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Abstract. This paper introduces a new non-Euclidean geometry, wisithd generalization of
conformal geometryz, ;. In this geometry, it is possible to handle not only sphergsaliso
quadric surfaces and their intersections easily as welle Tifford algebraGs 3 is being used
as framework, which allows for the creation of a nine dimenal geometry with some new
transformations like anisotropic dilatation. This geomyetlso eases the use of "Quadratic
strings™ (the intersection of quadric surfaces) includjonics in the3D space.



1 INTRODUCTION

The use of conformal geometry, ; allows us to easily resolve geometric problems. Un-
fortunately, this five dimensional geometry is limited tafpem operations between spheres,
planes, circles, lines, and points. There are many mordegrabinvolving more complex geo-
metric entities, such as quadric surfaces, for exampléismpaper, a new geometric framework
will be introduced, which allows the use of those geometeiasities. This paper was divided
into six sections. The first five sections derive the confdrgeometric algebra. The new
framework will be covered in section six.

2 THE GEOMETRIC ALGEBRA OF N-D SPACE

In this paper, a geometric algeb@a will be specified of the n dimensional space @y, ,,
wherep, ¢, andr stand for the number of basis vector which squares to 1, dlQaaspectively
and fulfilln =p+q+r.

e; Will be used to denote the vector basisin a Geometric algebrér, , ., the geometric
product of two basis vector is defined as

1 for i=j€1,---,p
-1 for i=j€p+1,---,p+q
0 for i=j€p+q+1l,---,ptqg+r
eiNej for i#j

€i6j =

This leads to a basis for the entire algebra:
{1}, {ei}. {einejt, ..., {fer Nea Al Neyt (1)

Any multivector can be expressed in terms of this basis.émt space, there are multivectors
of grade 0 (scalars), grade 1 (vectors), grade 2 (bivectors)p to grade:. Any two such
multivectors can be multiplied using the geometric prod@ansider two multivectord,. and
B, of gradesr ands respectively. The geometric productdf. and B, can be written as:

AT‘BS = <AB>T‘+S+ <AB>T+S—2+"'+ <AB>|7‘—S| (2)
where(). is used to denote thiegrade part of multivector.

AT‘ - Bs = <AB>\7—S\ (3)
Ay ABy=(AB),, (4)

consider the geometric product of two vectats = (ab), + (ab), = a-b+a A'D.

3 THE GEOMETRIC ALGEBRA OF 3D SPACE
The basis for the geometric algel§fa, o of 3D space hag?® = 8 elements and is given by

DY {ei ej ent, {eie), ejer, exe; }, {eiejer} = 1. (5)
scalar

vectors bivectors trivector

Since the basis vectors are orthogonal, &g, = e; - e; + e;e; = e; A e, itis simply written as
€ij-



It can easily be verified that the trivector or pseudosacatae;, squares te-1 and commutes
with all multivectors in 3D space.

Multiplication of the three basis vectors, e;, andes by I results in the three basis bivectors
eres = les, eses = Ieq, andesze; = Ie,. These simple bivectors rotate vectors in their own
plane by90°, e.g.,(e1es)es = e, (e2e3)es = —eg, etc. Identifying the, j, k of the quaternion
algebra withle,, —Ie,, Ies, the famous Hamilton relatiori$ = j? = k? = ijk = —1 can be
recovered. Since thigj, k are bivectors, it comes as no surprise that they reprégémndtations
in orthogonal directions and provide a well-suited systentlie representation of general 3D
rotations.

4 CONFORMAL GEOMETRY

Geometric algebrér,; = G419 can be used to treat conformal geometry in a very elegant
way. To see how this is possible, the same formulation pteden [2] is followed, and the
Euclidean vector spack® is represented ifR*!. This space has an orthonormal vector basis
given by{e;}. e;; = e; A e; are bivectorial bases. Bivector basig, e;;, ande;» correspond
together with 1 to Hamilton’s quaternions. The Euclideaguyg®-scalar unif, := e; Aey Aes, a
pseudo-scalaf = I, F, and the bivectoE := e, A es = e4e5 are used for computing Euclidean
and conformal duals of multivectors. For more about contdrgeometric algebra, refer tol [1].

4.1 The Stereographic Projection

Conformal geometry is related to a stereographic projeati&cuclidean space. A stereographic
projection consists on mapping the points lying on a hygeesp to points lying on a hyper-
plane. In this case, the projection plane passes througdttintor, and the sphere is centered at
the origin. To make a projection, a line is drawn from the hgule to each point on the sphere
and the intersection of this line, where with the projectpdane constitutes the stereographic
projection.

For simplicity, the equivalence between stereographigeptions and conformal geometric
algebra ofRR! will be illustrated. This paper will focus on work done #?! with the basis
vectors{ey, e4, 5} having the above mentioned properties. The projectioneplaifi be the
x-axis, and the sphere will be centered at the origin withitamnradius.

Z

(% 'X‘e
N[
&

| ——€
/ kxe+e5

Figure 1: Stereographic projection for 1-D.

e,

Given a scalax, representing a point on theaxis, pointz,, lying on the circle that projects
to it, is calculated (see Figuré 1). The equation of the liassing through the north pole and
x. is given asf(z) = —-= + 1, and the equation of the circlei$ + g(x)* = 1. Substituting
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the equation of the line on the circle= f, the point of intersection. is obtained, which can
be represented in homogeneous coordinates as the vector

o Te o Tl
(&
2241 2+1

€4+ €5. (6)

Te =

From (8) the coordinates on the circle for the point at infigiin be inferred as

e = Jim (r]

lim {2—2¢ +$2_1 +
= lim e es+e
zeoo | “a2 41 2241

= 64—1—65, (7)

e = ith {z.}

LY PO Ak S
= — lim € (&
a0 | 221 g2yl T

= %(—64 + e5), (8)

Note that[(6) can be rewritten as

1
Te = T+ 255@600 + e,, 9)

4.2 Spheres and Planes

The equation of a sphere of radigscentered at poinp. € R* can be written agz, —
pe)? = p*. Sincez, - y. = —3(x. — ye)?, wherex, andy. are the Euclidean components, and
z.-p. = —3p°, the formula above can be rewritten in terms of homogeneooisinates. Since
T, - €5 = —1, the expression above can be factored to

1

T+ (pc - 5;02600) = 07 (10)

This equation corresponds to the so called Inner Produdt $adce (IPNS) representation,
which finally yields the simplified equation for the spheresas p. — %p2€oo . Note from this
equation that a point is just a sphere with a radius of zerterAatively, the dual of the sphere

is represented as 4-vectet = sI. The advantage of the dual form is that the sphere can be
directly computed from four points as

" =Toy ATey N Tey N\ T, (12)
If one of these points are replaced for the point at infinktg, ¢quation of a 3D plane is obtained
T =Ty N Loy N\ Ty N oo (12)
So thatr is put in standard IPNS form
m =Irm*= n+dey (13)

Wheren is the normal vector andrepresents the Hesse distance for the 3D space.
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4.3 Circles and Lines

A circle =z can be regarded as the intersection of two spharasds; asz = (s; A sg) in IPNS.
The dual form of the circle can be expressed by three poiirig lyn the circle, namely

25 =Ty N Ty N\ Ty (14)

Similar to the case of planes, lines can be defined by cir@dssipg through the point at
infinity as:

L* =2 ATy N o (15)
The standard IPNS form of the line can be expressed as
L=nl,—e,ml,, (16)

wheren andm stand for the line orientation and moment, respectivelye Titne in the IPNS
standard form is a bivector representing the siicRér coordinates.

Table 1: Representation of conformal geometric entities

| Entity | IPNS Representatioj OPNS Dual representatign
Sphere s=p— %/)2600 S* =x1 Nxog A3 A2y
Point Te=Te+ 30oe0+ €0 | T =51 NSy NSy sy
Line L=nl, —e,mli, L* =21 ANxg A e
Plane T =n+ des T =121 ATy A3 A e
Circle z =81 N\ S9 ¥ =x1 ANxy A3
Pair of Points) P, = s1 A s3 A s3 P =z Ny

5 RIGID TRANSFORMATIONS

Rigid transformations can be expressed in conformal gegroatrying out plane reflections.

5.0.1 Reflection

The combination of reflections of conformal geometric éggienables the forming of other
transformations. The reflection of a pointwith respect to the plane is equal tox minus
twice the directed distance between the point and planetiigeEigurd 2). That is;ef(x) =
x — 2(m - )7~ 1. This expression is calculated by using the reflectiof{x.) = —mz.7~' and
the Clifford product of vectors proper(b - a) = ab + ba.

For a IPNS geometric entit, the reflection with respect to the planas given as

Q = Q! (17)



d - T=n+dex

Figure 2: Reflection of a point with respect to the plane.

5.0.2 Translation

The translation of conformal geometric entities can be donearrying out two reflections

at parallel planes; andr, (see Figurél3). That is

Q = (mm)Q (r'my")
N—_—— N—_——

Ta Ty
1 a
T, = (n+dess)n =1+ 50€o0 = g2

With a = 2dn.

<« d—

Figure 3: Reflection about parallel planes.

5.0.3 Rotation

(18)

(19)

The rotation is the product of two reflections at nonpargilahes which pass through the

origin (see Figurgl4)

Q = (mm)Q (r'my )
N—_—— N—_——
Ry Ry

Or the conformal product computation of the normals of ttampk.
0 0 0

Ry = nong = COS(§) — S’m(i)l =e 2

(20)

(21)



T[:»]:n1 7'52:”2

Figure 4: Reflection about nonparallel planes.

With [ = ny A ny; andd twice the angle between the plangsandr,. The screw motiowralled
motoris related to an arbitrary axisis M = TRT

Q' = (TRT)Q(TRT) (22)
—_—— =
M, A,
My = TRT = cos(g) - sz’n(g)L = 5L (23)

6 Gg3 GEOMETRY

In this secction, thé&/s ; Geometry will be introduced. By definition, this is a 9-dinseamal
geometry, which has six basis squaring tand three basis squaringtal defined as follows

e, -, ep = 1 (24)
e?,~--,e§ = -1

Similarly to Conformal geometry{, ), the stereographic projection will be used to map
points of ! into points ort*!. The main difference is that the stereographic projectidibe
performed independently for each axis. This means hasande; are being used for axis,
basise; andes for ey, and basigg andeg for e;. Since this geometry allows the manipulation of
guadric entities, the points mapped to this space will b@tkhby using subindey. Taking a
point in the Euclidean spade, v, z) € R* will be mapped orG; 3 as follows

2

2 X +I’
= e
22 +1 a2
2
y y-—1
2
+ y2+162+y2+1
5 z +z2—1
e
2110 241

rQ es+e7

es 1+ eg

€g + €g9. (25)
The point at infinity is being computed by applying the litit, ,, ., to the pointX

e = lim {xg}

x,Y,z—>00

= (64 + 67) + (65 + 68) + (66 + 69). (26)



In order to easily handle those vectors, the definition otase ., e~y, €. are established
as

Coox = (64 + 67)7 (27)
ooy = (€5 + €3), (28)
Cooz = (€6 + €9). (29)

The introduction of those definitions allows for the equatid the point at infinity to be rewrit-

ten (26).
1
oo = g(eoox + €ooy + eooz)' (30)

Note thate., was divided by three, since it does not change the meanidgegidint at infinity
but allows the normalization of the product. Following tle® procedure for a point at infinity,
the vector representing the origin is computed as

¢, = lim {ug) (31)
1 1 1
= 5(—64 + 67) + 5(—65 + 68) + 5(—66 + 69).
Similarly new vectors are introduced to describe origins
1
€Cox = 5(_64 + 67)7 (32)
1
Coy = 5(_65 + 68)7 (33)
1
€or = 5(—66 + 69). (34)

This way, vectok, is given by
€o = (eom + €oy + eoz)- (35)

Each one of those new vectors are actually nilpotent, whiebama their magnitude is equal
to zero

ez, =0 €2 =0 (36)
eioy =0 2, =0 (37)
e2,=0 €2 =0 (38)
e2 =0 e2=0 (39)

Additionally, the dot product between these new bases &gy
€ooz " Cor = —1 €sop € =0 (40)
Cooy " Coy = =1 €ooy " €or =0 (41
Cooz €0z = =1 €ogz = €y =0 (42)
oo " €o = —1 (43)

Using these new vectors, equation 25 is rewritten as

rQ = we1 + yea + zez + %(az2eoom + erooy + 22e002) + €0 (44)

This equation represents the mapping to the hgw geometry and a generalization of the
conformal mapping.



6.1 Geometric entities

In Gg 3, the basic entity is a quadric surface. Every 2D surfaceh siscellipsoids, hyper-
boloid, spheres etc. could be represented by using veatade @ne. The first geometric entity
described here is the ellipsoid because the rest of the guadfaces are very similar and could
be generated by modifying the ellipsoid.

6.1.1 Ellipsoid

The equation of a standard axis-aligned ellipsoid with eeat (A, k, 1) and radiuga, b, ¢)
in anxyz-Cartesian coordinate system is

(z—h)? (y—k? (2-1?
a? + b? + 2 ! (45)
Expanding and reordering
hr ky 1z 1 (h* k* [? 1 (22 y? 22
A AT T ) ey s =) =o. 4
a2+b2+02 2<a2+bz+02 2 2a2+262+202 0 (46)
This equation could be rewritten as a dot product of two wscto
xqg - H=0. (47)

wherez represents the mapping int; 3 of a euclidean pointz, y, z) (recalling equation
(44)), andH represents the ellipsoid as a vector and is given by

k l h? k2 l2 1 1 1
peetzeats ( tat e 1) €oo T —3€0r + 15€0 + He0z.  (48)
The eIIipsoidH isa grade one vector. AIternativer, it is possible to ceeant ellipsoid using
six points in a general configuration lying on an ellipsoid

h
H = 61+

H* = £17Q1 A QL“QQ N ng A £EQ4 A\ $Q5 A QEQ()' (49)

wherex denotes dual or OPNS, here the ellipséid is grade six. Equation 49 is not only
valid for an ellipsoid, but could also be utilized in the diea of a hyperboloid (imaggl5),
paraboloid, or any axis aligned quadric, in general.

Figure 5: hyperboloid generated by wedging six points.

Imagel 6 shows an ellipsoid covered with many points on thiaser These points are the
result of a genetic algorithm performed to evaluate the tmmd(47) and empirically determine
the kind of surface vectall is representing (in order to validate the theory).
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Figure 6: Ellipsoid generated by evaluation’f, - H = 0.

6.1.2 Sphere

Evaluating the equation of ellipsoid148 using the same radior axis x,y and z, that is
r=a=b=c

72 72 72 2 r2 2

h k l 1(n* K P2 1 1 1
e + —e3 + = (—2 — + = - 1) oo t —5€ox + €0y T —5€0z-  (50)
T T T r

since homogeneous coordinates are being used, the vexargqual up to scalar factor, so it is
not affected by multiplying it by

S = h61+k62+l63+2(h2+k2+l2—7”)eoo (51)
Feor + €oy + €0z

Recalling equation 35 and introducipg= he; + ke, + les representing the center of the sphere,

S:p+%(p2—r2)eoo+eo. (52)

which is the typical equation used for the sphere in confbgeametry

6.1.3 Cylinder

The degenerated quadric surfaces are also vectors. §tadimn the ellipsoid vectdr 48 and
considering infinity as the limit for one of the radios, fo@ple G3im,_,,, H

h k h? k? 1
G 61+ €2+ < +__1>€oo+ eoz

1
b? a? b b2

In this case(= represents a cylinder aligned taaxis, and the equatioff - X, = 0 describes
a cylinder. It is also possible to create a cylinder replg@rpoint in the ellipsoid by a point at
infinity

G* = To1 N T2 N T3 N Tga N Tgs N €soz (53)

since the "ellipsoid” "touches” the point at infinity,, ., G* represents the dual form of a cylin-
der aligned to the axis.
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6.1.4 Pair of parallel planes

Starting from ellipsoid vectdr 48 and considering infinit/the limit for two of the radios,
for example GHmy, .00 H

G :a%el—l—%(’;—z—l)eoojta%eox
G =hei+i(h?—a®)ex+en (54)
Thenzg - G = 0 only if
(x — h)* =d? (55)

which is the equation of two parallel planes to tfreplane. In addition, this entity could be
generated by using

T =xg1 A Tg2 N T3 A TQa N €ooy N €ocoz (56)

6.1.5 plane
Similarly to conformal geometry the equation of the plangiven by
T =n+des. (57)

wheren = n,e; + nyes + n.es is a vector representing the normal of the plane, @imlthe
Hesse distance. Alternatively, itis possible to creat@aag@by wedging three pointsin a general
configuration (not aligned) and three of points at infinity

T =201 NTQ2 N TQ3 N ooz N ooy N €co (58)

6.1.6 Pair of non-parallel planes

This is also a degenerated quadric (see image 7), and itstaémsi pair of planes intersecting
each other. OKi5s 5 this entity is bein represented by a vector

Figure 7: A degenerated quadric surface intersection.

h k 1(h% _ K2 1 1
G = 261 — 1262+ 3 (ﬁ — b_2) €oo T 72€0z — 32€0y (59)

Thenzg - G = 0 only if

a? b2

This equation represents a pair of planes intersectéld &} given byy = k & 2(z — h)
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6.1.7 "Quadratic Strings”

As with conformal geometric algebré; ; geometry eases the computation of the intersec-
tion of geometric entities; it is possible, for example, garing the intersection between a
paraboloid and one ellipsoid. By doing this, it is possiligénerate one dimensional geomet-
ric entities such as conics (cone/plane intersection)l #ndG represent quadric surfaces, the
intersectionS (see picturél8) could be computed as simply as

S=HAG (61)

i (o

Figure 8: Quadric surfaces intersection.

WhereS represents a one dimensional surface and is described bget8i, pointsc, lying
in the intersection accomplisky, - S = 0. The line is also a "string” and is being represented
by a bivector that could be generated by using plucker coatds as

L =neyx+1 (62)

wherel is a bi-vector representing the direction of the line. itlgpossible to generate a line
by using two points

LF = TQ1 A Q2 A Coox A €ooy A €ooz (63)

In this case, the line is a five grade homogeneous multivadicontains five points: two points
zg1 andzg, and three points at infinity. Imagé 9 shows the render of ackivegenerated by
the intersection of two quadric surfaces

- .
/ i %i\;' A "y
# : 7N
{ } / i
£ fi.+ 4 1
ﬁ H % t}f j 2>
3 i £ i il
i ] it
3 H _f H h ‘f } {.r

./’

% M/’ ir i o
%e.\. \/? et

&

Vi

Figure 9: 1-D quadric surfaces ("Quadric strings”).
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6.1.8 Zero dimensional entities

These entities could be a point, a pair of points, three, endaur points in space. They
represent the intersection between a Quadric surface amwi@aar the wedging of four points.

4P = Q1 N Q2 AN Qs N Q4 (64)
6.2 Transformations
6.2.1 Anisotropic Dilatation

Similarly to the rotation and translation, the dilation whbe seen as a reflection. In this
case, however, between two concentric spheres (see [mhge 10

Figure 10: Reflection between concentric spheres.

1 1
Dw - (eom - _eoox>(€ox - _pzeoom) (65)
2 2
1 1
D, = 5(1 — 647) + 5(1 + 647)p2 (66)
1 1
Dw = ip_l(l — 647) + 5(1 + 647)p = 6847¢ (67)

where¢ = In(p). ThenD, = e“7¢ dilates every geometric entity only in theaxis. In the
same wayD,, = e“¢ and D, = e“? dilatesy andz axis, respectively. For example, assuming
S as a sphere, the operation will generate an ellipsaid

' = D.D,D,SD,D,D, (68)
6.3 Pseudo-scalar

In this paper, two descriptions for every geometric entigrevused (standard and dual* or
IPNS and OPNS respectively). Itis possible and very usefoid@ve from one to other. In order
to do that, some new will pseudo scalars be defined

I. = et NeyAes (69)
Iis = TeNesy N ey N eoo: N e (70)
Iqg = TeNeg Negy Neo: N e (71)
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Those pseudo-scalars allow us to move an entity from OPNBN&| and it is valid for 2D,
1D, and 0D quadratic surfaces.

H=H"1I, (72)
H*=H- I, (73)

7 CONCLUSION

One of the main advantages of this geometry is the fact thatpgbssible to handle many
more geometric entities as vectors, and it provides a fraomew perform operations between
guadric surfaces and their intersections. It also provégiesasy way to represent 1-dimensional
guadric surfaces. Instead of using a bundle of parametdateans, they are given by a bi-
vector. This geometry also provides a good framework togperfiny conformal transformation
and allows anisotropic transformations like, for examplasotropic dilatation.
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