
CGI2016 manuscript No.
(will be inserted by the editor)

An inclusive Conformal Geometric Algebra GPU animation
interpolation and deformation algorithm

Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

Abstract In the last years, Geometric Algebra with its
Euclidean, Homogeneous and Conformal models attract
the research interest in many areas of Computer Science
and Engineering and particularly in Computer Graph-
ics as it is shown that they can produce more efficient
and smooth results than other algebras. In this paper,
we present an all-inclusive algorithm for real-time an-
imation interpolation and GPU-based geometric skin-
ning of animated, deformable virtual characters using
the Conformal model of Geometric Algebra (CGA). We
compare our method with standard quaternions, lin-
ear algebra matrices and dual-quaternions blending and
skinning algorithms and we illustrate how our CGA-
GPU inclusive skinning algorithm can provide as smooth
and more efficient results as state-of-the-art previous
methods. Furthermore, the elements of CGA that han-
dle transformations (CGA motors) can support transla-
tion, rotation and dilation(uniform scaling) of joints un-
der a single, GPU-supported mathematical framework
and avoid conversion between different mathematical
representations in contrast to quaternions and dual-
quaternions that support only rotation and rotation-
translation respectively. Hence our main novelty, is the
replacement of different types of algebras, and their in-
between conversions between CPU and GPU, such as
linear algebra matrices, quaternions, dual-quaternions

Papaefthymiou M.
Foundation for Research and Technology, Hellas
University of Crete, Greece

Hildenbrand D.
Hochschule RheinMain, Germany

Papagiannakis G.
Foundation for Research and Technology, Hellas
University of Crete, Greece

and Euler angles for animation interpolation and skin-
ning with a single mathematical representation, the CGA
motors which can optimally handle the composition of
translation, rotation and scaling joint transformations
and interpolations. Employing latest CGA code gener-
ators, we provide a sample implementation of our algo-
rithm running natively in a vertex shader program on
modern GPUs for typical deformable virtual character
simulations.

Keywords Geometric Algebra, Conformal model,
Virtual Reality, Animation Blending, Animation,
Skinning, GPU-based skinning, Virtual Character
Simulation

1 Introduction

In this work, we aim to enhance the conformal model
of Geometric Algebra (CGA) [1,2] as the mathemati-
cal background for character animation control [3] and
particularly for animation blending and GPU-based ge-
ometric skinning (character deformation). Geometric
Algebra is a mathematical framework that provides a
single, convenient all-inclusive algebra for representing
orientations and rotations of objects in three or higher
dimensions, a compact and geometrically intuitive for-
mulation of transformation algorithms, and an easy and
immediate computation of rotors (subsuming quater-
nions, dual quaternions, and complex numbers); CGA
extends the usefulness of the 3D Geometric Algebra
by expanding the class of rotors to include translations
and dilations (uniform scaling). Rotors are simpler to
manipulate than Euler angles, more numerically sta-
ble and more efficient than rotation matrices for the
composition of transformations, avoiding the problem
of Gimbal lock. Hence, they provide a single mathe-

2 Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

matical framework ideal for all virtual character anima-
tion and deformation typical transformations, without
the need to convert from one representation to another.
So far though it has not been extensively studied how
this framework could be employed directly in modern
GPUs, resulting in bypassing it almost entirely so that
standard, state-of-the-art game-engines would employ
at most quaternions or very few dual-quaternions at
most as intermediate expressions.

We compare our method with state-of-the-art quater-
nions and dual-quaternions [4] blending and skinning
algorithms and we show that our methodology can pro-
vide as smooth and efficient results as quaternions and
dual-quaternions. However, dual-quaternions have a lim-
itation: they cannot handle scaling transformations. In
contrast our method can support scaling and scaling
interpolation compositions in addition to rotation and
translation, under a unique representation by avoiding
conversion between different mathematical representa-
tions and between CPU and GPU. Our main novelty,
is the replacement of such different types of algebras
like dual-quaternions and matrices for animation blend-
ing and skinning with only one mathematical type, the
Conformal Geometric Algebra motors which can han-
dle translation, rotation and scale and runs natively in
GLSL on modern GPUs in a vertex shader program.

The results of this work allow us to a) achieve high
performance and unify previously separated linear and
(dual) quaternion algebra transformation compositions
b) fully replace quaternions for rotation interpolation
with fast CGA rotors and c) blend rotations, transla-
tions and dilations between character animations using
CGA, under a single geometric algebraic framework d)
result in more efficient character simulations for mod-
ern gamification and drop-in replacement of existing
animation interpolation and skinning for modern game-
engines.

The paper is organized as follows: The first section
provides previous and related work, the second section
gives a review of Geometric Algebra and the Confor-
mal model of Geometric Algebra mathematical frame-
works which are used to implement our algorithms. Sec-
tion three provides the necessary implementation de-
tails, section four and five describe the CGA-GPU an-
imation blending and skinning algorithms, section six
presents our results and a detailed comparison with ex-
isting methods. The last section provides our conclu-
sions and future work.

2 Previous work

In recent years, Geometric Algebra and Conformal Ge-
ometric Algebra mathematical tools are used in many

areas of Computer Science and Computer Engineer-
ing such as Computer Vision, Computer Graphics and
Robotics.

Dorst et al. [1] present applications of GA and CGA
in the field of Computer Graphics and provide useful
examples written in C++ using the Gaigen library and
code generator. Some of these applications are interpo-
lating rotations, recursive ray-tracing for illumination,
constructing Binary Space Partition (BSP) trees, han-
dling rotations with rotors and handling intersections
for collision detection and shadows.

Papagiannakis et al. [3,5] proposed two alternative
methodologies for implementing real-time animation in-
terpolation for skinned characters using GA rotors and
showed that they achieve smaller computation time,
lower memory usage and more visual quality results
compared to the other methods. Papaefthymiou et al.
[6] proposed a method for handling rotation of the AR
objects using Geometric Algebra rotors. Wareham et
al. [7] proposed a method for pose and position in-
terpolation using CGA which can also be extended to
higher-dimension spaces. Moreover, Wareham et al. [8]
proposed a method for interpolating smoothly between
two or more displacements that include rotation and
translation using CGA. Also, Kavan et al. [4] presented
an interpolation method of rotation and translation for
skinning using dual quaternions with fast performance.
Thalmann et al. [9] introduced matrix operation ap-
proach for skin deformation which overcomes the prob-
lem of vertex collapsing. Also, Thalmann et al. in [10]
proposed Joint-dependent Local Deformation (JLD) op-
erators for moving hands and grasping object which also
provides hand deformation while moving.

3 Review of Geometric Algebra

GA [1,2,11,12] is a mathematical framework that pro-
vides a convenient mathematical notation for represent-
ing orientations and rotations of objects in three dimen-
sions, a compact and geometrically intuitive formula-
tion of algorithms, and an easy and immediate compu-
tation of rotors.

3.1 3D Euclidean Geometric Algebra

The basis vectors for the 3-dimensional Euclidean ge-
ometric algebra space are the orthonormal basis e1, e2
and e3 which are the basic elements for generating the
GA. The products of GA is the outer product, the inner
product and the geometric product. The outer product,
often called wedge product is denoted by ∧ and is com-
puted with the following Equation:

An inclusive Conformal Geometric Algebra GPU animation interpolation and deformation algorithm 3

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)
e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1

(1)

where a and b are vectors. It can be constructed a higher
level dimmensionality oriented subspace by defining the
outer product between vectors. Such a subspace is called
blade and a k-blade denotes a k-dimensional subspace.
For example, a vector is 1-blade, the outer product of
2 vectors is 2-blade, called bivector, the outer product
of 3 vectors is 3-blade, called trivector etc. A bivector
represents a plane and a trivector represents a 3D vol-
ume. The bivectors of the 3D euclidean GA are e1∧ e2,
e2∧e3, e3∧e1 and the trivector is e1∧e2∧e3. The high-
est blade element is called pseudoscalar and is denoted
by I. For example, the pseudoscalar in 3D euclidean
space is I3 = e1e2e3.

The inner product, often called dot product is de-
noted by · and is used to compute distance and angles.
The inner product is:

a · b = |a||b|cosφ (2)

where φ is the angle formed by the vectors a and b.
The geometric product is a mixed grade product:

it consists of a scalar which is 0-blade and a bivector
which is 2-blade, and is an example of a multivector.
The geometric product is:

ab = a · b+ a ∧ b = |a||b|(cosφ+ Isinφ) = |a||b|eIφ (3)

The duality of a GA element is denoted by ∗ and gives
a blade that represents the orthogonal complement of
that subspase. For example, the duality of a bivector
equals to the vector that is perpendicular to this bivec-
tor and vice versa. The duality is defined with the Equa-
tion below:

A∗ = A/I = −AI (4)

As an example below the duality of the basis vector in
the 3D space is computed as follows:

e∗2 = −e2I3 = −e2(e1e2e3)
= e2e1e2e3 = −e2e2e1e3 = −e1e3 = −e1 ∧ e3

(5)

The basic element used to handle rotations of any mul-
tivector in GA is rotor and is usually denoted as R and
is computed using the exponential Formula below:

R = e−I3u
φ
2 (6)

where φ is the angle of rotation and u is the axis of
rotation. The interpolated rotation between two rotors
R1 and R2 in N steps is given by:

RN = elog(R2R
−1
1)∗N (7)

To rotate a multivector A we sandwich it between
the rotor R and its inverse rotor R−1 as shown below:

RAR−1 (8)

3.2 Conformal Geometric Algebra

CGA [13] is a 5D space algebra which is able to handle
3D transformations (Conformal transformations) like
translations, rotations and dilations by expanding the
3D Euclidean Geometric Algebra with two additional
basis vectors. These additional basis vectors are e− and
e+, which have opposite signatures are defined such
that:

e+
2 = 1, e−

2 = −1, e+ · e− = 0

Using the basis vector e− and e+, are defined two ad-
ditional basis vectors e0 the 3D point at the origin and
e∞ the infinity point which are null:

e20 = 0, e2∞ = 0

and are constructed as follows:

e∞ = e− + e+, e0 = 1
2 (e− − e+)

3.2.1 Representing Entities in CGA

Conformal Geometric Algebra is able to represent ba-
sic 3D primitives [14] using inner and outer products
which are a)Point, b)Sphere, c)Plane, d)Circle, e)Line
and f) Point pair.

Point: 3D points in the conformal space are extended
in 5D space using the following Equation:

P = x+
1

2
x2e∞ + e0 (9)

where x is the 3D point in the 3D Euclidean GA model.

4 Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

Sphere: A sphere can be represented using its radius
r and its center point P :

S = P − 1

2
r2e∞ (10)

Alternatively, is constructed with the outer product of
four points that lie on the sphere:

S∗ = P1 ∧ P2 ∧ P3 ∧ P4 (11)

Plane: A plane is constructed as follows:

π = n+ de∞ (12)

where where n is the 3D normal vector on the plane
is the normal on plane π and d is the distance from
the origin. A plane can also constructed with the outer
product of three points that lie on it and infinity point.

π∗ = P1 ∧ P2 ∧ P3 ∧ e∞ (13)

Circle: A circle is defined with the intersection of two
spheres S1 and S2:

Z = S1 ∧ S2 (14)

or using three points that lie on it:

Z∗ = P1 ∧ P2 ∧ P3 (15)

Line: A line is constructed with the intersection of two
planes

L = π1 ∧ π2 (16)

or with the use of two points that lie on it and the point
at infinity

L∗ = P1 ∧ P2 ∧ e∞ (17)

Point pair: A point pair is defined with the help of
two points:

P ∗ = P1 ∧ P2 (18)

An alternative way, is with the intersection of three
spheres:

P = S1 ∧ S2 ∧ S3 (19)

3.2.2 Transformations in CGA

Translators: In the Conformal space we can translate
a vector x with a Translator rotor:

T = e−
1
2 te∞ = 1− 1

2
te∞ (20)

where t is the vector that represents translation:

t = t1e1 + t2e2 + t3e3 (21)

Rotors: Rotor operator in CGA space is constructed
using the exponential Equation:

R = e−b
φ
2 = e−I3u

φ
2 = cos(

φ

2
)− uI3sin(

φ

2
) (22)

where φ is the angle of rotation, b is the plane of rota-
tion and u is the axis of rotation.

Dilators: Dilation operator gives the scaling of factor
d about the origin e0 using the formula below:

D = 1 +
1− d
1 + d

e∞ ∧ e0 (23)

Motors: In CGA a transformation that includes rota-
tion and translation, called displacement versor or mo-
tor is given by:

M = RT (24)

where R is the rotor and T is the translator. The fol-
lowing formula is used to linearly interpolate between
two motors M1 and M2 in N steps:

MN =M1 ∗ (1−N) +M2 ∗N (25)

The following Equation is used to apply the motion to
a rigid body A, where M−1 is the inverse of the motor
M :

MAM−1 (26)

An inclusive Conformal Geometric Algebra GPU animation interpolation and deformation algorithm 5

3.3 Representing Quaternions and Dual-Quaternions
with Geometric Algebra

Quaternions of the form:

Q = 1 + (xi+ yj + zk)

are represented in Conformal Geometric Algebra based
on four blades: the scalar and three two-blades, that is
all even grade elements in Cl(R3). Dual-Quaternions of
the form:

Q = Q1 + εQ2

= 1 + (x1i+ y1j + z1k) + ε(1 + (x2i+ y2j + z2k))

= 1 + (x1i+ y1j + z1k) + (ε+ x2iε+ y2jε+ z2kε)

where Q1 and Q2 are Quaternions, are represented in
CGA based on eight blades: the scalar, six two-blades
and one null four-blade ε.

Table 1 shows the correspondence of Quaternions
and Dual-Quaternions with CGA blades.

Quaternion Dual-Quaternion CGA
1 1 e
i i e1 ∧ e2
j j e3 ∧ e1
k k e2 ∧ e3
− kε e∞ ∧ e1
− jε e∞ ∧ e2
− iε e∞ ∧ e3
− ε e1 ∧ e2 ∧ e3 ∧ e∞

Table 1: Representing Quaternions and Dual-Quaternions in
CGA.

4 Implementation Details

To implement our algorithms we have used the follow-
ing open-source APIs and libraries: a) the ASSIMP
import library for loading our skinned characters b)
GLM mathematical library for quaternions and dual-
quaternions interpolation c) OpenGL API version 3.2
for real-time rendering and GLSL version 1.5.

For Geometric Algebra and Conformal Geometric
Algebra operations we have used Gaalop Precompiler
[15] to generate C++ code. Gaalop Precompiler opti-
mizes Geometric Algebra code which is written in Clu-
CALC scripting language in order to achieve higher
performance. To generate our algorithms and visual-
ize their results we have used the CLUCalc v4.3 vi-
sualization tool [16]. To generate C++ code we have
used Gaalop standalone application with Gaalop Pre-
compiler. Gaalop precompiler supports three types of

optimization: GAPP (Geometric Algebra Parallelism
Program), Maple and Table-Based Approach. For our
experiments provided in Section 7 we have used Table-
Based Approach.

5 Animation Interpolation Algorithm
description

Our main novelty, is the employment of Conformal GA
motors as fast, drop-in replacements for quaternion al-
gebra and dual quaternion algebra, during animation
blending for skinned characters. On the following ap-
proach we represent rotation combined with transla-
tion and dilation with CGA motors and we use linear
interpolation to interpolate the motors between the two
keyframes of the character animation.

5.1 CGA motors approach

In this approach, the rotation, translation and scaling of
the two keyframes of the animation are represented as
Conformal Geometric Algebra Motors representation.
ASSIMP library provides the rotation of the animation
in quaternion representation. In order to avoid convert-
ing quaternion to CGA rotor on each frame, we add
an additional field to the structure of the bone (CGA
rotor field) of the ASSIMP library and we precompute
quaternion as CGA rotor representation. The next steps
show how we convert rotation and translation to motor
representation using CluCALC scripting language:

1. Convert translation vector to 3D euclidean geomet-
ric algebra vector with the help of basis vectors e1,
e2 and e3 where (transX,transY,transZ) is the eu-
clidean translation vector :
translationGA=transX*e1+transY*e2+transZ*e3;

2. Convert 3D GA vector (translationGA) to CGA trans-
lator rotor using the Equation 20 where einf is the
infinity point:
translationCGA=1-0.5∧translationGA∧einf;

3. Compute the angle and the axis of the quaternion
using glm mathematical library functions:
float angle=angle(quaternion);
vec3 axis=axis(quaternion);

4. Similarly with step 1, we convert the axis (axis.x,axis.y,axis.z)
of the quaternion to a 3D GA point:
vector=VecN3(axis1X,axis1Y,axis1Z);

5. Construct a line that represents the axis of the quater-
nion using the Equation 16:
axis = vector∧VecN3(0,0,0)∧einf;

6. Compute the duality of the line e.g the plane of
rotation (bivector) (Equation 4):
plane=*axis;

6 Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

7. Construct rotor representation (Equation 22):
R=exp(-0.5*angle*plane);

8. Motor is computed as the geometric product of the
translator and rotor (Equation 26):
motor=translationCGA*R;

After expressing the source and destination rotation-
translation to CGA motors we interpolate them base on
a factor number that defines the animation interpola-
tion step. We compute the motor from source (Msrc)
to destination (Mdst) motor in N steps using the lin-
ear Equation 25, which is written in CluCALC script
as follows:
interpolated = Msrc*(1-alpha)+Mdst*alpha;

To construct the dilator of a key frame we use the
Equation 23 which is written in CluCALC script as fol-
lows:
Dilator = 1+ (1-d1)/(1+d1)*einf∧e0;

where d1 is the scaling of the keyframe. To interpolate
between two dilators we use the following CluCALC
script formula:
finalD =Dilator + (Dilator2-Dilator)*alpha;

where Dilator is the source dilator, Dilator2 is the des-
tination dilator and alpha the factor of interpolation.

Final transformation is computed by the geometric
product of motor and dilator as follows:

final =Mfinal ∗ finalD (27)

On Section A.1 we provide the overall CLUCalc
code for converting keyframes transformation to CGA
motors and interpolate them.

6 GPU-based skinning Algorithm description

In our method, we handle geometric skinning using
CGA motors in the vertex shader. To apply transforma-
tion on the vertices we sandwiching the position of the
vertex between the motor and it’s inverse motor (Equa-
tion 26). We generate code that transforms a point us-
ing motor that comprises of rotation, translation and
dilation using CluCALC scripting language as follows:

motor=translation*rotation*dilation;
newPoint=motor*VecN3(x,y,z)* ∼motor;

where translation, rotation and dilation are computed
as described in Section 5.1

Gaalop precompiler generates motor as a 12 element
vector which we convert it to a matrix representation

of type mat3x4 (build-in type of GLSL) in order to be
able to use it in the vertex shader. In the vertex shader
we are declaring uniform array which comprises of the
bones’ transformations of type mat3x4.

Each vertex of the skinned character may be influ-
enced by four bones each one with different weight. We
transform the vertex with each bone separately using
the code generated from gaalop precompiler:

vec4 pos1=transformP (BonesVersors [BoneIDs [0]] ,
pos . x , pos . y , pos . z) ;

vec4 pos2=transformP (BonesVersors [BoneIDs [1]] ,
pos . x , pos . y , pos . z) ;

vec4 pos3=transformP (BonesVersors [BoneIDs [2]] ,
pos . x , pos . y , pos . z) ;

vec4 pos4=transformP (BonesVersors [BoneIDs [3]] ,
pos . x , pos . y , pos . z) ;

and we compute their weighted average base on the
weight of each bone:
vec4 f i n a l p o s=pos1∗Weights [0] + pos2∗Weights [1]

+pos3∗Weights [2] + pos4∗Weights [3] ;

Section A.2 provides the vertex shader used for skinning
with CGA motors.

7 Results

In this section, we compare our animation blending and
GPU-based skinning approach with quaternions and
dual-quaternions. We obtained the following results us-
ing the Platform described in Table 2. The characters
used to obtain the results are of dae format, loaded with
Assimp library and consist of 42-54 joints and 3851-
14985 triangles.

Figures 1, 2, 3 show the time in msecs for each an-
imation blending method and the average frame rate
(fps) for animation blending and skinning for three dif-
ferent characters. The first method is quaternions that
support rotation combined with translation matrices,
the second one is dual quaternions which combine trans-
lation and rotation and the third one is our method
"CGA-GPU inclusive algorithm" which combines rota-
tion, translation and scaling. On Figures 1, 2, 3 we also,
present CGA-GPU inclusive algorithm with only rota-
tion and translation in order to be comparable with
quaternions and dual quaternions. As concerning our
method with dilation, Character 2 and 3, have identity
dilation and only the dilation of Character 1 is non-
identity and that is why is slower than the method with
out dilation. Our results show that our algorithm is
equally efficient with quaternions and dual-quaternions
in terms of performance and frame rate but is supe-
rior in terms of single mathematical algebraic repre-
sentation in CPU and GPU. Using our algorithm we

An inclusive Conformal Geometric Algebra GPU animation interpolation and deformation algorithm 7

haven’t noticed any significant errors during the nec-
essary conversions between different mathematical rep-
resentations. Table 3, summarizes the contribution of
our CGA-GPU inclusive algorithm comparing to Euler-
angles / transformation matrices, Quaternions and Dual-
Quaternions.

Platform OS X 10.11.3
Processor 2.5 GHz Intel Core i7
Graphics Card NVIDIA Geforce GT 750M

2048 MB
Compiler LLVM 7.0

Table 2: Platform characteristics used to run our experi-
ments.

8 Conclusions and Future work

In this work, we have presented an animation blend-
ing method and a GPU-based skinning algorithm using
Conformal Geometric Algebra. We handle transforma-
tions using CGA motors that combine to a unique rep-
resentation translation, rotation and scaling.

Method Time (ms) Frame
Rate (fps)

Quaternions (rotations only) 0.0004 59.6
Dual Quaternions (rotations
and translation)

0.0003 59.6

CGA-GPU inclusive algo-
rithm (rotations, transla-
tions)

0.0003 59.6

CGA-GPU inclusive algo-
rithm (rotations, translations
and dilations (scaling))

0.0005 59.6

Fig. 1: Comparison of animation blending of time in msecs
of Quaternions, Dual-Quaternions, CGA-GPU inclusive algo-
rithm and the average frame rate (fps) for animation blending
and skinning on 1st Character (PolygonCount: 2548, Anima-
tion length:1.08333 ticks, Number of bones: 52)

Method Time (ms) Frame
Rate (fps)

Quaternions (rotations only) 0.0017 59.6
Dual Quaternions (rotations
and translation)

0.0016 59.6

CGA-GPU inclusive algo-
rithm (rotations, translations
and dilations (scaling))

0.0017 59.6

CGA-GPU inclusive algo-
rithm (rotations, translations
and dilations (scaling))

0.0022 59.6

Fig. 2: Comparison of animation blending of time in msecs
of Quaternions, Dual-Quaternions, CGA-GPU inclusive algo-
rithm and the average frame rate (fps) for animation blending
and skinning on 2nd Character (PolygonCount: 135976, An-
imation length:12.3667 ticks, Number of bones: 54)

Method Time (ms) Frame
Rate (fps)

Quaternions (rotations only) 0.0012 59.6
Dual Quaternions (rotations
and translation)

0.0009 59.6

CGA-GPU inclusive algo-
rithm (rotations, transla-
tions)

0.0012 59.6

CGA-GPU inclusive algo-
rithm (rotations, translations
and dilations (scaling))

0.0015 59.6

Fig. 3: Comparison of animation blending of time in msecs
of Quaternions, Dual-Quaternions, CGA-GPU inclusive algo-
rithm and the average frame rate (fps) for animation blending
and skinning on 3rd Character (PolygonCount: 14985, Ani-
mation length:8.33333 ticks, Number of bones:43)

8 Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

Methodology Rotation Translation Dilation Performance Single
Representation

Euler-angles/
Transformation ma-
trices

matrices
only

matrices
only

Gimbal lock, cannot
interpolate-need to be
in other representa-
tion

Transformation
matrices only

Quaternions - - Interpolated only
at the origin, need
conversion to trans-
formation matrix to
transform point

no translation
no dilation

Dual-Quaternions - Interpolated only
at the origin, need
conversion to trans-
formation matrix to
transform point

no dilation

Our method:CGA-
GPU inclusive algo-
rithm

Efficient
performance, interpo-
late around any axis,
can transform any en-
tity

Table 3: General comparison of Euler-
angles/Transformation matrices, Quaternions, Dual-
Quaternions and our method:CGA-GPU inclusive algorithm.

Our results show that our method achieves high per-
formance and smooth results as well as quaternions and
dual-quaternions. However, our method allows handling
blending and skinning without needed to use any other
algebraic frameworks in contrast to quaternions and
dual-quaternions that can handle only rotations and
rotations-translations respectively.

In the future, we aim to experiment our animation
blending and GPU-based skinning and to other plat-
forms (e.g. Windows) since MacOSX El Capitan 10.11
does not allow to disable vsync. We also aim to achieve
interpolation using logarithms of motors for rotation,
translation and scaling in the vertex shader. Lastly,
we intend to extend our CGA framework by applying
GA for global illumination and specifically, for rotating
spherical harmonics for Precomputed Radiance Trans-
fer for real-time rendering.

Acknowledgements

The research leading to these results has received fund-
ing from the European Union People Programme (FP7-
PEOPLE-2013-ITN) under grant agreement nO 608013.

References

1. L. Dorst, D. Fontijne, and Mann S. Geometric Algebra
for Computer Science. Morgan Kaufmann, 2007.

2. D. Hestens and G. Sobczyk. Clifford Algebra to Geomet-
ric Calculus: A Unified Language for Mathematics and
Physics (Fundamental Theories of Physics). Springer,
1984.

3. G. Papagiannakis, E. Greasidou, P. Trahanias, and
M. Tsioumas. Mixed-reality geometric algebra animation
methods for gamified intangible heritage. International
Journal of Heritage in the Digital Era, 3:683–699, Apr.
2014.

4. L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geo-
metric skinning with approximate dual quaternion blend-
ing. ACM Trans. Graph., 27(4):105:1–105:23, November
2008.

5. G. Papagiannakis. Geometric algebra rotors for skinned
character animation blending. In SIGGRAPH Asia 2013
Technical Briefs, SA ’13, pages 11:1–11:6, New York, NY,
USA, 2013. ACM.

6. Margarita Papaefthymiou, Andrew Feng, Ari Shapiro,
and George Papagiannakis. A fast and robust pipeline for
populating mobile ar scenes with gamified virtual char-
acters. In SIGGRAPH Asia 2015 Mobile Graphics and
Interactive Applications, SA ’15, pages 22:1–22:8, New
York, NY, USA, 2015. ACM.

7. R. Wareham, J. Cameron, and J. Lasenby. Applications
of conformal geometric algebra in computer vision and
graphics. In Hongbo Li, Peter J. Olver, and Gerald
Sommer, editors, IWMM/GIAE, volume 3519 of Lecture
Notes in Computer Science, pages 329–349. Springer,
2004.

8. R. Wareham and J. Lasenby. Mesh vertex pose and posi-
tion interpolation using geometric algebra. In Articulated
Motion and Deformable Objects, 5th International Con-
ference, AMDO 2008, Port d’Andratx, Mallorca, Spain,
July 9-11, 2008, Proceedings, pages 122–131, 2008.

9. N. Magnenat-Thalmann, F. Cordier, Hyewon Seo, and
G. Papagianakis. Modeling of bodies and clothes for vir-
tual environments. In Cyberworlds, 2004 International
Conference on, pages 201–208, Nov 2004.

10. N. Magnenat-Thalmann, R. Laperrière, and D. Thal-
mann. Joint-dependent local deformations for hand an-
imation and object grasping. In Proceedings on Graph-
ics Interface ’88, pages 26–33, Toronto, Ont., Canada,
Canada, 1988. Canadian Information Processing Society.

11. K. Kanatani. Understanding Geometric Algebra: Hamil-
ton, Grassmann, and Clifford for Computer Vision and
Graphics. A K Peters/CRC Press, 2015.

12. Hitzer E. Introduction to clifford ’s geometric algebra.
SICE Journal of Control, Measurement, and System In-
tegration, 4:001–011, 2011.

13. G. Sommer. Geometric computing with Clifford algebras:
theoretical foundations and applications in computer vi-
sion and robotics. Springer London, 2001.

14. Eckhard Hitzer, Kanta Tachibana, Sven Buchholz, and
Isseki Yu. Carrier method for the general evaluation
and control of pose, molecular conformation, tracking,
and the like. Advances in Applied Clifford Algebras,
19(2):339–364, 2009.

15. D. Hildenbrand. Foundations of Geometric Algebra
Computing, volume 8. Springer, 2013.

16. C. Perwass. Geometric Algebra with Applications in En-
gineerings. Springer, 2009.

An inclusive Conformal Geometric Algebra GPU animation interpolation and deformation algorithm 9

Appendix A CGA-GPU inclusive algorithm

A.1 CLUCalc implementation for Animation Blending with CGA motors approach.

//exponential
Exp_approx = { 1 + _P(1) + _P(1)*_P(1)/2 + _P(1)*_P(1)*_P(1)/6 + _P(1)*_P(1)*_P(1)*_P(1)/24 };

//source translation
translationGA=transX*e1+transY*e2+transZ*e3;
translationCGA=1-0.5∧translationGA∧einf;
vector=VecN3(axis1X,axis1Y,axis1Z);
plane = *(vector∧VecN3(0,0,0)∧einf);
//source rotation
R = Exp_approx(-angle1/2*plane);
//source dilation
Dilation = 1+ (1-d1)/(1+d1)*einf∧e0;

//destination translation
translationGA2=trans2X*e1+trans2Y*e2+trans2Z*e3;
translationCGA2=1-0.5∧translationGA2∧einf;
vector2=VecN3(axis2X,axis2Y,axis2Z);
plane2 = *(vector2∧VecN3(0,0,0)∧einf);
//destination rotation
R2 = Exp_approx(-angle2/2*plane2);
//destination dilation
Dilation2 = 1+ (1-d2)/(1+d2)*einf∧e0;

//source and destination motor
motor1=translationCGA*R;
motor2=translationCGA2*R2;

//linear interpolation of motors
interpolatedTR=motor1*(1-alpha)+motor2*alpha;

//linear interpolation of dilations
interpolatedD =Dilation + (Dilation2-Dilation)*alpha;

//final transformation
finalInterpolation=interpolatedTR*interpolatedD;

//transform a point
vertexPos=finalInterpolation*VecN3(X,Y,Z)* finalInterpolation;
// In homogeneous coordinates x = e1 blade, y = e2 blade, z = e3 blade, w = e0 blade

10 Papaefthymiou Margarita, Hildenbrand Dietmar, Papagiannakis George

A.2 Vertex Shader

#version 330 core

// input: vertex position
in vec3 vPosition;
// input: texture coordinate
in vec2 vTexCoord;

// each vertex influenced from 4 bones
//input: boneIDs which influence vertex
in ivec4 BoneIDs;
//input: weight of influence
in vec4 Weights;

// uniform variables: projection and modelview matrix
// no need to convert in CGA motor representation - transform vertex position directly
uniform mat4 ModelView;
uniform mat4 Projection;

// max bones of the character
const int MAX_BONES = 100;
// transformation of each bone in CGA motor representation
// the CGA motor (12 element matrix generated from gaalop) in mat3x4 representation
uniform mat3x4 BonesVersors[MAX_BONES];

//output: texture coordinates
out vec2 texCoord;

vec4 transformP(mat3x4 bones, float X, float Y, float Z)
{

// transform point with CGA motors using C++ code generated with Gaalop Precompiler (Section A.1)
}

void main()
{

// transform the vertex with CGA motors using 4 bones
vec4 pos1 = transformP(BonesVersors[BoneIDs[0]], vPosition.x, vPosition.y, vPosition.z);
vec4 pos2 = transformP(BonesVersors[BoneIDs[1]], vPosition.x, vPosition.y, vPosition.z);
vec4 pos3 = transformP(BonesVersors[BoneIDs[2]], vPosition.x, vPosition.y, vPosition.z);
vec4 pos4 = transformP(BonesVersors[BoneIDs[3]], vPosition.x, vPosition.y, vPosition.z);

//weighted average of the vertex positions
vec4 finalPos = pos1*Weights[0]+pos2*Weights[1]+pos3*Weights[2]+pos4*Weights[3];

//final position= projection * modelview * vertex position after bones transformation
gl_Position = Projection * ModelView * finalPos;

// pass to fragment shader per-vertex tex coords
texCoord = vTexCoord;

}

