complex geo-
metric entities, such as quadric surfaces, for example. In this paper, a new geometric framework
will be introduced, which allows the use of those geometricsentities. This paper was divided
into six sections. The first five sections derive the conformal geometric algebra. The new
framework will be covered in section six.

2 THE GEOMETRIC ALGEBRA OF N-D SPACE

In this paper, a geometric algebraGn will be specified of the n dimensional space byGp,q,r,
wherep, q, andr stand for the number of basis vector which squares to 1, -1, and 0 respectively
and fulfill n = p+ q + r.

ei will be used to denote the vector basisi. In a Geometric algebraGp,q,r, the geometric
product of two basis vector is defined as

eiej =





1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p+ 1, · · · , p+ q

0 for i = j ∈ p+ q + 1, · · · , p+ q + r.

ei ∧ ej for i 6= j

This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, . . . , {e1 ∧ e2 ∧ . . . ∧ en} (1)

Any multivector can be expressed in terms of this basis. In the n-D space, there are multivectors
of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors),... up to graden. Any two such
multivectors can be multiplied using the geometric product. Consider two multivectorsAr and
Bs of gradesr ands respectively. The geometric product ofAr andBs can be written as:

ArBs = 〈AB〉
r+s

+ 〈AB〉
r+s−2 + . . . + 〈AB〉|r−s| (2)

where〈〉t is used to denote thet-grade part of multivector.

Ar ·Bs = 〈AB〉|r−s| (3)

Ar ∧Bs = 〈AB〉|r+s| (4)

consider the geometric product of two vectorsab = 〈ab〉
0
+ 〈ab〉

2
= a · b + a ∧ b.

3 THE GEOMETRIC ALGEBRA OF 3D SPACE

The basis for the geometric algebraG3,0,0 of 3D space has23 = 8 elements and is given by

1︸︷︷︸
scalar

, {ei, ej, ek}︸ ︷︷ ︸
vectors

, {eiej, ejek, ekei}︸ ︷︷ ︸
bivectors

, {eiejek} ≡ I
︸ ︷︷ ︸

trivector

. (5)

Since the basis vectors are orthogonal, i.e.,eiej = ei · ej + eiej = ei ∧ ej , it is simply written as
eij .
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It can easily be verified that the trivector or pseudoscalareiejek squares to−1 and commutes
with all multivectors in 3D space.

Multiplication of the three basis vectorse1, e2, ande3 by I results in the three basis bivectors
e1e2 = Ie3 , e2e3 = Ie1, ande3e1 = Ie2. These simple bivectors rotate vectors in their own
plane by90◦, e.g.,(e1e2)e2 = e1, (e2e3)e2 = −e3, etc. Identifying thei, j , k of the quaternion
algebra withIe1,−Ie2, Ie3, the famous Hamilton relationsi2 = j 2 = k2 = ijk = −1 can be
recovered. Since thei, j , k are bivectors, it comes as no surprise that they represent90◦ rotations
in orthogonal directions and provide a well-suited system for the representation of general 3D
rotations.

4 CONFORMAL GEOMETRY

Geometric algebraG4,1 = G4,1,0 can be used to treat conformal geometry in a very elegant
way. To see how this is possible, the same formulation presented in [2] is followed, and the
Euclidean vector space<3 is represented in<4,1. This space has an orthonormal vector basis
given by{ei}. eij = ei ∧ ej are bivectorial bases. Bivector basise23, e31, ande12 correspond
together with 1 to Hamilton’s quaternions. The Euclidean pseudo-scalar unitIe := e1∧e2∧e3, a
pseudo-scalarI = IeE, and the bivectorE := e4∧ e5 = e4e5 are used for computing Euclidean
and conformal duals of multivectors. For more about conformal geometric algebra, refer to [1].

4.1 The Stereographic Projection

Conformal geometry is related to a stereographic projection in Euclidean space. A stereographic
projection consists on mapping the points lying on a hypersphere to points lying on a hyper-
plane. In this case, the projection plane passes through theequator, and the sphere is centered at
the origin. To make a projection, a line is drawn from the north pole to each point on the sphere
and the intersection of this line, where with the projectionplane constitutes the stereographic
projection.

For simplicity, the equivalence between stereographic projections and conformal geometric
algebra of<1 will be illustrated. This paper will focus on work done in<2,1 with the basis
vectors{e1, e4, e5} having the above mentioned properties. The projection plane will be the
x-axis, and the sphere will be centered at the origin with a unitary radius.

Figure 1: Stereographic projection for 1-D.

Given a scalarxe representing a point on thex-axis, pointxc, lying on the circle that projects
to it, is calculated (see Figure 1). The equation of the line passing through the north pole and
xe is given asf(x) = − 1

xe
x + 1, and the equation of the circle isx2 + g(x)2 = 1. Substituting
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the equation of the line on the circleg = f , the point of intersectionxc is obtained, which can
be represented in homogeneous coordinates as the vector

xc = 2
xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5. (6)

From (6) the coordinates on the circle for the point at infinity can be inferred as

e∞ = lim
xe→∞

{xc}

= lim
xe→∞

{
2

xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5

}

= e4 + e5, (7)

eo =
1

2
lim
xe→0

{xc}

=
1

2
lim
xe→0

{
2

xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5

}

=
1

2
(−e4 + e5), (8)

Note that (6) can be rewritten as

xc = xe +
1

2
x2

ee∞ + eo, (9)

4.2 Spheres and Planes

The equation of a sphere of radiusρ centered at pointpe ∈ <3 can be written as(xe −
pe)

2 = ρ2. Sincexc · yc = −1

2
(xe − ye)

2, wherexe andye are the Euclidean components, and
xc ·pc = −1

2
ρ2, the formula above can be rewritten in terms of homogeneous coordinates. Since

xc · e∞ = −1, the expression above can be factored to

xc · (pc −
1

2
ρ2e∞) = 0, (10)

This equation corresponds to the so called Inner Product Null Space (IPNS) representation,
which finally yields the simplified equation for the sphere ass = pc −

1

2
ρ2e∞ . Note from this

equation that a point is just a sphere with a radius of zero. Alternatively, the dual of the sphere
is represented as 4-vectors∗ = sI. The advantage of the dual form is that the sphere can be
directly computed from four points as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (11)

If one of these points are replaced for the point at infinity, the equation of a 3D plane is obtained

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (12)

So thatπ is put in standard IPNS form

π = Iπ∗ = n+ de∞ (13)

Wheren is the normal vector andd represents the Hesse distance for the 3D space.
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4.3 Circles and Lines

A circle z can be regarded as the intersection of two spheress1 ands2 asz = (s1∧ s2) in IPNS.
The dual form of the circle can be expressed by three points lying on the circle, namely

z∗ = xc1 ∧ xc2 ∧ xc3 . (14)

Similar to the case of planes, lines can be defined by circles passing through the point at
infinity as:

L∗ = xc1 ∧ xc2 ∧ e∞. (15)

The standard IPNS form of the line can be expressed as

L = nIe − e∞mIe, (16)

wheren andm stand for the line orientation and moment, respectively. The line in the IPNS
standard form is a bivector representing the six Plücker coordinates.

Table 1: Representation of conformal geometric entities

Entity IPNS Representation OPNS Dual representation

Sphere s = p− 1

2
ρ2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Point xc = xe +
1

2
x2
ee∞ + e0 x∗ = s1 ∧ s2 ∧ s3 ∧ s4

Line L = nIe − e∞mIe L∗ = x1 ∧ x2 ∧ e∞
Plane π = n+ de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Pair of Points Pp = s1 ∧ s2 ∧ s3 P ∗
p = x1 ∧ x2

5 RIGID TRANSFORMATIONS

Rigid transformations can be expressed in conformal geometry carrying out plane reflections.

5.0.1 Reflection

The combination of reflections of conformal geometric entities enables the forming of other
transformations. The reflection of a pointx with respect to the planeπ is equal tox minus
twice the directed distance between the point and plane (seethe Figure 2). That is,ref(x) =
x− 2(π · x)π−1. This expression is calculated by using the reflectionref(xc) = −πxcπ

−1 and
the Clifford product of vectors property2(b · a) = ab+ ba.

For a IPNS geometric entityQ, the reflection with respect to the planeπ is given as

Q′ = πQπ−1 (17)
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Figure 2: Reflection of a pointx with respect to the planeπ.

5.0.2 Translation

The translation of conformal geometric entities can be doneby carrying out two reflections
at parallel planesπ1 andπ2 (see Figure 3). That is

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q (π−1

1 π−1

2 )︸ ︷︷ ︸
T̃a

(18)

Ta = (n+ de∞)n = 1 +
1

2
ae∞ = e

a

2
e∞ (19)

With a = 2dn.

Figure 3: Reflection about parallel planes.

5.0.3 Rotation

The rotation is the product of two reflections at nonparallelplanes which pass through the
origin (see Figure 4)

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q (π−1

1 π−1

2 )︸ ︷︷ ︸
Rθ

(20)

Or the conformal product computation of the normals of the planes.

Rθ = n2n1 = cos(
θ

2
)− sin(

θ

2
)l = e−

θ

2
l (21)
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Figure 4: Reflection about nonparallel planes.

With l = n2 ∧ n1 andθ twice the angle between the planesπ2 andπ1. The screw motioncalled
motor is related to an arbitrary axisL isM = TRT̃

Q′ = (TRT̃ )︸ ︷︷ ︸
Mθ

Q (TR̃T̃ )︸ ︷︷ ︸
M̃θ

(22)

Mθ = TRT̃ = cos(
θ

2
)− sin(

θ

2
)L = e−

θ

2
L (23)

6 G6,3 GEOMETRY

In this secction, theG6,3 Geometry will be introduced. By definition, this is a 9-dimensional
geometry, which has six basis squaring to1 and three basis squaring to−1 defined as follows

e21, · · · , e
2

6 = 1 (24)

e27, · · · , e
2

9 = −1

Similarly to Conformal geometry (G4,1), the stereographic projection will be used to map
points of<1 into points on<2,1. The main difference is that the stereographic projection will be
performed independently for each axis. This means basise4 ande7 are being used for axise1,
basise5 ande8 for e2, and basise6 ande9 for e3. Since this geometry allows the manipulation of
quadric entities, the points mapped to this space will be denoted by using subindexQ. Taking a
point in the Euclidean space(x, y, z) ∈ <3 will be mapped onG6,3 as follows

xQ = 2
x

x2 + 1
e1 +

x2 − 1

x2 + 1
e4 + e7

+ 2
y

y2 + 1
e2 +

y2 − 1

y2 + 1
e5 + e8

+ 2
z

z2 + 1
e3 +

z2 − 1

z2 + 1
e6 + e9. (25)

The point at infinity is being computed by applying the limitlimx,y,z→∞ to the pointXQ

e∞ = lim
x,y,z→∞

{xQ}

= (e4 + e7) + (e5 + e8) + (e6 + e9). (26)
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In order to easily handle those vectors, the definition of vectorse∞x, e∞y, e∞z are established
as

e∞x = (e4 + e7), (27)

e∞y = (e5 + e8), (28)

e∞z = (e6 + e9). (29)

The introduction of those definitions allows for the equation of the point at infinity to be rewrit-
ten (26).

e∞ =
1

3
(e∞x + e∞y + e∞z). (30)

Note thate∞ was divided by three, since it does not change the meaning of the point at infinity
but allows the normalization of the product. Following the same procedure for a point at infinity,
the vector representing the origin is computed as

eo = lim
x,y,z→0

{xQ} (31)

=
1

2
(−e4 + e7) +

1

2
(−e5 + e8) +

1

2
(−e6 + e9).

Similarly new vectors are introduced to describe origins

eox =
1

2
(−e4 + e7), (32)

eoy =
1

2
(−e5 + e8), (33)

eoz =
1

2
(−e6 + e9). (34)

This way, vectore0 is given by

eo = (eox + eoy + eoz). (35)

Each one of those new vectors are actually nilpotent, which means their magnitude is equal
to zero

e2∞x = 0 e2ox = 0 (36)

e2∞y = 0 e2ox = 0 (37)

e2∞z = 0 e2ox = 0 (38)

e2∞ = 0 e2o = 0 (39)

Additionally, the dot product between these new bases is given by

e∞x · eox = −1 e∞x · eoz = 0 (40)

e∞y · eoy = −1 e∞y · eoz = 0 (41)

e∞z · eoz = −1 e∞x · eoy = 0 (42)

e∞ · eo = −1 (43)

Using these new vectors, equation 25 is rewritten as

xQ = xe1 + ye2 + ze3 +
1

2
(x2e∞x + y2e∞y + z2e∞z) + eo (44)

This equation represents the mapping to the newG6,3 geometry and a generalization of the
conformal mapping.
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6.1 Geometric entities

In G6,3, the basic entity is a quadric surface. Every 2D surface, such as ellipsoids, hyper-
boloid, spheres etc. could be represented by using vectors grade one. The first geometric entity
described here is the ellipsoid because the rest of the quadric surfaces are very similar and could
be generated by modifying the ellipsoid.

6.1.1 Ellipsoid

The equation of a standard axis-aligned ellipsoid with center at(h, k, l) and radius(a, b, c)
in anxyz-Cartesian coordinate system is

(x− h)2

a2
+

(y − k)2

b2
+

(z − l)2

c2
= 1 (45)

Expanding and reordering

hx

a2
+

ky

b2
+

lz

c2
−

1

2

(
h2

a2
+

k2

b2
+

l2

c2
− 1

)
−

1

2

(
x2

2a2
+

y2

2b2
+

z2

2c2

)
= 0. (46)

This equation could be rewritten as a dot product of two vectors

xQ ·H = 0. (47)

wherexQ represents the mapping intoG6,3 of a euclidean point(x, y, z) (recalling equation
(44)), andH represents the ellipsoid as a vector and is given by

H =
h

a2
e1 +

k

b2
e2 +

l

c2
e3 +

1

2

(
h2

a2
+

k2

b2
+

l2

c2
− 1

)
e∞ +

1

a2
eox +

1

b2
eoy +

1

c2
eoz. (48)

The ellipsoidH is a grade one vector. Alternatively, it is possible to create an ellipsoid using
six points in a general configuration lying on an ellipsoid

H∗ = xQ1 ∧ xQ2 ∧ xQ3 ∧ xQ4 ∧ xQ5 ∧ xQ6 (49)

where∗ denotes dual or OPNS, here the ellipsoidH∗ is grade six. Equation 49 is not only
valid for an ellipsoid, but could also be utilized in the creation of a hyperboloid (image 5),
paraboloid, or any axis aligned quadric, in general.

Figure 5: hyperboloid generated by wedging six points.

Image 6 shows an ellipsoid covered with many points on the surface. These points are the
result of a genetic algorithm performed to evaluate the condition (47) and empirically determine
the kind of surface vectorH is representing (in order to validate the theory).
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Figure 6: Ellipsoid generated by evaluation ofXQ ·H = 0.

6.1.2 Sphere

Evaluating the equation of ellipsoid 48 using the same radior for axis x,y and z, that is
r = a = b = c

S =
h

r2
e1 +

k

r2
e2 +

l

r2
e3 +

1

2

(
h2

r2
+

k2

r2
+

l2

r2
− 1

)
e∞ +

1

r2
eox +

1

r2
eoy +

1

r2
eoz. (50)

since homogeneous coordinates are being used, the vectors are equal up to scalar factor, so it is
not affected by multiplying it byr2

S = he1 + ke2 + le3 +
1

2

(
h2 + k2 + l2 − r2

)
e∞ (51)

+eox + eoy + eoz .

Recalling equation 35 and introducingp = he1+ke2+ le3 representing the center of the sphere,

S = p+
1

2

(
p2 − r2

)
e∞ + eo. (52)

which is the typical equation used for the sphere in conformal geometry

6.1.3 Cylinder

The degenerated quadric surfaces are also vectors. Starting from the ellipsoid vector 48 and
considering infinity as the limit for one of the radios, for example G=limc→∞H

G =
h

a2
e1 +

k

b2
e2 +

1

2

(
h2

a2
+

k2

b2
− 1

)
e∞ +

1

a2
eox +

1

b2
eoy

In this case,G represents a cylinder aligned toz axis, and the equationG · XQ = 0 describes
a cylinder. It is also possible to create a cylinder replacing a point in the ellipsoid by a point at
infinity

G∗ = xQ1 ∧ xQ2 ∧ xQ3 ∧ xQ4 ∧ xQ5 ∧ e∞z (53)

since the ”ellipsoid” ”touches” the point at infinitye∞z, G∗ represents the dual form of a cylin-
der aligned to thez axis.

10



6.1.4 Pair of parallel planes

Starting from ellipsoid vector 48 and considering infinity as the limit for two of the radios,
for example G=limb,c→∞H

G = h
a2
e1 +

1

2

(
h2

a2
− 1

)
e∞ + 1

a2
eox

G = he1 +
1

2
(h2 − a2) e∞ + eox (54)

ThenxQ ·G = 0 only if

(x− h)2 = a2 (55)

which is the equation of two parallel planes to theyz plane. In addition, this entity could be
generated by using

π∗ = xQ1 ∧ xQ2 ∧ xQ3 ∧ xQ4 ∧ e∞y ∧ e∞z (56)

6.1.5 plane

Similarly to conformal geometry the equation of the plane isgiven by

π = n+ de∞. (57)

wheren = nxe1 + nye2 + nze3 is a vector representing the normal of the plane, andd is the
Hesse distance. Alternatively, it is possible to create a plane by wedging three points in a general
configuration (not aligned) and three of points at infinity

π∗ = xQ1 ∧ xQ2 ∧ xQ3 ∧ e∞x ∧ e∞y ∧ e∞z (58)

6.1.6 Pair of non-parallel planes

This is also a degenerated quadric (see image 7), and it consist in a pair of planes intersecting
each other. OnG6,3 this entity is bein represented by a vector

Figure 7: A degenerated quadric surface intersection.

G = h
a2
e1 −

k
b2
e2 +

1

2

(
h2

a2
− k2

b2

)
e∞ + 1

a2
eox −

1

b2
eoy (59)

ThenxQ ·G = 0 only if

(x− h)2

a2
=

(y − k)2

b2
(60)

This equation represents a pair of planes intersected at(h, k) given byy = k ± b
a
(x− h)
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6.1.7 ”Quadratic Strings”

As with conformal geometric algebra,G6,3 geometry eases the computation of the intersec-
tion of geometric entities; it is possible, for example, computing the intersection between a
paraboloid and one ellipsoid. By doing this, it is possible to generate one dimensional geomet-
ric entities such as conics (cone/plane intersection). IfH andG represent quadric surfaces, the
intersectionS (see picture 8) could be computed as simply as

S = H ∧G (61)

Figure 8: Quadric surfaces intersection.

WhereS represents a one dimensional surface and is described by a Bivector, pointsxQ lying
in the intersection accomplishxQ · S = 0. The line is also a ”string” and is being represented
by a bivector that could be generated by using plucker coordinates as

L = ne∞ + l (62)

wherel is a bi-vector representing the direction of the line. it is also possible to generate a line
by using two points

L∗ = xQ1 ∧ xQ2 ∧ e∞x ∧ e∞y ∧ e∞z (63)

In this case, the line is a five grade homogeneous multivectorand contains five points: two points
xQ1 andxQ2 and three points at infinity. Image 9 shows the render of a bivector generated by
the intersection of two quadric surfaces

Figure 9: 1-D quadric surfaces (”Quadric strings”).
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6.1.8 Zero dimensional entities

These entities could be a point, a pair of points, three, or even four points in space. They
represent the intersection between a Quadric surface and a conic or the wedging of four points.

4P ∗ = xQ1 ∧ xQ2 ∧ xQ3 ∧ xQ4 (64)

6.2 Transformations

6.2.1 Anisotropic Dilatation

Similarly to the rotation and translation, the dilation could be seen as a reflection. In this
case, however, between two concentric spheres (see image 10)

r

¥-= ees
o

2

2

1

2
r

x

x’

¥-= ees
o 2

1

1

Figure 10: Reflection between concentric spheres.

Dx = (eox −
1

2
e∞x)(eox −

1

2
ρ2e∞x) (65)

Dx =
1

2
(1− e47) +

1

2
(1 + e47)ρ

2 (66)

Dx =
1

2
ρ−1(1− e47) +

1

2
(1 + e47)ρ = ee47φ (67)

whereφ = ln(ρ). ThenDx = ee47φ dilates every geometric entity only in thex axis. In the
same way,Dy = ee58φ andDz = ee69φ dilatesy andz axis, respectively. For example, assuming
S as a sphere, the operation will generate an ellipsoidS ′.

S ′ = DzDyDxSD̃xD̃yD̃z (68)

6.3 Pseudo-scalar

In this paper, two descriptions for every geometric entity were used (standard and dual* or
IPNS and OPNS respectively). It is possible and very useful to move from one to other. In order
to do that, some new will pseudo scalars be defined

Ie = e1 ∧ e2 ∧ e3 (69)

Ids = Ie ∧ e∞x ∧ e∞y ∧ e∞z ∧ eo (70)

Isd = Ie ∧ eox ∧ eoy ∧ eoz ∧ e∞ (71)
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Those pseudo-scalars allow us to move an entity from OPNS to IPNS, and it is valid for 2D,
1D, and 0D quadratic surfaces.

H = H∗ · Ids (72)

H∗ = H · Isd (73)

7 CONCLUSION

One of the main advantages of this geometry is the fact that itis possible to handle many
more geometric entities as vectors, and it provides a framework to perform operations between
quadric surfaces and their intersections. It also providesan easy way to represent 1-dimensional
quadric surfaces. Instead of using a bundle of parametric equations, they are given by a bi-
vector. This geometry also provides a good framework to perform any conformal transformation
and allows anisotropic transformations like, for example,anisotropic dilatation.
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