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Abstract The focus of the this work is a simplified integration of algorithms
expressed in Geometric Algebra (GA) in modern high level computer languages,
namely C++, OpenCL and CUDA. A high runtime performance in terms of GA is
achieved using symbolic simplification and code generation by a Precompiler that
is directly integrated into CMake-based build toolchains.

1 Introduction

During the last decade, Geometric Algebra (GA) has become increasingly popular
in expressing solutions to geometry-related problems in scientific applications of
robotics, dynamics, computer graphics, and computer vision. Video game develop-
ers are becoming aware of GA, in search for simpler and faster ways to describe
their lighting [1] and physics algorithms. Most developers makes use of C-related
programming languages, such as C++, OpenCL [8] or CUDA [9], which are perfor-
mant and abstract enough for most needs.

From a programmer’s perspective, the integration of GA directly into C++,
OpenCL, and CUDA, and yields a high level of intuitiveness. Coupled with a highly
efficient generative software tool like Gaalop [6] in the background, an integration
sets new standards for GA-powered software development. An advanced integration
itself including other comforts, and to make GA-usage available to a broad audience,
is the purpose of this work.
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1.1 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) is a new way of expressing many geometry
focused mathematical problems. It deals naturally with intersections and transfor-
mations of planes, lines, spheres, circles, points, and point pairs, but is also good
at representing mechanics and dynamics. In Linear Algebra, one would have to
differentiate a plane-sphere intersection into three distinct cases, namely, circle in-
tersection, point intersection and no intersection. In Conformal Geometric Algebra
the intersection itself is formulated as one operation on the plane (P) and the sphere
(S), respectively.

R = S∧P

The three different cases of Linear Algebra are implicitly contained in the one
result R of Conformal Geometric Algebra, which is compact and better readable.
Similar observations can be made in other applications of geometry related math-
ematics. Therefore, when applied to computer programs, GA has a high potential
for improving code readability and to shortening production cycles. It has also been
proven, that if implemented correctly, Geometric Algebra has at least similar perfor-
mance, but sometimes even better performance, than conventional approaches [7].

2 Related Work

Combining both the aspects of Geometric Algebra and modern programming lan-
guages (namely C++, OpenCL and CUDA), promises to have a high potential for
scientific work. Unfortunately, GA has such a high level of abstraction that it does
not naturally fit into those languages. This section analyses several existing tools
attempting to solve this problem in different ways.

Gaigen [4] is implemented by Daniel Fontijne at the University of Amsterdam. At
the time of writing, it is in its third major version and has been developed since 2005.
All versions work through efficient generation of C++ code, that is later linked to the
final application binary. The latest version, Gaigen2, has a very remarkable profiling
feedback mechanism, that bases the regeneration of code on the latest application
runtime profiling. As [3] notes, Gaigen2 may have some problems with over-fitting
that profiling feedback, and also causes some practical programming issues related
to the classes and functions required to import into the application, but in general it
is ready for practical use.

GMac [3] is developed by Ahmad Eid at Port-Said, Suez Canal University. It is
based on C# and the Computer Algebra System Mathematica. GMac is very ad-
vanced in terms of stability and concepts; it builds upon the advantages of Gaigen
and Gaalop, while trying to avoid their disadvantages. While it succeeds in these
goals, it makes itself dependent on the closed source CAS Mathematica and a fixed
programming language.
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Gaalet [10] is a header-only C++ library that makes heavy use of the expression-
template programming-technique of C++ and lazy-evaluation. Its performance is
slightly worse than that of Gaalop [11] but with modern C++ compilers such as gcc
4.5 or higher, compile time for expression-templates is significantly reduced. It is
perhaps the most suitable implementation in environments where one cannot install
a lot of dependencies, such as the dedicated machines of the High Performance
Computing Centre (HLRS) in Stuttgart, from where Gaalet originates.

The tools above do not match our general requirements for tools for Geometric
Algebra Computing for the following reasons:

• Gaigen2 in its current form requires user interaction to run the code generation
and feedback mechanism. This conflicts with the no-user interaction policy of
precompilers. Therefore, it can not easily be integrated into a compiler toolchain.
It is solely constructed to generate C++ code, leaving the upcoming field of GPU
computing languages and other languages completely out of context.

• GMac requires no user-interaction, but is tightly coupled with C#, which is a very
modern language, but unfortunately not a widely used one in high performance
computing. Existing code bases will therefore most likely not profit from the
advantages of GMac. Also, we want to maintain the possibility of choice among
a variety of languages, instead of being focused on one language in particular.

• Gaalet has a very mature approach, but is tightly coupled with C++ as well. Like
Gaigen, it is too complex to be used in OpenCL or CUDA.

Experience shows that GA is best optimized in connected chunks of code, rather
than just simple statements. The tools above do not offer as much support for such
functionality as Gaalop does.

But most importantly, all of the above tools are heavily dependent on a specific
programming language, that is C++ or C#. Those languages are very complex; there-
fore, it is reasonable to assume that, those tools will never be able to cope with much
simpler, but equally important languages like C, OpenCL, CUDA or Java. Since spe-
cialized GPU-Computing languages, such as OpenCL and CUDA promise to have
an even more important role in the future, we cannot ignore them for the purpose of
Geometric Algebra Computing. This is a major problem with the above approaches.

3 Gaalop Precompiler

In the following we present the Gaalop Precompiler (Gaalop GPC) itself, a tech-
nology aimed at solving the problems described in section 2. For that, Gaalop GPC
introduces a new concept of integrating CLUScript code into C++, OpenCL, or
CUDA code, here called native code.

The fundamental difference between CLUScript code and native code is that
the former operates on multivectors, while the latter operates on low level storage
containers, such as arrays, OpenCL vectors, or lists.
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Clearly, this fact must be considered by separating both CLUScript code and
native code explicitly. With Gaalop GPC, this distinction is made by enclosing CLU-
Script code with so called #pragma clucalc-statements, as shown in listing 1.

To transform between the perspective of CLUScript code and the perspective of
native code, and vice versa, additional statements are required. We call them Inter-
face Functions, since they interface both perspectives. Again, those statements must
be separated from the rest of the code, because they may contain identifiers from
both GA code and from native code, making them invalid code in both languages.

For example, the statement const float sphere e1 = mv get bladecoeff (sphere ,e1 );
retrieves the blade coefficient e1 from the multivector sphere. Since neither sphere
and e1 are valid C++ identifiers, nor const float sphere e1 and the function call are
valid CLUScript code, we call this intermediate code. Another layer of #pragma gpc-
statements around the #pragma clucalc-statements differentiates intermediate code
from native code and CLUScript code likewise.

/ / n a t i v e code
void f u n c t i o n ( f l o a t ∗ R ar ray ,

c o n s t f l o a t ∗ S a r r a y ,
c o n s t f l o a t ∗ P a r r a y ) {

#pragma gpc b e g i n

/ / i n t e r m e d i a t e code
S = m v f r o m a r r a y ( S a r r a y , e1 , e2 , e3 , e i n f , e0 ) ;
P = m v f r o m a r r a y ( P a r r a y , e1 , e2 , e3 , e i n f , e0 ) ;

#pragma c l u c a l c b e g i n
?R = S ˆ P / / GA code

#pragma c l u c a l c end

/ / i n t e r m e d i a t e code
R a r r a y = m v t o a r r a y (R , e1 , e2 , e3 , e i n f , e0 ) ;

#pragma gpc end

/ / n a t i v e code
}
Listing 1 Gaalop GPC code separation scheme example code implementing equation 1.1.

This code makes use of the mv from array() and mv to array () functions described
in subsection 3.3. They are explicitly handling the transformation from arrays to
multivectors, and vice versa.

3.1 Multivector Scoping

Also note, that Gaalop GPC enables scoping of multivectors across #pragma clucalc-
blocks, meaning that multivectors declared for export in a different #pragma clucalc-
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block, are accessible in succeeding #pragma clucalc-blocks, even across #pragma gpc-
blocks:

{
#pragma gpc b e g i n
#pragma c l u c a l c b e g i n / / b l o c k A

mv1 = . . . ;
mv2 = . . . ;
? a = mv1∗mv2 ;

#pragma c l u c a l c end
#pragma gpc end

. . . / / some C++ code

#pragma gpc b e g i n
#pragma c l u c a l c b e g i n / / b l o c k B

/ / a u t o m a t i c a l l y i m p o r t s
/ / v a r i a b l e a from b l o c k A

? b = a + 1 0 ;
#pragma c l u c a l c end
#pragma gpc end
}
Listing 2 Multivectors are accessible from within the same scope.

Accordingly, multivectors are not accessible across different scopes. The follow-
ing listing will cause a compilation error:

{ / / s cope 1
#pragma gpc b e g i n
#pragma c l u c a l c b e g i n / / b l o c k A

mv1 = . . . ;
mv2 = . . . ;
? a = mv1∗mv2 ;

#pragma c l u c a l c end
#pragma gpc end
}

. . . / / some code

{ / / s cope 2
#pragma gpc b e g i n / / b l o c k B
#pragma c l u c a l c b e g i n / / C o m p i l a t i o n w i l l f a i l ,

? b = a + 1 0 ; / / because t h e i d e n t i f i e r ’ a ’ was d e c l a r e d
/ / i n a d i f f e r e n t scope .

#pragma c l u c a l c end
#pragma gpc end
}
Listing 3 Multivectors are not accessible across different scopes.
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3.2 Point Triangle Test

To exemplify the very abstract perspective of listing 1, we here provide a real-life
example from Computational Cloth Simulation, to clarify the concepts explained
above.

The code snippet in listing 4 performs a test for a collision between a triangle t
and a point p. The triangle has a thickness h and is a prism mathematically, but for
convenience, we call it ’triangle’. Figure 1 illustrates this aspect.

Fig. 1 Point Triangle intersection visualized in CLUCalc. The picture shows the triangle, the plane
it is embedded in, and the three planes that define its edges.

bool p o i n t T r i a n g l e T e s t (
c o n s t f l o a t t1x , c o n s t f l o a t t1y , c o n s t f l o a t t1z ,
c o n s t f l o a t t2x , c o n s t f l o a t t2y , c o n s t f l o a t t2z ,
c o n s t f l o a t t3x , c o n s t f l o a t t3y , c o n s t f l o a t t3z ,
c o n s t f l o a t px , c o n s t f l o a t py , c o n s t f l o a t pz ,
c o n s t f l o a t h ) {

#pragma gpc b e g i n
#pragma c l u c a l c b e g i n

/ / t r i a n g l e p r o p e r t i e s
T r i a n g l e P o i n t 1 = VecN3 ( t1x , t1y , t 1 z ) ;
T r i a n g l e P o i n t 2 = VecN3 ( t2x , t2y , t 2 z ) ;
T r i a n g l e P o i n t 3 = VecN3 ( t3x , t3y , t 3 z ) ;

/ / p o i n t p r o p e r t i e s
T e s t P o i n t = VecN3 ( px , py , pz ) ;

/ / c o n s t r u c t t h e base p l a n e
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p l a n e = ∗ ( T r i a n g l e P o i n t 1 ˆ
T r i a n g l e P o i n t 2 ˆ
T r i a n g l e P o i n t 3 ˆ
e i n f ) ;

/ / compute t h e s i g n e d d i s t a n c e o f T e s t P o i n t t o base p l a n e
? d = p l a n e . T e s t P o i n t ;

#pragma c l u c a l c end

/ / check i f d i s t a n c e t o base p l a n e e x c e e d s h
c o n s t f l o a t d SCALAR = m v g e t b l a d e c o e f f ( d , 1 ) ;
i f ( d SCALAR ∗ d SCALAR > h ∗ h )

re turn f a l s e ;

#pragma c l u c a l c b e g i n
/ / e x t r a c t t h e t r i a n g l e normal
n o r ma l = p l a n e − ( p l a n e . e0 ) ˆ e i n f ;

/ / c o n s t r u c t boundary p l a n e s
s i d e 1 = ∗ ( T r i a n g l e P o i n t 1 ˆ T r i a n g l e P o i n t 2 ˆ

n o r ma l ˆ e i n f ) ;
s i d e 2 = ∗ ( T r i a n g l e P o i n t 2 ˆ T r i a n g l e P o i n t 3 ˆ

n o r ma l ˆ e i n f ) ;
s i d e 3 = ∗ ( T r i a n g l e P o i n t 3 ˆ T r i a n g l e P o i n t 1 ˆ

n o r ma l ˆ e i n f ) ;

/ / compute d i s t a n c e s
? d1 = s i d e 1 . T e s t P o i n t ;
? d2 = s i d e 2 . T e s t P o i n t ;
? d3 = s i d e 3 . T e s t P o i n t ;

#pragma c l u c a l c end

/ / g e t s i g n e d d i s t a n c e s
c o n s t f l o a t d1 S = m v g e t b l a d e c o e f f ( d1 , 1 ) ;
c o n s t f l o a t d2 S = m v g e t b l a d e c o e f f ( d2 , 1 ) ;
c o n s t f l o a t d3 S = m v g e t b l a d e c o e f f ( d3 , 1 ) ;

#pragma gpc end

/ / check i f T e s t P o i n t i s i n s i d e boundary p l a n e s
i f ( d1 S <= 0 . 0 f && d2 S <= 0 . 0 f && d3 S <= 0 . 0 f
| | d1 S >= 0 . 0 f && d2 S >= 0 . 0 f && d3 S >= 0 . 0 f )

re turn true ;

re turn f a l s e ;
}
Listing 4 A simple test, checking the collision of a ’triangle’ t with thickness h with a point p,
written for Gaalop GPC for C++.

The code executes the following steps.

1. Define the three triangle points and the test point.
2. Construct the base plane out of the triangle points.
3. Compute the signed distance d between the constructed plane and the test point.
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4. Compute the normal of the plane.
5. Using this normal and the triangle points, compute the boundary planes, e.g. the

planes that are perpendicular to the base plane and pass through every combina-
tion of the three points.

6. Compute the signed distances d1, d2 and d3 between the test point and the three
boundary planes.

7. Retrieve the scalar multivector-part from d1, d2 and d3 and save them to float -
constants d1 S, d2 S, and d3 S, by using the mv get bladecoeff () function.

8. The condition of a collision is satisfied, if d2 is smaller than or equal the square
of the triangle’s thickness h, and all signed distances d1, d2 and d3 share the same
sign.

Note that raytracers in computer graphics use algorithms similar to this one. Re-
cent work based on CGA [2] shows promising results with speedups of up to four
times.

The example shows all #pragma-block-types in action. #pragma clucalc-blocks
contain pure CLUScript expressing multivector computations. #pragma gpc-blocks
primarily contain C++ code, but not exclusively. Clearly the statement const float d1 S
= mv get bladecoeff (d1 ,1); is both C++ and CLUScript, since neither mv get bladecoeff () ,
nor d1 are declared within C++. To further clarify the difference, as an example one
could write const float d1 E13 = mv get bladecoeff (d1,e1ˆe3 ); to ask for blade e1 ∧ e3
(which equals zero in this case).

d1 is a multivector, which is internally reduced to a so called Compressed
Multivector Storage-array containing only non-zero multivector blade coefficients.
Specifically to ease handling with these arrays, the Interface Function mv get bladecoeff ()
is designed to lookup a particular multivector blade coefficient. We call it an Inter-
face Function specifically, because it is not a real function in terms of C++. Much
simplified, Gaalop GPC simply replaces mv get bladecoeff () by its corresponding ar-
ray lookup d1[0], reducing the line to const float d1 SCALAR = d1[0];. An internal
mechanism makes Gaalop GPC able to tell which blade belongs to which array
index.

The separation between #pragma gpc-block-contents and pure C++ is mostly a
design decision. By definition it would be possible to embed all C++ into one big
#pragma gpc-block, or to even leave that concept out completely, but the intention
is to use #pragma gpc-blocks as transformation layers. A secondary, but also well
founded consideration is the fact that pure C++-code is guaranteed to preserve rela-
tive line numbers throughout the precompiling process, because it is simply copied
into the intermediate source-file in its original form. In most #pragma gpc-blocks,
relative line numbers will almost certainly be altered by the process. Making the
separation clear, it is possible to utilize the #line compiler directive for plain C++-
parts, which enables the native compiler to refer back to the original source-file in
the case of errors and warnings. This yields a much better user-friendliness when
working in an Integrated Development Environment (IDE). The user may simply
click on the listed messages to get directed to the correct positions in the original
source-file.
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3.3 Gaalop Precompiler Language Specification

Multivectors have a limited number of blades. For example, in Conformal Geomet-
ric Algebra, their size is limited to 32 blades. Therefore, a multivector storage for
Conformal Geometric Algebra can only save a maximum of 32 blade coefficients.
A naive approach may therefore simply save the maximum number of coefficients
in an array. The problem with this approach is, that the number of blades grows
exponentially with dimensionality. A 9D-Algebra [12] for example, that is proven
to be useful in some cases, has exactly 512 blades and 512 blade coefficients, which
are too many to save efficiently in an array for each multivector. Since we want to
support even higher dimensions, this is not an option.

Fortunately, the simple observation that the majority of multivector blade coeffi-
cient of a multivector equals zero, helps us to overcome that. The obvious solution
is to save only non-zero blade coefficients (Compressed Multivector Storage). To
assist with this approach, several helper functions are defined in table 3.3.

The purpose of these helper functions is the transformation between multivec-
tors and C/C++/OpenCL/CUDA language concepts, such as float -variables, arrays,
or vectors. For example, mv get bladecoeff () is responsible for extracting a blade co-
efficient from a multivector, whereas mv from array() constructs a multivector from a
C-like array.

coeff = mv get bladecoeff (mv,blade); Get the coefficient of blade blade of multivector
mv.

mv = mv from vec(vec); Construct multivector mv from an OpenCL or
CUDA-vector vec.

mv = mv from array(array , blades ,..); Construct multivector mv from array array.
mv = mv from stridedarray (
array , index , stride , blades ,...);

Construct multivector mv from array
array at index index with stride stride .
Example mv = mv from stridedarray (
array ,0, nummvs,e1,e2,e3,e0, einf ); .

array = mv to array (mv,blades ,...); Write the blades blades ,... of mul-
tivector mv to array array. Example
array = mv to array (mv,e1,e2,e3,e0, einf ); .

array = mv to stridedarray (
mv,index, stride , blades ,...);

Write the blades blades ,... of multivector
mv to array array at index index with stride
stride . Example array = mv to stridedarray (
mv,0,nummvs,e1,e2,e3,e0, einf ); .

vec = mv to vec(mv); Write the multivector mv to an OpenCL or
CUDA-vector vec.

Table 1 Gaalop GPC helper functions
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4 Conclusion

Code simplicity, elegance, and intuitiveness are the major goals of this work. Re-
calling the code examples shows that these goals were reached to some extent. As
Gaalop GPC directly profits from any improvements within Gaalop by invoking it,
a high runtime performance is achieved on-the-fly.

Gaalop GPC symbolically optimizes the embedded CLUScript-code in order to
improve runtime performance. A longer compile time is a natural consequence of
the concept. However, we do not recommend putting much research into this aspect,
as the build process can already be parallelized by many build automation tools like
GNU Make [5]. It is found, that in reality, using parallel builds, a longer compile
time is not a problem.

We would like to conclude, that the Gaalop Precompiler makes it even easier to
work with GA inclusions in native code. Instead of separating code generation and
code compilation into two distinct processes, it is a single simplified process with
tight coupling support between the native and embedded languages.

Gaalop GPC is freely available for download from www.gaalop.de including
a usage guide and documentation. Since the Gaalop Precompiler eases development,
we hope that more scientists, game and software programmers will find their way
into the applications of Geometric Algebra.
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