
Geometric Algebra Computing Technology for

Accelerated Processing Units

Patrick Charrier and Dietmar Hildenbrand

January 21, 2013

1 Motivation

Development on embedded devices, even on today’s hardware, limits us to a
minimum of third party-library dependencies due to hardware memory and
power restrictions. In setups requiring intense geometric operations on limited
hardware, such as in robotics, this problem can often lead to a tedious reimple-
mentation of matrix, vector, and quaternion operations. Furthermore, certain
unnecessary floating point operations are hard to avoid, because C++-features
like expression template libraries such as eigen [2] can possibly not be used,
because of strict C enforcement. Memory accesses are often the most limiting
factor in today’s applications due to high memory latency. Yet traditional pro-
gramming techniques unfortunately steer into the wrong direction by not easing
data-oriented programming, which is often cumbersome to implement in C or
C++.

Many of the restrictions above are in a similar form the case on modern
heterogeneous architectures such as AMD’s embedded Accelerated Processing
Units or in GPGPU written in OpenCL/CUDA. Our technology based on Geo-
metric Algebra and a Domain Specific language called CLUCalc will especially
excel under these conditions.

The focus of this work is Gaalop Precompiler, a new technology combin-
ing the advanced processing power of Accelerated Processing Units (APU) with
the geometric intuitiveness of a new mathematical concept named Geometric
Algebra [6]. The combination of both not only promises a more compact and
maintainable code for graphics, vision, robotics and other scientific and en-
gineering applications, but also automatically exploits parallelism on GPU or
combined computing unit (APU) through OpenCL [8] or CUDA [9]. C/C++
CPU targeting is also supported. It is presented in the following, after a short
introduction on Geometric Algebra.

1



2 Advantages of Geometric Algebra Computing
Technology

Our technology has the following advantages in geometry-related fields com-
pared to conventional approaches:

• A Domain Specific language for Geometric Algebra

– Increased geometric intuitivity.

– Compactness of algorithms.

• Easy Integration into standard programming languages.

– Full C/C++/OpenCL/CUDA compatibility.

– May be easily integrated into your toolchain through provided CMake
build scripts.

– Does not require linking to external libraries.

– Completely free and downloadable from www.gaalop.de.

• Better Runtime Performance

– Eases data-oriented programming and coalescing for maximum cache
performance and memory throughput through built-in language fea-
tures. Especially important for GPGPU computing.

– Autovectorization features for the OpenCL target language.
Full support for SSEx and AVXx, and the next-generation Intel MIC
instruction sets with vector widths of up to 512 bits (float16 type).

3 Geometric Algebra by example

As a motivation towards Geometric Algebra (GA) we would like to introduce
the following aspect of a Raytracer, which calculates the intersection of a sphere
(S) and a ray (R).

R = S ∧ P

As we know from Linear Algebra, the intersection of a line and a sphere
conforms to one of three cases, namely no intersection, a point intersection, or
a point-pair intersection. In Geometric Algebra, all these cases are contained in
the statement above, yielding a higher level of intuitiveness and compactness.
Similar observations can be made in other applications of geometry related
mathematics. Applied to computer programs, GA therefore has a high poten-
tial for improving code readability and to shorten production cycles. In our
experience and using our compiler technology, Geometric Algebra often offers
better performance than conventional approaches [6].

2



4 Gaalop Precompiler

Gaalop Precompiler (Gaalop GPC) [4] makes it possible to directly embed Ge-
ometric Algebra Computing code into C,C++,CUDA, or OpenCL code. The
complete build process is automated. The tool will be further explained through
an example in the next section.

5 Test case: Collision Detection for Computa-
tional Cloth Simulation

The following section describes a Collision Detection application as a test case
for Gaalop GPC. A cloth in computer graphics might be simulated using a
large number of triangles, making the connection between many points (ver-
tices) in three-dimensional space. All these triangles may collide with other
triangles on the same cloth, which is called self-collision, with other cloth, or
even rigid bodies. Theoretically, to check for collisions between the triangles, we
must assume, that they are all potential colliders and must therefore check for
collision between every triangle and all other triangles and with every other ob-
ject. Without any further information, this test would not be computationally
manageable for larger scenes. The common method used to solve this problem
are primarily hierarchical methods to break down the number of tests. Such a
method might for example be a hierarchy of spheres that can be traversed with
the following rules.

1. Perform a sphere-sphere test, starting with the root level.

2. If we have no collision, then stop the test.
If we do have a collision, then recursively traverse the underlying spheres
(broad phase testing).

3. In case we hit the leafs, perform tests on the underlying geometry, namely
triangles. Those tests come down to two individual cases (narrow phase
testing).

(a) A point versus triangle test. See Figure 1.

(b) An edge versus edge test.

So far, some experimental methods based on the so called Conformal Geo-
metric Algebra (CGA) were tried on the narrow phase tests. We strongly believe
that CGA will come to its fullest potential applied within the broad phase tests
and will investigate this aspect in further research.

5.1 Point Triangle Test

The code snippet in Listing 1 performs a test for a collision between a triangle t
and a point p, as described in subtest 3a above. The triangle has a thickness h

3



and is actually a prism mathematically, but for convenience, we call it ’triangle’.
Figure 1 illustrates this aspect.

Figure 1: Point Triangle intersection visualized in CLUCalc. The picture shows
the triangle, the plane it is embedded in, and the three planes that define its
edges.

As an example for programming with Gaalop Precompiler in OpenCL kernels
now consider the following code, performing the point triangle test explained
above:

k e r n e l void po intTr iang l eTes t (
g l o b a l bool ∗ c o l l i s i o n ,
g l o b a l const f loat ∗ t r i a n g l e s ,
g l o b a l const f loat ∗point ,

f loat h ,
unsigned int s t r i d e ,
unsigned int numTriangles )

{
const s i z e t id = g e t g l o b a l i d (0 ) ;

const f loat t1x = t r i a n g l e s [ 0 ∗ s t r i d e + id ] ;
const f loat t1y = t r i a n g l e s [ 1 ∗ s t r i d e + id ] ;
const f loat t1z = t r i a n g l e s [ 2 ∗ s t r i d e + id ] ;
const f loat t2x = t r i a n g l e s [ 3 ∗ s t r i d e + id ] ;
const f loat t2y = t r i a n g l e s [ 4 ∗ s t r i d e + id ] ;
const f loat t2z = t r i a n g l e s [ 5 ∗ s t r i d e + id ] ;
const f loat t3x = t r i a n g l e s [ 6 ∗ s t r i d e + id ] ;
const f loat t3y = t r i a n g l e s [ 7 ∗ s t r i d e + id ] ;

4



const f loat t3z = t r i a n g l e s [ 8 ∗ s t r i d e + id ] ;
const f loat px = point [ 0 ] ;
const f loat py = point [ 1 ] ;
const f loat pz = point [ 2 ] ;

#pragma gpc begin
#pragma c l u c a l c begin

// t r i a n g l e p r o p e r t i e s
Triang lePo int1 = VecN3( t1x , t1y , t1z ) ;
Tr iang lePo int2 = VecN3( t2x , t2y , t2z ) ;
Tr iang lePo int3 = VecN3( t3x , t3y , t3z ) ;

// po in t p r o p e r t i e s
TestPoint = VecN3(px , py , pz ) ;

// cons t ruc t p lane
plane = ∗( Tr iang lePo int1 ˆ Tr iang lePo int2 ˆ

Tr iang lePo int3 ˆ e i n f ) ;

// compute d i s t ance to p lane
?d = plane . TestPoint ;

// e x t r a c t t r i a n g l e normal
? normal = plane − ( plane . e0 ) ˆ e i n f ;

// cons t ruc t boundary p lanes
s i d e1 = ∗( Tr iang lePo int1 ˆ Tr iang lePo int2 ˆ

normal ˆ e i n f ) ;
s i d e2 = ∗( Tr iang lePo int2 ˆ Tr iang lePo int3 ˆ

normal ˆ e i n f ) ;
s i d e3 = ∗( Tr iang lePo int3 ˆ Tr iang lePo int1 ˆ

normal ˆ e i n f ) ;

// compute d i s t anc e s
?d1 = s ide1 . TestPoint ;
?d2 = s ide2 . TestPoint ;
?d3 = s ide3 . TestPoint ;

#pragma c l u c a l c end

const f loat d = mv ge t b l adecoe f f (d , 1 ) ;
const f loat d1 = mv ge t b l adecoe f f ( d1 , 1 ) ;
const f loat d2 = mv ge t b l adecoe f f ( d2 , 1 ) ;
const f loat d3 = mv ge t b l adecoe f f ( d3 , 1 ) ;
i f ( d ∗d > h∗h | |

d1 <= 0.0 f && d2 <= 0.0 f && d3 <= 0.0 f
| |

5



d1 >= 0.0 f && d2 >= 0.0 f && d3 >= 0.0 f
)

c o l l i s i o n [ id ] = true ;
else

c o l l i s i o n [ id ] = fa l se ;
#pragma gpc end
}
Listing 1: A simple test, checking the collision of a ’triangle’ t with thickness h
with a point p, written for Gaalop GPC for OpenCL.

#pragma clucalc begin and #pragma clucalc end mark the boundaries
between two languages, here namely OpenCL and a Domain Specific language
called CLUCalc [10], specifically made to express Geometric Algebra and com-
monly used in the field. Another language layer embedded inside #pragma
gpc begin and #pragma gpc end adds so called Interface Functions (see Sub-
section 5.3) to transform between CLUCalc and host language. This layer is
encapsuling the CLUCalc layer.

An entity in Geometric Algebra is called multivector and is not directly
compatible with normal C/C++/OpenCL language types like scalars, arrays
or structures. The reader may refer to the references and [6] for a deeper
background on GA.

An intelligent transformation/generation precompilation process handles the
transformation between CLUCalc to C/C++/OpenCL and vice-versa based on
the information provided through the Interface Functions. This may be inte-
grated with any toolchain of your choice (like gcc, or Microsoft Visual C++).
Automatic generation of toolchain project files using CMake [1] is supported
through a CMake module.

5.2 The Code explained

The code executes the following steps:

1. Define the three triangle points and the test point.

2. Construct the base plane out of the triangle points.

3. Compute the signed distance d between the constructed plane and the test
point.

4. Compute the normal of the plane.

5. Using this normal and the triangle points, compute the boundary planes,
e.g. the planes that are perpendicular to the base plane and pass through
every combination of the three points.

6. Compute the signed distances d1, d2 and d3 between the test point and
the three boundary planes.

6



7. Retrieve the scalar multivector-part from d1, d2 and d3 and save them
to float-constants d1 S, d2 S, and d3 S, by using the mv get bladecoeff()
function.

8. The condition of a collision is satisfied, if d2 is smaller than or equal the
square of the triangle’s thickness h, and all signed distances d1, d2 and d3
share the same sign.

Note that raytracers in computer graphics use algorithms similar to this one.
Recent work based on GA [3] shows promising results with speedups of up to
four times.

5.3 Interface Functions

The example uses several #pragma-block-types. #pragma clucalc-blocks
contain pure CLUCalc code expressing multivector computations. #pragma
gpc-blocks primarily contain code, but not exclusively. Clearly the statement
const float d1 S = mv get bladecoeff(d1,1); is both OpenCL and CLUCalc
code, since neither mv get bladecoeff(), nor d1 are declared within the OpenCL
parts of the function.

d1 is a multivector, which is internally reduced to a so called Compressed
Multivector Storage-array containing only non-zero multivector blade coeffi-
cients. Specifically to ease handling with these arrays, the Interface Function
mv get bladecoeff() is designed to lookup a particular multivector blade coef-
ficient. We call it an Interface Function specifically, because it is not a real
function in terms of C/C++/OpenCL. Much simplified, Gaalop GPC simply
replaces mv get bladecoeff() by its corresponding array lookup d1[0], reducing
the line to const float d1 SCALAR = d1[0];. An internal mechanism makes
Gaalop GPC able to tell which blade belongs to which array index. This and
other mechanisms are used to define more complicated Interface Functions, fur-
ther detailed in [4].

The separation between #pragma gpc-block-contents and pure C/C++/
OpenCL is mostly a design decision. By definition it would be possible to embed
all C/C++/OpenCL code into one big #pragma gpc-block, or to even leave
that concept out completely, but the intention is to use #pragma gpc-blocks
as transformation layers. A secondary, but also well founded consideration
is the fact that pure C/C++/OpenCL code is guaranteed to preserve relative
line numbers throughout the precompiling process, because it is simply copied
into the intermediate source-file in its original form. In most #pragma gpc
-blocks, relative line numbers will almost certainly be altered by the process.
Making the separation clear, it is possible to utilize the #line compiler directive
for plain C/C++/OpenCL parts, which enables the native compiler to refer
back to the original source-file in the case of errors and warnings. This yields
a much better user-friendliness when working in an Integrated Development
Environment (IDE). The user may simply click on the listed messages to get
directed to the correct positions in the original source-file.

7



5.4 Code Generation

The following code is generated from the source-code in Listing 1. Note that
this code will be automatically precompiled by the toolchain. Programmers do
not have to deal with it normally, though they do have the option to look at it,
it is merely shown for clarification:

k e r n e l void po intTr iang l eTes t (
g l o b a l bool∗ c o l l i s i o n ,
g l o b a l const f loat ∗ t r i a n g l e s ,
g l o b a l const f loat ∗ point ,

const f loat h ,
const unsigned int s t r i d e ,
const unsigned int numTriangles )

{
const s i z e t id = g e t g l o b a l i d (0 ) ;

const f loat t1x = t r i a n g l e s [ 0 ∗ s t r i d e + id ] ;
const f loat t1y = t r i a n g l e s [ 1 ∗ s t r i d e + id ] ;
const f loat t1z = t r i a n g l e s [ 2 ∗ s t r i d e + id ] ;
const f loat t2x = t r i a n g l e s [ 3 ∗ s t r i d e + id ] ;
const f loat t2y = t r i a n g l e s [ 4 ∗ s t r i d e + id ] ;
const f loat t2z = t r i a n g l e s [ 5 ∗ s t r i d e + id ] ;
const f loat t3x = t r i a n g l e s [ 6 ∗ s t r i d e + id ] ;
const f loat t3y = t r i a n g l e s [ 7 ∗ s t r i d e + id ] ;
const f loat t3z = t r i a n g l e s [ 8 ∗ s t r i d e + id ] ;
const f loat px = point [ 0 ] ;
const f loat py = point [ 1 ] ;
const f loat pz = point [ 2 ] ;

//#pragma gpc mu l t i v e c t o r d
f loat d ;
//#pragma gpc mu l t i v e c t o r d1
f loat d1 ;
//#pragma gpc mu l t i v e c t o r d2
f loat d2 ;
//#pragma gpc mu l t i v e c t o r d3
f loat d3 ;
//#pragma gpc mu l t i v e c t o r normal
f loat normal [ 4 ] ;
//#pragma gpc mu l t i v e c t o r p lane
f loat plane [ 4 ] ;
//#pragma gpc mu l t i v e c t o r s i de1
f loat s i d e1 [ 4 ] ;
//#pragma gpc mu l t i v e c t o r s i de2
f loat s i d e2 [ 4 ] ;
//#pragma gpc mu l t i v e c t o r s i de3

8



f loat s i d e3 [ 4 ] ;

//#pragma gpc mul t ivec tor component p lane e1 p lane [ 0 ]
plane [ 0 ] = (−( t1y ∗ t2z + (−( t1z ∗ t2y ) ) + (−(( t1y + (−

t2y ) ) ∗ t3z ) ) + ( t1z + (− t2z ) ) ∗ t3y ) ) ;
//#pragma gpc mul t ivec tor component p lane e2 p lane [ 1 ]
plane [ 1 ] = t1x ∗ t2z + (−( t1z ∗ t2x ) ) + (−(( t1x + (−t2x ) )

∗ t3z ) ) + ( t1z + (− t2z ) ) ∗ t3x ;
//#pragma gpc mul t ivec tor component p lane e3 p lane [ 2 ]
plane [ 2 ] = (−( t1x ∗ t2y + (−( t1y ∗ t2x ) ) + (−(( t1x + (−

t2x ) ) ∗ t3y ) ) + ( t1y + (−t2y ) ) ∗ t3x ) ) ;
//#pragma gpc mul t ivec tor component p lane e i n f p lane [ 3 ]
plane [ 3 ] = (−(( t1x ∗ t2y + (−( t1y ∗ t2x ) ) ) ∗ t3z + (−((

t1x ∗ t2z + (−( t1z ∗ t2x ) ) ) ∗ t3y ) ) + ( t1y ∗ t2z + (−(
t1z ∗ t2y ) ) ) ∗ t3x ) ) ;

//#pragma gpc mul t ivec tor component d 1 d
d = plane [ 0 ] ∗ px + plane [ 1 ] ∗ py + plane [ 2 ] ∗ pz + (−

plane [ 3 ] ) ;

. . . // code has been cut here

const f loat d = d ;
const f loat d1 = d1 ;
const f loat d2 = d2 ;
const f loat d3 = d3 ;
i f ( d ∗d > h∗h | |

d1 <= 0.0 f && d2 <= 0.0 f && d3 <= 0.0 f | |
d1 >= 0.0 f && d2 >= 0.0 f && d3 >= 0.0 f )

c o l l i s i o n [ id ] = true ;
else

c o l l i s i o n [ id ] = fa l se ;
}

Listing 2: Code generated from the code in Listing 1

6 Streaming processor utilization

Gaalop GPC breaks Geometric Algebra code down into simple arithmetic ex-
pressions, as seen in Listing 1. These expressions are (typically) composed of
a sum-of-products structure, which most compilers are able to exploit for an
improved parallel efficiency.

The sum-of-products structure can be further utilized for generating SIMD-
code directly, providing SIMD code even for compilers with weak autovector-
ization support. With an additional translation step called Geometric Algebra
Parallelism Programs (GAPP) [7], which is essentially a further internal interme-

9



diate representation, the resulting code consists of instruction level-parallelism
operations on vectors, yielding an even higher performance. In contrast to
typical hands-on optimization approaches, the original code stays untouched.
Complex optimization details performed by Gaalop GPC are not visible in the
development code but only in the generated code, which improves the general
maintainability in comparison to a hands-on-approach.

We will not provide further details on GAPP itself here, because it is a very
extensive language aimed at a lot of platforms. However, the sum-of-products
computation scheme is a key performance-concept of GAPP and Figure 2 pic-
tures its OpenCL-backend implementation.

Vector1Vector0

sl
o t

 1

sl
o t

 2

sl
o t

 3

...

sl
o t

 0

sl
o t

 1

sl
o t

 2

sl
o t

 3

sl
o t

 0

…
* * * * * n parallel multiplications

+ + +

+ + log(n) parallel additions

+ = Vector0*Vector1

Figure 2: Sum-of-products computation scheme used in our Geometric Algebra
Parallelism Programs OpenCL backend

As an example, please reconsider the computation of the variable d (distance
of the test point to the base plane) from Listing 2. Its computation can be

10



further improved automatically by our compiler through GAPP if you choose
to use it through the compiler CMake options:

//#pragma gpc mu l t i v e c t o r d
f loat d ;
f l o a t 1 6 ve0 0 = ( f l o a t 1 6 ) ( t1x ,−px,−t1y , py , px,−py,−t1x , px ,

t1z ,−pz ,−px , pz , t1y ,−py,− t1z , pz ) ;
f l o a t 8 ve0 1 = ( f l o a t 8 ) (py,−pz ,−px , py , px,−pz ,−py , pz ) ;
f l o a t 1 6 ve1 0 = ( f l o a t 1 6 ) ( t2y , t2y , t2x , t2x , t1y , t1x , t2z , t2z

, t2x , t2x , t1z , t1x , t2z , t2z , t2y , t2y ) ;
f l o a t 8 ve1 1 = ( f l o a t 8 ) ( t1z , t1y , t1y , t1x , t1z , t1x , t1z , t1y ) ;
f l o a t 1 6 ve2 0 = ( f l o a t 1 6 ) ( t3z , t3z , t3z , t3z , t3z , t3z , t3y , t3y

, t3y , t3y , t3y , t3y , t3x , t3x , t3x , t3x ) ;
f l o a t 8 ve2 1 = ( f l o a t 8 ) ( t3x , t3x , t2z , t2z , t2y , t2y , t2x , t2x ) ;

// 4 element−wise p a r a l l e l mu l t i p l i c a t i o n s
f l o a t 1 6 dot0 0 = ve0 0 ∗ ve1 0 ∗ ve2 0 ;
f l o a t 8 dot0 1 = ve0 1 ∗ ve1 1 ∗ ve2 1 ;

// p a r a l l e l pyramid sum reduc t ion (5 element−wise
p a r a l l e l adds )

f l o a t 8 dot1 0 = dot0 0 . l o + dot0 0 . h i + dot0 1 ;
f l o a t 4 dot2 0 = dot1 0 . l o + dot1 0 . h i ;
f l o a t 2 dot3 0 = dot2 0 . l o + dot2 0 . h i ;
//#pragma gpc mul t ivec tor component d 1 d
d = dot3 0 . l o + dot3 0 . h i ;

Listing 3: SIMD-optimized Code generated from Listing 1 through GAPP

Here, all multiplications are performed in parallel, given the target architec-
ture supports the vector width. The pyramid sum reduction operation is not as
efficient as the multiplication, but still provides a lot of parallelism.

Note that vectors with a size of more than 24 had to be split into subvectors
of up to size 16 because OpenCL does not support larger vectors. That explains
the subindices 0 and 1 for dot0 . It may be of interest that Intel’s upcoming
MIC architecture will actually support 512 bit-wide SIMD instructions, hence
OpenCL vectors of size 16. With GAPP there is no theoretical limit to the size
of vectors supported.

7 Coalesced memory access

We speak of a coalesced memory access if all neighboring work items (threads)
in an OpenCL or CUDA compute unit access neighboring data and the accessed
block as a whole is aligned to a certain number of bytes.

Coalescing enables devices to do efficient caching because the memory con-
troller can answer all memory requests from all compute unit threads with one
cache line. As it reads whole cache lines anyway, it can save multiple reads from

11



memory. As memory is the most limiting factor in today’s hardware, coalescing
can make a huge difference in terms of performance.

Gaalop Precompiler tries to ease coalescing by providing two Interface Func-
tions defined in Table 7 especially focused on this aspect. The particular method
used is called strided memory access and is a form of data-oriented program-
ming. Gaalop GPC can handle most details of this internally.

mv = mv from stridedarray( array,
index, stride ,blades ,...) ;

Construct multivector mv from ar-
ray array at index index with
stride stride assigning to blade
coefficients blades ,... . Example
mv = mv from stridedarray( array ,0,
nummvs,e1,e2,e3,e0,einf);.

array = mv to stridedarray( mv,index,
stride ,blades ,...) ;

Write the coefficients of blades blades
,... of multivector mv to array array

at index index with stride stride . Ex-
ample array = mv to stridedarray( mv
,0,nummvs,e1,e2,e3,e0,einf);.

Table 1: Gaalop GPC Interface Functions for coalesced (strided) memory access

Strided memory access lays out sets of structured data in a very different
way than the conventional approach. For a set of n-dimensional vectors vi
stored in memory, the naive (traditional) approach would be to store one full
vector, followed by the next one, and so forth. With data-oriented design in
mind, it is better to store all vi1 entries of all vectors i first, followed by all
vi2 , followed by all vi3 , and so on, sequentially. The resulting speedup can be
enormous depending on the size of the stride between accesses in the original
implementation. Note that the set of n-dimensional vectors have been chosen as
an academic example for structured data. Accesses on n-dimensional vectors will
most likely be efficient if the whole vector is completely used for a computation
in some form, like for example adding it to another vector. But if for example
only the first vector entry is used, then all other entries will most likely be
cached for no reason, resulting in many cache misses. For further information
refer [5].

8 Gaalop GPC in practice: A Molecular Dy-
namics Simulation

A Molecular Dynamics Simulation [11] based on the presented technology was
able to yield a much higher performance (see Figure 3) than a conventional
approach based on Linear Algebra. In addition to the fact, that the proposed
Geometric Algebra Computing Technology had about 80-times faster results
than a conventional approach using the CPU and Linear Algebra, it also yields

12



better simulation results in terms of numerical stability. This might be due to
the observation, that the generated code contains less floating point operations
and therefore less potential sources for numerical errors.

Figure 3: Runtime performance of a Molecular Dynamics simulation featuring a
Linear Algebra-based conventional solver on the CPU (red), a GA-based solver
on the CPU (green), and a GA-based solver on the GPU (blue).

9 Conclusion

We have shown and reasoned the advantages described in Section 2 in more
detail. With systems having an intense focus on instruction-level and SIMD-
performance Geometric Algebra can make a difference. GA has been used in
robotics [12] and many other fields mostly resulting in increased performance
and sometimes better numerical stability. The technology does not require
further libraries for linkage and greatly eases geometry-focused development.

Our tool provides a solid foundation to integrate GA into your C,C++,OpenCL
or CUDA toolchain, making Geometric Algebra-based development as comfort-
able and fast as possible for embedded and non-embedded applications. Gaalop
Precompiler may be downloaded freely from www.gaalop.de.

13



References

[1] Cmake - cross platform make. URL http://www.cmake.org/.

[2] Eigen. URL http://eigen.tuxfamily.org/index.php?title=Main_

Page#Documentation.

[3] Michael Burger. Das effiziente raytracen von dreiecksnetzen auf mehrkern-
prozessoren, gpus und fpgas mittels geometrischer algebra. Master’s thesis,
TU Darmstadt, 2011.

[4] Patrick Charrier and Dietmar Hildenbrand. Gaalop precompiler. In Special
Issue AGACSE 2012, Advances in Applied Clifford Algebras. Springer,
2012.

[5] NVIDIA Corporation. NVIDIA CUDA Programming Guide 3.0, 2010. URL
www.nvidia.com.

[6] Dietmar Hildenbrand. Foundations of Geometric Algebra Computing.
Springer, 2013.

[7] Dietmar Hildenbrand, Patrick Charrier, Christian Steinmetz, and Andreas
Koch. Specialized machine instruction set for geometric algebra. In Special
Issue AGACSE 2012, Advances in Applied Clifford Algebras, 2012.

[8] Khronos-Group. The OpenCL home page, 2009. URL http://www.

khronos.org/opencl/.

[9] NVIDIA. The CUDA home page, 2010. URL http://www.nvidia.com/

object/cuda\_home.html.

[10] Christian Perwass. The CLU home page, 2010. URL http://www.

clucalc.info.

[11] Florian Seybold, Patrick Charrier, Dietmar Hildenbrand, M. Bernreuther,
and D. Jenz. Runtime performance of a molecular dynamics model using
conformal geometric algebra. 2010. URL http://www.science.uva.nl/

~leo/agacse2010/talks_world/Seybold.pdf.

[12] Florian Woersdoerfer, Florian Stock, Eduardo Bayro-Corrochano, and Di-
etmar Hildenbrand. Optimization and performance of a robotics grasping
algorithm described in geometric algebra. In Iberoamerican Congress on
Pattern Recognition 2009, Guadalajara, Mexico, 2009.

14


