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Abstract !!TODO The focus of this work is a simplified integration of algorithms
expressed in Geometric Algebra (GA) into modern high level computer languages,
namely C++, OpenCL and CUDA. A high runtime performance in terms of GA is
achieved using symbolic simplification and code generation by a precompiler that
is directly integrated into CMake-based build toolchains.

1 Introduction

During the last decade, Geometric Algebra (GA) has become increasingly popular
in expressing solutions to geometry-related problems in scientific applications of
robotics, dynamics, computer graphics, and computer vision. Video game develop-
ers are becoming aware of GA, in search for simpler and faster ways to describe
their lighting [2] and physics algorithms. Most developers makes use of C-related
programming languages, such as C++, OpenCL [15] or CUDA [16], which are per-
formant and abstract enough for most needs.

From a programmer’s perspective, the integration of GA directly into these lan-
guages yields a high level of intuitiveness. Coupled with a highly efficient generative
software tool like Gaalop [9] in the background, an integration sets new standards
for GA-powered software development. An advanced integration itself including
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other comforts, and to make GA-usage available to a broad audience, is the purpose
of this work.

1.1 Geometric Algebra by example

Geometric Algebra (GA) is a new way of expressing many geometry-focused math-
ematical problems. It deals naturally with intersections and transformations of
planes, lines, spheres, circles, points, and point pairs, but is also good at represent-
ing mechanics and dynamics. In Linear Algebra, one would have to differentiate a
plane-sphere intersection into three distinct cases, namely circle-intersection, point-
intersection and no intersection at all. In the so called Conformal Geometric Algebra
the whole intersection may be formulated as one operation on the plane (P) and the
sphere (S), respectively:

R = S∧P (1)

Note 1. Here, the symbol ∧ denotes the so called outer product (see Subsubsec-
tion 1.2.1), as used in CLUScript [18] and [9]. An alternative description of the
outer product is called “meet”-operator and is described in [4].

The three different cases of Linear Algebra are implicitly contained in the one re-
sult R of Conformal Geometric Algebra in Equation 1, which is more compact and
better readable. Similar observations can be made in other applications of geometry-
related mathematics. Therefore, when applied to computer programs, GA has a high
potential for improving code readability and to shortening production cycles. It has
also been proven, that if implemented correctly, Geometric Algebra has at least
similar performance, but sometimes even better performance, than conventional ap-
proaches [12].

The example above shall serve as motivation towards Geometric Algebra in general
and is formulated in the so called Conformal Geometric Algebra. However the con-
cept of Geometric Algebra is much broader, as there exist several other Algebras,
with the moist commonly known ones being the Euclidean-, Projective- and Con-
formal Geometric Algebras. Subsection 1.2 explains the three most basic operations
defined on all Geometric Algebras.
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Table 1 Notations of Conformal Geometric Algebra

notation meaning alternative
AB geometric product of A and B
A∧B outer product of A and B AˆB
A ·B inner product of A and B A.B
A∗ dual of A dual(A)
A−1 inverse of A 1/A
Ã reverse of A
e0 conformal origin e0
e∞ conformal infinity ein f

1.2 The products of Geometric Algebra

The three most often used products of Geometric Algebra are the outer, the inner
and the geometric product. In table 1 the notations of these products are listed. We
will use the outer product mainly for the construction and intersection of geomet-
ric objects while the inner product will be used for the computation of angles and
distances. The geometric product will be used mainly for the description of trans-
formations.

Note that the three products do not only apply to the Conformal Geometric Algebra
explained in Subsection 1.1. Many different types of algebras with various dimen-
sions may be defined, such as the three-dimensional Euclidean Geometric Algebra
or the nine-dimensional G6,3 Algebra 2.6. All of these are subject to the three prod-
ucts explained in the following.

1.2.1 The outer product

Geometric Algebra provides an outer product ∧ with the following properties
Property Meaning

1. anti-symmetry u∧ v =−(v∧u)
2. linearity u∧ (v+w) = u∧ v+u∧w
3. associativity u∧ (v∧w) = (u∧ v)∧w

Property (1.) applies only for vectors, the other ones are generally valid (so also for
multivectors).

The outer product of parallel vectors is 0.

a∧a =−(a∧a) = 0 (2)

This is the reason why the outer product can be used as a measure for parallelness.
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1.2.2 The inner product

For the 3D Euclidean space, the inner product of 2 vectors is the same as the well
known Euclidean scalar product of 2 vectors. For perpendicular vectors the inner
product is 0, for instance e1 · e2 = 0. In Geometric Algebra, the inner product is not
only defined for vectors. The inner product is grade decreasing, e. g. the result of
the inner product of an element with grade 2 and grade 1 is an element of grade 2-1
=1. Please refer to [19] and [11] for a mathematical treatment.

Note that in literature you will find different versions of the inner product, e.g. the
left contraction or the Hestenes inner product. The one we use (as well as CLUCalc)
is sometimes also called the “dot product” - because we only use this one, we call it
“the” inner product.

1.2.3 The geometric product

The geometric product is an amazingly powerful operation. It has a lot of geometric
meaning whereby the easy handling of transformations is the most important one.
The geometric product is a combination of the outer product and the inner product.
The geometric product of u and v is denoted by uv. For vectors u and v the geometric
product uv can be defined as

uv = u∧ v+u · v (3)

We derive for the inner and the outer product

u · v = 1
2
(uv+ vu) (4)

u∧ v =
1
2
(uv− vu), (5)

but as noted before: In this form these formulas only apply for vectors.

Divisions by algebraic objects are possible due to the fact that the geometric prod-
uct is invertible. The dual of an algebraic object is calculated with the help of its
division by the pseudoscalar. The reverse is an operator simply reversing the order
of vectors in a blade. The notations of these operations are listed in table 1 on page
3.
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2 Related Work

Combining both the aspects of Geometric Algebra and modern programming lan-
guages (namely C++, OpenCL and CUDA), promises to have a high potential for
scientific work. Unfortunately, GA has such a high level of abstraction that it does
not naturally fit into these languages. A number of software packages exist to over-
come this problem. They are listed in the following.

2.1 CLUScript

Conformal Geometric Algebra can not be expressed in terms of regular mathemat-
ical syntax. CGA-specific operators like the outer product ∧, inner product . and
geometric product ∗ require special treatment in regular programming languages or
the definition of a completely new Domain Specific Language (DSL).

The DSL that powers this work is CLUScript. The especially designed integrated de-
velopment environment for CLUScript is called CLUViz (new), and is freely avail-
able at [18]. In words of the author Dr. Christian Perwass [18, 17]:

CLUCalc/CLUViz is a freely (for non-commercial use) available software tool for 3D vi-
sualizations and scientific calculations that was conceived and written by Dr. Christian Per-
wass. CLUCalc interprets a script language called CLUScript, which has been designed to
make mathematical calculations and visualizations very intuitive.

Indeed, CLUScript is a very intuitive language, and we have found CLUCalc to be
an advanced tool for developing and testing Geometric Algebra algorithms. It is easy
to use, installs and runs smoothly on Microsoft Windows platforms. Unfortunately,
the support for Linux and Macintosh platforms is very limited.

2.2 Gaalop as the foundation of this work

The Geometric Algebra Algorithms Optimizer (Gaalop) [?] was developed by TU
Darmstadt (Germany) and is a powerful tool for optimizing algorithms, expressed in
Geometric Algebra. It generates non GA-specific code from code defined in CLU-
Script and symbolically optimizes the algorithm on-the-fly, optionally invoking a
Computer Algebra System (CAS). In this context, GA can be seen as a higher level
mathematical language that is being transformed into simple arithmetics by Gaalop.
Philosophically spoken, Gaalop could be defined as a math compiler.

CLUScript as an input language and C/C++ as output language has proven to be an
extremely powerful combination. It is also possible to generate LATEX, CLUScript,
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and Verilog representations, the latter being suitable for Field Programmable Gate
Arrays (FPGA). For evaluation purposes it is often helpful to choose CLUScript
output, then replace the original CLUScript with the optimized code and test the
result for the same functionality as the original code.

With recent work [22], Gaalop is no longer dependent on Maple. It can optimize
CLUScript with its internal Table Based Approach and several other internal opti-
mization mechanisms. It may also invoke the Open-Source CAS Maxima on-the-fly,
but this feature is completely optional.

Gaalop is especially good at optimizing larger connected chunks of code, where
other tools mainly focus on single statements.

2.3 Contributions of this work

The foundations of this work were made with [13] with the tool Gaalop. While
Gaalop provides a graphical user interface (GUI) that enables conversion from pure
CLUScript [18] to C++, Verilog and many more, this work goes one step further
and places this functionality inside a modern programming toolchain, namely all
toolchains targeted by the build manager CMake. This provides a much better work-
flow, since it eliminates the tedious process of copying code snippets by hand.

A plain and simple embedding of CLUScript into a native language would not be
sufficient, because some communication is required between both languages. This
work proposes so called Interface Features to close this gap between languages,
while also carefully taking into account memory access performance on GPU-
hardware. As contribution of this work, a way to use Gaalop GPC in collaboration
with Mathematica’s OpenCLLink is demonstrated in Section 4.

2.4 Alternatives to Gaalop GPC

Several similar tools exist as alternatives to Gaalop GPC. This section motivates
why those do not match our general requirements on tools for Geometric Algebra
Computing. Firstly, we analyze several existing tools attempting to solve this prob-
lem in different ways.

Gaigen [6] was implemented by Daniel Fontijne at the University of Amsterdam. At
the time of writing, it is in its third major version and has been developed since 2005.
All versions work through efficient generation of C++-code, that is later linked to the
final application binary. The latest version, Gaigen2, has a very remarkable profiling
feedback mechanism, that bases the regeneration of code on the latest application
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runtime profiling. As [5] notes, Gaigen2 may have some problems with over-fitting
that profiling feedback, and also causes some practical programming issues related
to the classes and functions required to import into the application, but in general it
is ready for practical use.

GMac [5] is developed by Ahmad Eid at Port-Said, Suez Canal University. It is
based on C# and the Computer Algebra System Mathematica. GMac is very ad-
vanced in terms of stability and concepts; it builds upon the advantages of Gaigen
and Gaalop, while trying to avoid their disadvantages. While it succeeds in these
goals, it makes itself dependent on the closed source CAS Mathematica and a fixed
programming language, for example C#.

Gaalet [20] is a header-only C++ library that makes heavy use of the expression-
template programming-technique of C++ and lazy-evaluation. Its performance is
slightly worse than that of Gaalop [21] but with modern C++-compilers such as
gcc 4.5 or higher, compile time for expression-templates is significantly reduced. It
is perhaps the most suitable implementation in environments where one cannot in-
stall a lot of dependencies, such as the dedicated machines of the High Performance
Computing Centre (HLRS) in Stuttgart from where Gaalet originates.

Several libraries similar to Gaalet exist, for example GluCat or EBgal. We do not
further investigate them, because of the similarities of their approaches to Gaalet’s
approach. It is noted that expression templates seem to be the most common GA-
implementation method in C++.

The tools above do not match our general requirements for Geometric Algebra
Computing-tools for the following reasons:

• Gaigen2 in its current form requires user interaction to run the code generation
and feedback mechanism. The tool has to be manually controlled in order to get
the best results. This conflicts with the no-user interaction policy of precompilers.
Therefore, it can not easily be integrated into a compiler toolchain. It is solely
constructed to generate C++-code, leaving the upcoming field of GPU computing
languages and other languages completely out of context.

• GMac requires no user-interaction, but is tightly coupled with C#, which is a very
modern language, but unfortunately not a widely used one in high performance
computing. Existing code bases will therefore most likely not profit from the
advantages of GMac. Also, we want to maintain the possibility of choice among
a variety of languages, instead of being focused on one language in particular.

• Gaalet has a very mature approach, but is tightly coupled with C++. Like Gaigen,
it is too complex to be used in OpenCL or CUDA.

Experience shows that GA is best optimized in connected chunks of code, rather
than just simple statements. The tools above do not offer as much support for such
functionality as Gaalop does.
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But most importantly, all of the above tools are heavily dependent on a specific pro-
gramming language, that is C++ or C#. Those languages are very complex; there-
fore, it is reasonable to assume that, those tools will never be able to cope with much
simpler, but equally important languages like C, OpenCL, CUDA or Java. Since spe-
cialized GPU-Computing languages, such as OpenCL and CUDA promise to have
an even more important role in the future, we cannot ignore them for the purpose of
Geometric Algebra Computing. This is a major problem with the above approaches.

2.5 Performance of Geometric Algebra in comparison to
conventional approaches

The 2006 Paper Competitive runtime performance for inverse kinematics algorithms
using conformal geometric algebra [12] compares Gaalop, Gaigen and a conven-
tional approach. It concludes that Gaalop and Gaigen excel the performance of the
conventional approach by a factor of three. On the other hand Gaalop and Gaigen
both required a lot more implementation effort. Since then, a lot of work has been
put into both tools, and the effort required to implement applications was shrunken
significantly while the stability constantly improved.

2.6 Higher-Dimensional Algebras

The paper [23] introduced a new algebra called the G6,3 Algebra that supports fea-
tures far beyond of what is possible with Conformal Geometric Algebra. Mathe-
matical objects such as ellipsoids, cylinders, quadrics, and 1D-quadratic strings are
represented as multivectors, much like spheres, planes, circles, points and point-
pairs are represented in CGA. All the geometric objects contained in Conformal
Geometric Algebra and all operations on multivectors, such as translation, rotation,
reflection, scaling and even intersection using the outer-product ∧ are also repre-
sentable in G6,3 Algebra, along with some additional operations like non-uniform
scaling. We strongly believe that this algebra and even higher-dimensional algebras,
not subject to research yet, have even more potential than the well-known Confor-
mal Geometric Algebra and lesser dimensional algebras. This is why support for the
G6,3 Algebra has been integrated into Gaalop by [22], and the reason that this func-
tionality is also a substantial factor in the design of Gaalop Precompiler. Gaalop and
Gaalop Precompiler support higher algebras without major performance decreases,
only at the cost of longer compile times.
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Fig. 1 A hyperboloid in G6,3 Algebra

2.7 Arrays, vectors and lists as the common denominator of
programming languages

Geometric Algebra is based on multivectors. Those have to be expressed in the best
possible form available in the target programming language.

Multivectors are consisted of multiple blades and their coefficients. From a program-
ming perspective, a multivector could be seen as a plain collection of coefficients,
without interpreting it in any mathematical way. The simplest possible notion of
such a collection is an array in most programming languages, especially in C/C++,
OpenCL, CUDA and Java. An obvious solution to bridge the gap between the two
paradigms stated above, is therefore to generate an array for each multivector.

Since Gaalop is perfect in doing so, it is a reasonable choice as the foundation of this
work, especially because we would like to support as many programming languages
as possible.

Even if a language does not support arrays, like the functional programming lan-
guage Racket 1, it will most likely have some similar low end storage container
like lists, so that Gaalop could still target it through the implementation of a new
backend.

We conclude, that Gaalop as the foundation of this work has the most potential for
bringing Geometric Algebra to most programming languages, primarily because of
its focus on low level storage containers which are available in all programming
languages.

1 http://racket-lang.org

http://racket-lang.org
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3 Gaalop Precompiler

In the following we present the Gaalop Precompiler (Gaalop GPC) [3], a technology
aimed at solving the problems described in Section 2. For that, Gaalop GPC intro-
duces a new concept of integrating CLUScript into C++, OpenCL, or CUDA-code,
here called native code.

The fundamental difference between CLUScript and native code is that the former
operates on multivectors, while the latter operates on low level storage containers,
such as arrays, OpenCL-vectors, or lists.

Clearly, this fact must be considered by separating both CLUScript and native code
explicitly. With Gaalop GPC, this distinction is made by enclosing CLUScript with
so called #pragma clucalc-statements, as shown in Listing 1.

To transform between the perspective of CLUScript and the one of native code, and
vice-versa, additional statements are required. We call them Interface Features, since
they interface both perspectives. Again, those statements must be separated from the
rest of the code, because they may contain identifiers from both GA-code and from
native code, making them invalid code in both languages. For example, the statement
const float sphere e1 = mv get bladecoeff (sphere ,e1 ); retrieves the blade-coefficient e1
from the multivector sphere. Since neither sphere and e1 are valid C++-identifiers, nor
const float sphere e1 and the function call are valid CLUScript-code, we call this
Interface-code. Another layer of #pragma gpc-statements around the #pragma clucalc-
statements differentiates Interface-code from native-code and CLUScript likewise.
/ / n a t i v e code
void f u n c t i o n ( f l o a t ∗ R ar ray ,

c o n s t f l o a t ∗ S a r r a y ,
c o n s t f l o a t ∗ P a r r a y ) {

#pragma gpc b e g i n

/ / I n t e r f a c e code
S = m v f r o m a r r a y ( S a r r a y , e1 , e2 , e3 , e i n f , e0 ) ;
P = m v f r o m a r r a y ( P a r r a y , e1 , e2 , e3 , e i n f , e0 ) ;

#pragma c l u c a l c b e g i n
/ / GA code
?R = S ˆ P

#pragma c l u c a l c end

/ / I n t e r f a c e code
R a r r a y = m v t o a r r a y (R , e1 , e2 , e3 , e i n f , e0 ) ;

#pragma gpc end

/ / n a t i v e code
}
Listing 1 Gaalop GPC-code separation scheme example code implementing Equation 1.
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This code makes use of the mv from array() and mv to array () functions. They are
explicitly handling the transformation from arrays to multivectors, and vice versa.
The functions are part of a set of so called Interface Feature defined in [3] and on
the Gaalop-homepage [10].

In this example, the blades e1,e2,e3,ein f ,e0 are read from S array and P array into
the multivectors S (sphere) and P (plane) using the mv from array() Interface Feature.
The intersection R of both is then computed by ?R = S ˆ P, where the question-mark
? marks the multivector to be visible outside the #pragma clucalc-statements. The
Interface Feature mv to array () then copies the stated blade-coefficients of R into the
array R array.

Line numberings

Please note that pure C++-code is guaranteed to have preserved relative line num-
bers throughout the precompiling-process, because it is simply copied into an in-
termediate source-file in its original form. In most #pragma gpc-blocks, relative line
numbers will almost certainly be altered by the process. Making the separation clear,
it is possible to utilize the #line compiler directive for plain C++-parts, which en-
ables the native compiler to refer back to the original source-file in the case of errors
and warnings. This yields a much better user-friendliness when working in an In-
tegrated Development Environment (IDE). The user may simply click on the listed
messages to get directed to the correct positions in the original source-file.

Multivector Scoping

Also note, that Gaalop GPC enables scoping of multivectors across #pragma clucalc-
blocks, meaning that multivectors declared for export in a different #pragma clucalc-
block, are accessible in succeeding #pragma clucalc-blocks, even across #pragma gpc-
blocks:

{ / / s cope b e g i n

#pragma c l u c a l c b e g i n / / b l o c k A
mv1 = . . . ;
mv2 = . . . ;
? a = mv1∗mv2 ;

#pragma c l u c a l c end

. . . / / some C++ code

#pragma c l u c a l c b e g i n / / b l o c k B
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/ / a u t o m a t i c a l l y i m p o r t s
/ / v a r i a b l e a from b l o c k A

? b = a + 1 0 ;
#pragma c l u c a l c end

} / / s cope end

Listing 2 Multivectors are accessible from within the same scope.

Note that if no Interface code is required, the #pragma gpc-statements can be omitted.
Also, multivectors are not accessible across different scopes. The following listing
will cause a compilation error:

{ / / s cope 1 b e g i n
#pragma c l u c a l c b e g i n / / b l o c k A

mv1 = . . . ;
mv2 = . . . ;
? a = mv1∗mv2 ;

#pragma c l u c a l c end
} / / s cope 1 end

. . . / / some code

{ / / s cope 2 b e g i n
#pragma c l u c a l c b e g i n / / b l o c k B , C o m p i l a t i o n w i l l f a i l ,

? b = a + 1 0 ; / / because t h e i d e n t i f i e r ’ a ’ was d e c l a r e d
/ / i n a d i f f e r e n t scope .

#pragma c l u c a l c end
} / / s cope 2 end

Listing 3 Multivectors are not accessible across different scopes.

4 A Faraday example for Mathematica’s OpenCLLink

command =
” j a v a − j a r s t a r t e r −1 . 0 . 0 . j a r −algebraName 5d ”
”−m u s r / b i n / maxima −o p t i m i z e r de . g a a l o p . t b a . P l u g i n ”
”−g e n e r a t o r de . g a a l o p . compressed . P l u g i n ”
”−o \” o u t . c l \” − i \” i n . c l g \” ”

code = ”
# i f d e f USING DOUBLE PRECISIONQ
# pragma OPENCL EXTENSION c l a m d f p 6 4 : e n a b l e
# pragma OPENCL EXTENSION c l k h r f p 6 4 : e n a b l e
# e n d i f

USING DOUBLE PRECISIONQ
k e r n e l vo id f a r a d a y k e r n e l ( g l o b a l f l o a t ∗ t oMathemat i ca ,

g l o b a l f l o a t ∗ f romMathemat ica ,
c o n s t i n t l e n g t h ) {



Geometric Algebra enhanced Precompiler for Mathematica’s OpenCLLink 13

c o n s t i n t i n d e x = g e t g l o b a l i d ( 0 ) ;
i f ( i n d e x >= l e n g t h )

r e t u r n ;

# pragma gpc b e g i n
! ! ;

# pragma c l u c a l c b e g i n
X = Xx∗e1+Xy∗e2+Xz∗e3+Xt∗e4 ;
V = Vx∗e1+Vy∗e2+Vz∗e3+Vt∗e4 ;
Vdot = Vdotx∗e1+Vdoty∗e2+Vdotz∗e3+ Vdot t∗e4 ;
omega = Vdot ˆV;
wedge = XˆV;
d o t = X.V;
?F = ( wedge +1/2∗X∗omega∗X ) / ( d o t ∗ d o t ∗ d o t ) ;

# pragma c l u c a l c end
t o M a t h e m a t i c a = m v t o a r r a y ( F ,

1 , e1 , e2 , e3 , e4 , e1 ˆ e2 , e1 ˆ e3 , e1 ˆ e4 , e2 ˆ e3 , e2 ˆ e4 , e3 ˆ e4 ,
e1 ˆ ( e2 ˆ e3 ) , e1 ˆ ( e2 ˆ e4 ) , e1 ˆ ( e3 ˆ e4 ) , e2 ˆ ( e3 ˆ e4 ) ,
e1 ˆ ( e2 ˆ ( e3 ˆ e4 ) ) ) ;

# pragma gpc end
}” ;

The code may be executed using the following Mathematica-commands:

Needs [ ” OpenCLLink ‘ ” ]

f a r a d a y = OpenCLFunctionLoad [ code , ” f a r a d a y k e r n e l ” ,
{{ R e a l } , { R e a l } , { I n t e g e r } , {16} ,
” S h e l l O u t p u t F u n c t i o n ” −> P r i n t ]

l e n g t h = 1000 ;
i n p u t = Array [ RandomReal [ ] &, l e n g t h 1 2 ] ;
o u t p u t = Array [ RandomReal [ ] &, l e n g t h 1 6 ] ;

f a r a d a y [ o u t p u t , i n p u t , l e n g t h ] ;

5 Future Work

This section discusses some ideas on how to further improve Gaalop Precompiler in
the future.

Towards a deeper integration

In future work, a much more integrated language without the need for precompiler-
directives could be defined, but with experimental work on this subject we found that
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this is not an idea worth achieving from neither a technical nor a transparency-point-
of-view. The technical problems were mainly caused by the need for context-specific
grammar and the lack of support thereof in parser tools like ANTLR. We also found
that this goes far beyond the scope of a precompiler and would require the definition
of a completely new compiler, which would contradict with our goal to support
a variety of programming languages. Lack of transparency means that users (or
programmers) of this future language, that are relatively new to the concept, would
most likely have trouble to understand the intermixture of multivectors and native
variables resulting from this concept. Hence, we settled on the clear separation of
CLUScript and native code with the language definition in Section 3.

Gaalop GPC for Java and other languages

Apart from C++, OpenCL and CUDA, other languages Java, Microsoft DirectCom-
pute and shading languages (CG, HLSL) are interesting target languages for Gaalop
GPC and promising topics for further research. Development of Gaalop GPC for
Java has already been started. The basic functionality is implemented, but some
organizational matters still need to be decided.

Headers

More thought should be put into the way Gaalop GPC handles header files. To this
point, it does not perform any optimizations in them, but would doing so make
sense at all? Some general questions need to be answered, some concepts need to
be worked out.

Algebraic multivector rendering for Conformal Geometric Algebra
as a language feature

Gaalop GPC is currently being enhanced to support algebraic rendering of multivec-
tors similar to CLUCalc. That is, given a particular multivector m, which is marked
for visualization using the colon-prefix : in Geometric Algebra code, equal to the
functionality in CLUCalc, Gaalop GPC will firstly determine its representation in
three-dimensional space (e.g. sphere, plane, circle, line, point-pair or point). Given
the representation and its parameters, Gaalop GPC will render the appropriate object
with OpenGL [14] or other rendering APIs, similar to the method used in CLUCalc.
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The rendering interface will be defined in an abstract way, so that new rendering
APIs may be supported in the future. The user may create its own window or have
it created automatically by our software.

Direct multivector ray-tracing for higher-dimensional algebras as a
language feature

The raytracer-application depicted in Figure 1 showed ways to render the objects
of the nine-dimensional G6,3 Algebra. Future applications could profit from a di-
rect visualization method triggered directly from Gaalop GPC, that would allow
rendering G6,3 Algebra multivectors by prefixing them with a colon :, similar to
CLUCalc’s multivector rendering functionality, but suitable for higher-dimensional
algebras.

6 Future Applications

There are some promising applications, which would profit from an implementation
based on Gaalop GPC.

A moving least-squares approach to rendering surfaces using
higher-dimensional Geometric Algebras

The moving least squares or weighted least-squares approach is a useful method
of fitting arbitrary point clouds with a set of weighted continuous functions. More
specific, multiple subsets of a point-cloud are fitted by independent continuous func-
tions and the surface is then defined through weighted interpolations of these func-
tions. These continuous functions could now be defined through the fitting of higher-
dimensional multivectors to the subsets of the point-cloud.
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Physics Libraries

Modern physics-libraries like Bullet [1] could profit from GA-based collision de-
tection. Versors and velocity screws are an interesting basis upon which to define
dynamics in physics-libraries. Theoretical background on this has been laid by [8].

Computer Graphics and Games

Eric Lengyel presented his research on Grassmann Algebra at the Game Devel-
opers Conference 2012 in San Francisco 2. Although he is not considering algebras
with dimensionality higher than four, his proposals could also be implemented using
Gaalop GPC. A full set of Gaalop GPC-based computer gaming oriented libraries
could be a promising topic for Geometric Algebra.

Molecular dynamics with focus on polymer-chains

The paper [21] showed the applicability of Geometric Algebra in molecular dy-
namics simulations using local coordinates, for molecules with a limited number of
atoms.

Special interest for further work lies on simulating so called semi-rigid polymer-
chains. Polymers are macromolecules that have a chain-like composition. The chain
itself consists of a large number of atoms, most of which are strongly-bonded.

The idea is now to define these strongly-bonded groups of atoms as rigid, giving
multiple semi-rigid groups of atoms, that interact with each other. These semi-rigid
groups of atoms can now be simulated according to Newton’s and Euler’s laws of
motion.

We expect a computational speed-up by less and more intelligent memory accesses
caused primarily by the mv from stridedarray () and mv to stridedarray () Interface Fea-
tures. Furthermore, it will feature lesser space requirements of GA-versors and
higher numerical stability compared to Matrices and/or approaches without inter-
nal coordinates.

2 http://www.terathon.com/gdc12_lengyel.pdf

http://www.terathon.com/gdc12_lengyel.pdf
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7 Conclusion

Code simplicity, elegance, and intuitiveness are the major goals of this work. Re-
calling the code examples shows that these goals were reached to a large extent. As
Gaalop GPC directly profits from any improvements within Gaalop by invoking it,
a high runtime-performance is achieved on-the-fly.

Gaalop GPC symbolically optimizes the embedded CLUScript-code in order to im-
prove runtime-performance. A longer compile time is a natural consequence of the
concept. However, we do not recommend researching this topic, as the build process
can already be parallelized by many build automation tools like GNU Make [7]. It is
found, that in reality, using parallel builds, a longer compile time is not a problem.

We would like to conclude, that the Gaalop Precompiler makes it even easier to
work with GA-inclusions in native code. Instead of separating code generation and
code compilation into two distinct processes, it is a single simplified process with
tight coupling support between native and embedded languages.

The combination of GA with OpenCL or CUDA especially enables new methods of
research, while the GAPP language helps to utilize the power of advanced Single
Instruction Multiple Data (SIMD) GPU-architectures. Gaalop Precompiler support
for higher-dimensional algebras could open the door to a completely new field of
mathematics.

References

1. Bullet continuous collision detection and physics library.
2. The homepage of geomerics ltd. Available at http://www.geomerics.com.
3. Patrick Charrier. Geometric algebra enhanced precompiler for c++ and opencl. Master’s

thesis, TU Darmstadt, 2012.
4. Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science, An

Object-Oriented Approach to Geometry. Morgan Kaufman, 2007.
5. Ahmad Hosney Awad Eid. Optimized Automatic Code Generation for Geometric Algebra

Based Algorithms with Ray Tracing Application. PhD thesis, Port-Said, 2010.
6. Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen 2: A geometric algebra implementation

generator. Available at http://staff.science.uva.nl/˜fontijne/gaigen2.
html, 2007.

7. Free Software Foundation. Gnu make. http://www.gnu.org/software/make.
8. David Hestenes. Old wine in new bottles : A new algebraic framework for computational

geometry. In Eduardo Bayro-Corrochano and Garret Sobczyk, editors, Geometric Algebra
with Applications in Science and Engineering. Birkhäuser, 2001.
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