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Abstract. Starting from the situation 15 years ago with a great gap
between the low symbolic complexity on the one hand and the high
numeric complexity of coding in Geometric Algebra on the other hand,
this paper reviews some applications showing, that, in the meantime,
this gap could be closed, especially for CPUs.

Today, the use of Geometric Algebra in engineering applications
relies heavily on the availability of software solutions for the new het-
erogeneous computing architectures. While most of the Geometric Al-
gebra tools are restricted to CPU focused programming languages, in
this paper, we introduce the new Gaalop (Geometric Algebra algorithms
optimizer) Precompiler for heterogeneous systems (CPUs, GPUs, FP-
GAs, DSPs ...) based on the programming language C++ AMP (Ac-
celerated Massive Parallelism) of the HSA (Heterogeneous System Ar-
chitecture) Foundation. As a proof-of-concept we present a raytracing
application together with some computing details and first performance
results.
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1. Introduction

Especially since the introduction of CGA (Conformal Geometric Algebra) by
David Hestenes et al. [11] [16] there has been an increasing interest in using
Geometric Algebra (GA) in engineering. The use of Geometric Algebra in
engineering applications relies heavily on the availability of an appropriate
computing technology. The main problem of Geometric Algebra Computing
is the exponential growth of data and computations compared to linear al-
gebra, since the multivector of an n-dimensional Geometric Algebra is 2n-
dimensional. For the 5-dimensional Conformal Geometric Algebra, as used
in this article, the multivector is already 32-dimensional. In 2000, Gerald
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Sommer stated in the preface of his book [21]: Today we have to accept a
great gap between the low symbolic complexity on the one hand and the high
numeric complexity of coding in GA on the other hand. Because available
computers cannot even process complex numbers directly, we have to pay a
high computational cost at times, when using GA libraries, ... , full profit in
real-time applications is only possible with adequate processors.

What kind of processors do we need for Geometric Algebra 15 years
later? How suitable for Geometric Algebra is the current world of parallel
heterogenous systems?

Sect. 2 reviews some powerful solutions for Geometric Algebra with a
focus on hardware and CPU implementations. In Sect. 3 we focus on the
Geometric Algebra algorithms optimizer Gaalop and some competitive ap-
plications in the sense of being faster than conventional solutions.

While the Gaalop Precompiler [14] already supports CPUs, GPUs1 and
FPGAs, in this article, we introduce a solution for an even broader range of
heterogeneous computing architectures defined by the HSA Foundation (see
Sect. 4). Since the HSA Foundation focuses on heterogeneous computing with
the programming language C++ AMP (see Sect. 5), we extended our Gaalop
Precompiler accordingly (see Sect. 7), in order to support all the solutions
of the companies of this foundation. This Geometric Algebra Computing
solution is now part of the ecosystem of the HSA Foundation. As a proof-
of-concept we describe a raytracing application implemented by the Gaalop
Precompiler for C++ AMP in Sect. 8 together with some computing details
in Sect. 9 and first performance results in Sect. 10.

2. Computing with Geometric Algebra

For many engineering applications runtime performance is a big issue. One
method to attempt to overcome the limitations of Geometric Algebra has
been to look for dedicated hardware architectures for the acceleration of
Geometric Algebra algorithms. Integrated circuit technology offers a means to
achieve high performance with field-programmable gate arrays (FPGAs). See,
for instance, the solutions by Perwass et al. [19], Gentile et al.[9], Franchini et
al. [7] and Mishra and Wilson [17]. Recently, Franchini et al. [8] succeeded in a
hardware design natively supporting complete Conformal Geometric Algebra
geometric operations based on reflections realized in hardware.

Another approach to overcoming the runtime limitations of Geomet-
ric Algebra has been through optimized software solutions. Tools have been
developed for high-performance implementations of Geometric Algebra al-
gorithms such as the C++ software library generator Gaigen 2 from Daniel
Fontijne and Leo Dorst of the University of Amsterdam [5], GMac from Ah-
mad Hosney Awad Eid of Suez Canal University [4], the Versor library [2]
from Pablo Colapinto, the C++ expression template library Gaalet [20] from

1this text does not distinguish between the terms GPGPU and GPU, but always uses the
term GPU



Geometric Algebra Computing for Heterogeneous Systems 3

Florian Seybold of the University of Stuttgart, and our Gaalop compiler [14].
Ten years ago, in 2006 we, together with the Amsterdam group, presented
the first Geometric Algebra application that was faster than the standard
implementation [15], an inverse kinematics algorithm of a virtual character.

3. Competitive Runtime Performance using Gaalop

Figure 1. Geometric Algebra Computing architecture of Gaalop

A good way of cutting the high complexity of Geometric Algebra before
going to the real computing device is to precompute / precompile Geometric
Algebra algorithms (see Fig. 1 and [13]). The big potential of optimizations
of Geometric Algebra algorithms before runtime can be very good demon-
strated with the inverse kinematics algorithm of [15] [12], which was in 2006
the first Geometric Algebra application that was faster than the standard
implementation. Naively implemented based on the Gaigen1 library, the run-
time was more than 100 times slower than compared to an implementation
based on symbolic simplifications with the help of Maple (the Maple based
approach of Gaalop). This means, that in this application more than 99%
of computing time can be saved and less than 1% is left to the computing
at runtime. In this computer animation application, the Geometric Algebra
implementation based on symbolic simplification was three times faster than
the conventional solution.

In 2009, a very remarkable result in terms of runtime performance could
be achieved with the robot grasping algorithm of [23]. Based on optimized
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C-code generation with Gaalop, a speedup of 14 could be achieved compared
to the conventional mathematics solution.

In the meantime, Gaalop has been extended with an additional (non-
commercial) Table based approach (see [13]) and improved in two directions:
On one hand, it supports optimized hardware generation [22]. Compared
to all the above mentioned hardware solutions, Gaalop precompiles the Geo-
metric Algebra algorithm before generating the hardware description. On the
other hand, Gaalop has been extended to a Gaalop Precompiler for many of
the newest programming languages, as described in the book [13]. It supports,
for instance, GPU programming languages such as CUDA and OpenCL while
most of the other software solutions are restricted to CPU focused program-
ming languages such as C++ or C#.

Using the Gaalop Precompiler for OpenCL, the molecular dynamics
simulation of Chapt. 13 of [13], achieves very competitive results: the Gaalop
Precompiler implementation is faster than the conventional implementation,
which is not self-evident for Conformal Geometric Algebra-based implemen-
tations of such complexity. Further tests have shown that Gaalop Precompiler
also yields a higher numerical stability in terms of energy conservation. This
might be due to the fact that the advanced symbolic simplification performed
by the Gaalop Precompiler minimizes the number of operations, which oth-
erwise would have been potential sources for numerical errors. For computing
details of Gaalop please refer to Sect. 9.

As a solution for the computing architecture of the HSA Foundation
(see Sect. 4) we present in Sect. 7 our Gaalop Precompiler for C++ AMP as
the main contribution of this article.

4. HSA Foundation

The HSA Foundation [6] is a not-for-profit industry standards body of about
40 companies, founded by AMD, ARM, Imagination, Mediatek, Qualcomm,
Samsung and Texas Instruments. It is focused on making it dramatically
easier to program heterogeneous computing devices for parallel computation
utilizing CPUs, GPUs, DSPs, etc.

Heterogeneous computing is emerging as a requirement for power-efficient
system design: modern platforms no longer rely on a single general-purpose
processor, but instead benefit from dedicated processors/accelerators tailored
for each task. Traditionally these specialized processors have been difficult to
program due to separate memory spaces, kernel-driver-level interfaces, and
specialized programming models. The Heterogeneous System Architecture
(HSA) aims to bridge this gap by providing a common system architecture
and a basis for designing higher-level programming models for all devices
(including widely used system-on-chip devices, such as tablets, smartphones,
and other mobile devices).
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5. C++ AMP

C++ AMP is an extension to C++ that enables the acceleration of C++ code
on data-parallel hardware (GPUs etc.). The first specification was published
by Microsoft in August 2012 as an open specification. The first implementa-
tions were available in Visual Studio 2012 and Visual Studio 2013.

With the goal of making it dramatically easier to program heterogeneous
computing devices, the HSA foundation released their C++ AMP (Acceler-
ated Massive Parallelism) compiler for Linux in Aug. 2014. C++ AMP ver-
sion 1.2 enables C++ developers to accelerate applications across a broad set
of hardware and software configurations by supporting three outputs:

• Khronos Group OpenCL,
supporting AMD CPU/APU/GPU, Intel CPU/APU, NVIDIA GPU,
Apple Mac OS X and other OpenCL compliant platforms;
• Khronos Group SPIR,

supporting AMD CPU/APU/GPU, Intel CPU/APU and SPIR compli-
ant platforms; and
• HSA Foundation HSAIL,

supporting AMD APU and HSA compliant platforms.

As follows, we describe the main extensions of C++ AMP for accelera-
tors:

parallel for each describes a computation to be performed by an accel-
erator accross some N -dimensional execution domain. It expects the number
of threads and a lambda function describing the functionality to be executed
for each thread.

The ADT (abstract data type) array view< T,N > logically represents
an N -dimensional space of type T which resides either on the memory space
of the host or of the accelerator, for instance a 2-dimensional pixel array of
colours as described in Listing 1.

The ADT index < N > represents an N -dimensional point, for instance
one point of a 2-dimensional pixel array.

For details please refer to [10].

6. Conformal Geometric Algebra

As shown in [3] for Gaigen and in [4] for GMAC, Conformal Geometric Alge-
bra is very well suitable to realize raytracing applications. This is primarily
because of its easy handling of geometric objects such as spheres, planes and
lines. In this section we give a brief overview of Conformal Geometric Algebra.

Conformal Geometric Algebra uses the three Euclidean basis vectors
e1, e2, e3 and two additional basis vectors e+, e− with positive and negative
signatures, respectively, which means that they square to +1 as usual (e+)
and to −1 (e−).

e2+ = 1, e2− = −1, e+ · e− = 0. (6.1)

Another basis e0, e∞, with the geometric meaning
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• e0 represents the 3D origin,
• e∞ represents infinity,

can be defined with the relations

e0 =
1

2
(e− − e+), e∞ = e− + e+. (6.2)

Blades are the basic algebraic elements of Geometric Algebra. Confor-
mal Geometric Algebra consists of blades with grades 0, 1, 2, . . . , 5, where a
scalar is a 0-blade (a blade of grade 0) and the 1-blades are the basis vectors.
The 2-blades ei ∧ ej are blades spanned by two 1-blades, and so on. There
exists only one element of the maximum grade 5. It is therefore also called
the pseudoscalar. A linear combination of k-blades is called a k-vector (or a
vector, bivector, trivector. . . . ). The sum e2 ∧ e3 + e1 ∧ e2, for instance, is
a bivector. A linear combination of blades with different grades is called a
multivector. Multivectors are the general elements of a Geometric Algebra.
Table 3 shows the 32 blades of Conformal Geometric Algebra, consisting of
the scalar, five (basis) vectors, ten bivectors, ten trivectors, 5 quadvectors
and the pseudoscalar.

Conformal Geometric Algebra provides a great variety of basic geomet-
ric entities to compute with, namely points, spheres, planes, circles, lines, and
point pairs, as listed in Table 1. These entities have two algebraic representa-
tions: the IPNS (inner product null space) and the OPNS (outer product null
space). These representations are duals of each other (a superscript asterisk
denotes the dualization operator). In Table 1, x and n are in bold type to
indicate that they represent 3D entities obtained by linear combinations of
the 3D basis vectors e1, e2, and e3:

x = x1e1 + x2e2 + x3e3. (6.3)

The {Si} represent different spheres, and the {πi} represent different planes.
In the OPNS representation, the outer product ”∧” indicates the construction
of a geometric object with the help of points {Pi} that lie on it. A sphere,
for instance, is defined by four points (P1 ∧ P2 ∧ P3 ∧ P4) on this sphere. In
the IPNS representation, the meaning of the outer product is an intersection
of geometric entities. A circle, for instance, is defined by the intersection of
two spheres S1 ∧ S2. Accordingly, the intersection of a line and a sphere can
easily be expressed with the help of the outer product of these two geometric
entities (Fig. 2).

7. The Gaalop Precompiler for C++ AMP

The first version of Gaalop has been a stand-alone compiler. It was able to
generate optimized C code from Geometric Algebra descriptions. In order to
simplify the use of Geometric Algebra in engineeering applications, we have
developed the Gaalop Precompiler (gpc for short) , which integrates Geomet-
ric Algebra into standard programming languages [13]. Figure 3 outlines the
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Figure 2. Spheres and lines are basic entities of Geometric
Algebra that one can compute with. Operations such as the
intersection of these objects are easily expressed with the
help of their outer product. In our raytracing application,
for instance, the result of the intersection of a ray and a
sphere is another geometric entity: the point pair consisting
of the two points where the line intersects the sphere. The
sign of the square of the point pair indicates easily whether
there is a real intersection or not.

Table 1. The two representations (IPNS and OPNS) of
conformal geometric entities. The IPNS and OPNS repre-
sentations are dual to each other, which is indicated by the
asterisk symbol.

Entity IPNS representation OPNS representation

Point P = x + 1
2x

2e∞ + e0
Sphere S = P − 1

2r
2e∞ S∗ = P1 ∧ P2 ∧ P3 ∧ P4

Plane π = n + de∞ π∗ = P1 ∧ P2 ∧ P3 ∧ e∞
Circle Z = S1 ∧ S2 Z∗ = P1 ∧ P2 ∧ P3

Line L = π1 ∧ π2 L∗ = P1 ∧ P2 ∧ e∞
Point pair Pp = S1 ∧ S2 ∧ S3 Pp∗ = P1 ∧ P2

concept for the C++ AMP programming language. With the Gaalop Pre-
compiler, we are able to enhance ordinary C++ AMP code with Geometric
Algebra code and automatically generate optimized C++ AMP code.

A precompiler is a way of extending the features of a programming
language. For Geometric Algebra Computing, it is of high interest to use
both the power of high-performance languages and the elegance of expression
of a domain-specific language such as CLUCalc [18]. The Gaalop language
is inspired by CLUCalc. We embed this language into C++ AMP code, and
compile it by utilizing the precompiler concept and the fast optimizations
and code generation features of Gaalop.

The Gaalop Precompiler enhances C++ AMP programs by embedding
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Figure 3. Gaalop Precompiler for C++ AMP.

• Geometric Algebra code using multivectors;
• functionality to interact with multivectors.

It transforms these enhanced C++ AMP programs to optimized C++ AMP
programs without any explicit Geometric Algebra functionality. More pre-
cisely, the Gaalop Precompiler takes C++ AMP programs enhanced with
pragmas and translates them to C++ AMP code enhanced with optimized
C code which can be understood by the C++ AMP compiler. The embed-
ding of Geometric Algebra code is done based on pragmas with the following
structure:

#pragma gpc begin

...

Import of multivectors

...

#pragma clucalc begin

...

Geometric Algebra code based on CLUCalc

...

#pragma clucalc end

...

Export of multivectors

...

#pragma gpc end

Each gpc (Gaalop Precompiler) block includes a clucalc block with the Geo-
metric Algebra functionality. The functions to import/export multivectors
are defined in Table 2. The purpose of these functions is the transformation
between multivectors and the C++ AMP language concepts of float variables
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Table 2. Gaalop Precompiler functions for constructing
and accessing multivectors

coeff = mv getbladecoeff(mv,blade); Get the coefficient of
blade blade of multi-
vector mv.

array = mv to array(mv, blades ,...); Write the blades
blades ,... of mul-
tivector mv to ar-
ray array. Example
array = mv to array
(mv,e1,e2,e3,e0, einf ); .

mv = mv from array(array,blades,..); Construct multivector
mv from array array

and arrays. mv get bladecoeff() is responsible for extracting a blade coeffi-
cient from a multivector, whereas mv to array() constructs an array from
a multivector and mv from array() constructs a multivector from a C-like
array.

8. The Raytracer Proof-of-Concept

Here, we present our raytracer application as a proof-of-concept for our
Gaalop Precompiler for C++ AMP. Raytracing is a technique for generating
a 2D image by tracing the path of rays from a camera through the pixels
in an image plane and simulating the light effects at the intersection with
objects of a 3D scene (see Fig. 4). Listing 1 describes the main routine of
the raytracer. The ImageView object is a type of C++ AMP array view: a
2-dimensional pixel array (with extention HEIGHT and WIDTH) of colours.
With parallel for each we describe the raytracing functionality for each pixel.
See [1] to download the source files of the proof-of-concept project.

Listing 1. The Scene C++ AMP main routine
void Scene : : renderOnGPU( std : : vector<Colour>& imageData ,

Camera camera , Light l i g h t ) {
array view<Colour , 2> imageView (HEIGHT, WIDTH,

&imageData [ 0 ] ) ;

array view<Object , 1> a l l O b j e c t s ( ob j e c tS i z e , o b j e c t s ) ;

i n t l ength = o b j e c t S i z e ;

Color backgroundColor = background ;

p a r a l l e l f o r e a c h ( imageView . g e t e x t e n t ( ) ,

[=] ( index<2> idx ) r e s t r i c t (amp) {
const auto y = idx [ 0 ] ; // i n v e r s e order . . .

const auto x = idx [ 1 ] ;

// c r e a t e a new ray . . .
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Figure 4. Raytracing principle.

Ray ray = createNewRay ( camera , x , y ) ;

imageView [ idx ] = rayCastAlgorithm (x , y , ray ,

a l lOb j e c t s , l i g h t , length , backgroundColor ) ;

} ) ;

}

Listing 2 describes the integration of some Geometric Algebra function-
ality into C++ AMP. It is written in the Gaalop scripting language which is
inspired by CLUCalc [18].

In the first gpc block, a sphere S is computed and assigned to the array
sphere. The predefined function VecN3() computes the conformal point of
the Euclidean center point with the coordinates Cx, Cy, Cz (see the first
row of Table 1). The sphere S is computed with corresponding radius radius
according to the second row of Table 1.

Listing 2. Computations with sphere and ray
#pragma gpc begin

#pragma c l u c a l c begin

?S = VecN3(Cx , Cy , Cz) − 0 .5∗ rad iu s ∗ rad iu s ∗ e i n f ;

#pragma c l u c a l c end

sphere = mv to array (S , e1 , e2 , e3 , e i n f , e0 ) ;

#pragma gpc end

// Ray de f ined by o r i g i n (Ox, Oy, Oz)

// and d i r e c t i o n (Lx , Ly , Lz )

#pragma gpc begin

#pragma c l u c a l c begin
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O = VecN3(Ox, Oy, Oz ) ;

L = VecN3(Lx , Ly , Lz ) ;

?Ray = ∗(O ˆ L ˆ e i n f ) ;

#pragma c l u c a l c end

newRay . ray = mv to array (Ray , e1ˆe2 , e1ˆe3 ,

e1ˆ e in f , e2ˆe3 , e2ˆ e in f , e3ˆ e i n f ) ;

#pragma gpc end

The second gpc block computes the ray Ray and assigns its relevant
coefficients to an array. The ray is computed based on the outer product of
two of its points O and L and infinity (see the fifth row of Table 1). Note
that the ray has to be dualized (with a leading asterisk) since the standard
representation in Gaalop is the IPNS representation.

Listing 3. Intersection of line and sphere with the Gaalop
Precompiler for C++ AMP

#pragma c l u c a l c begin

?PP = Ray ˆ Sphere ;

? h a s I n t e r s e c t i o n = PP.PP;

#pragma c l u c a l c end

The listing 3 describes the integration of the Geometric Algebra func-
tionality of the intersection of a sphere and a line into C++ AMP as well as
the computation of an intersection indicator (see also Figure 2).

9. Computing Details

Here, we investigate some computing details where the high runtime perfor-
mance and the good adaptability for parallel computing systems come from.

Sect. 3 presents some Geometric Algebra applications being faster than
conventional implementations. Also the implementation of the just presented
raytracer based on the Gaalop Precompiler for C++ AMP is faster than
the conventional mathematics CPU implementation (see Sect. 10). Where do
these results come from?

In general, what remains after the Gaalop optimization process via sym-
bolic simplification are only long sums of products, which again can be ef-
ficiently parallelized (see Figure 5). Although not designed for computing
with Geometric Algebra, most of the current computing devices fortunately
support these kind of operations. Additionally, Gaalop has a specific control
mechanism for the adaptability to different types of sequential and parallel
computing systems: each line of Gaalop code can be indicated whether it
should be evaluated explicitely or not. For sequential computing devices it
may be better to evaluate all lines while parallel computing devices benefit
from a small number of explicit line evaluations even if this can lead to some
redundant parallel computations.
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The structure of Gaalop results can be best seen based on the Geomet-
ric Algebra Parallelism Programs (GAPP). This intermediate language for
Gaalop and its instruction set is defined in the book [13]. All implementations
will be optimized according to the characteristics of the computing device.

Figure 5. Precomputation of Geometric Algebra leads to
parallel computations of sums of products

As follows, we investigate in more detail the resulting code of the Gaalop
Precompiler based on the Listing 4.

Listing 4. Gaalop code (inspired by CLUCalc) to be optimized
S = VecN3(Cx , Cy , Cz) − 0 .5∗ r ∗ r ∗ e i n f ;

O = VecN3(Ox, Oy, Oz ) ;

L = VecN3(Lx , Ly , Lz ) ;

R = ∗(O ˆ L ˆ e i n f ) ;

PP = R ˆ S ;

? h a s I n t e r s e c t i o n = PP.PP;

This example computes the sphere S and the ray R through the points
O and L (see Table 1, VecN3 computes a conformal point based on its 3D
coordinates). Based on the intersection of the ray and the sphere, the inter-
section indicator hasIntersection is computed. Its sign indicates whether the
ray and the sphere are really intersecting each other or not.

A question mark at the beginning of a line indicates a multivector vari-
able that has to be explicitly computed by Gaalop. This means that Gaalop
is able to optimize not only single statements, but a number of Geometric
Algebra statements. In Listing 4, the expressions for S, R, O, L and PP
are used only by Gaalop, in order to compute an optimized result for the
intersection indicator (see the question mark in the last line of the listing).

Optimizing this listing results in the following C++ AMP code:

Listing 5. Resulting C++ AMP code of Listing 4.
h a s I n t e r s e c t i o n [ 0 ] = (( ( ( ( ( − (Oz ∗ Oz) ) + 2 .0 ∗ Lz ∗ Oz)

− Oy ∗ Oy + 2.0 ∗ Ly ∗ Oy) − Ox ∗ Ox + 2.0 ∗ Lx ∗ Ox)

− Lz ∗ Lz − Ly ∗ Ly − Lx ∗ Lx) ∗ r ∗ r

+ ( ( Ly ∗ Ly − 2 .0 ∗ Cy ∗ Ly + Lx ∗ Lx) − 2 .0 ∗ Cx ∗ Lx

+ Cy ∗ Cy + Cx ∗ Cx) ∗ Oz ∗ Oz

+ ( ( ( ( ( ( 2 . 0 ∗ Cy − 2 .0 ∗ Ly) ∗ Lz
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+ 2 .0 ∗ Cz ∗ Ly) − 2 .0 ∗ Cy ∗ Cz) ∗ Oy

+ ( ( ( 2 . 0 ∗ Cx − 2 .0 ∗ Lx) ∗ Lz + 2 .0 ∗ Cz ∗ Lx)

− 2 .0 ∗ Cx ∗ Cz) ∗ Ox

+ ( ( 2 . 0 ∗ Cy ∗ Ly + 2 .0 ∗ Cx ∗ Lx)

− 2 .0 ∗ Cy ∗ Cy − 2 .0 ∗ Cx ∗ Cx) ∗ Lz )

− 2 .0 ∗ Cz ∗ Ly ∗ Ly

+ 2 .0 ∗ Cy ∗ Cz ∗ Ly) − 2 .0 ∗ Cz ∗ Lx ∗ Lx

+ 2 .0 ∗ Cx ∗ Cz ∗ Lx)

∗ Oz + ( ( Lz ∗ Lz − 2 .0 ∗ Cz ∗ Lz + Lx ∗ Lx)

− 2 .0 ∗ Cx ∗ Lx

+ Cz ∗ Cz + Cx ∗ Cx) ∗ Oy ∗ Oy

+ ( ( ( ( ( 2 . 0 ∗ Cx − 2 .0 ∗ Lx) ∗ Ly

+ 2 .0 ∗ Cy ∗ Lx) − 2 .0 ∗ Cx ∗ Cy) ∗ Ox

− 2 .0 ∗ Cy ∗ Lz ∗ Lz

+ ( 2 . 0 ∗ Cz ∗ Ly + 2 .0 ∗ Cy ∗ Cz) ∗ Lz

+ ( 2 . 0 ∗ Cx ∗ Lx − 2 .0 ∗ Cz ∗ Cz − 2 .0 ∗ Cx ∗ Cx) ∗ Ly)

− 2 .0 ∗ Cy ∗ Lx ∗ Lx + 2 .0 ∗ Cx ∗ Cy ∗ Lx) ∗ Oy

+ ( ( Lz ∗ Lz − 2 .0 ∗ Cz ∗ Lz + Ly ∗ Ly)

− 2 .0 ∗ Cy ∗ Ly + Cz ∗ Cz + Cy ∗ Cy) ∗ Ox ∗ Ox

+ ((( − (2 .0 ∗ Cx ∗ Lz ∗ Lz ) )

+ ( 2 . 0 ∗ Cz ∗ Lx + 2 .0 ∗ Cx ∗ Cz) ∗ Lz )

− 2 .0 ∗ Cx ∗ Ly ∗ Ly + ( 2 . 0 ∗ Cy ∗ Lx

+ 2 .0 ∗ Cx ∗ Cy) ∗ Ly + ((−(2.0 ∗ Cz ∗ Cz ) )

− 2 .0 ∗ Cy ∗ Cy) ∗ Lx) ∗ Ox

+ (Cy ∗ Cy + Cx ∗ Cx) ∗ Lz ∗ Lz

+ ((−(2.0 ∗ Cy ∗ Cz ∗ Ly ) ) − 2 .0 ∗ Cx ∗ Cz ∗ Lx) ∗ Lz

+ (Cz ∗ Cz + Cx ∗ Cx) ∗ Ly ∗ Ly)

− 2 .0 ∗ Cx ∗ Cy ∗ Lx ∗ Ly

+ (Cz ∗ Cz + Cy ∗ Cy) ∗ Lx ∗ Lx ; // 1 .0

What we realize is, that

• only one entry of the 32-dimensional multivector of the intersection
indicator is computed. Gaalop recognizes that only the scalar part with
index 0 (see Table 3) has to be computed and all the other 31 entries
are zero.

• the expression is dependent on the 10 entry values for the three 3D-
points (Cx, Cy, Cz), (Ox, Oy, Oz), (Lx, Ly, Lz) and the radius r.

The structure of this C code can be seen based on the GAPP code
presented in Listing 6.

Listing 6. Resulting GAPP code of Listing 4.

a s s i gn Input sVecto r inputsVector

= [ Cx , Cy , Cz , Lx , Ly , Lz ,Ox,Oy, Oz , r ] ;
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resetMv h a s I n t e r s e c t i o n [ 3 2 ] ;

s e tVector ve0 = { inputsVector [ −8 ] , 2 . 0 , inputsVector [−7] ,

2 . 0 , inputsVector [ −6 ] , 2 . 0 , inputsVector [−5 ,−4 ,−3 ,4] ,

−2.0 , inputsVector [ 3 ] , −2 . 0 , inputsVector [ 1 , 0 ] , −2 . 0 , 2 . 0 ,

2 .0 , −2 .0 , −2 .0 ,2 .0 ,2 .0 , −2 .0 ,2 .0 ,2 .0 , −2 .0 , −2 .0 , −2 .0 ,2 .0 ,

−2.0 ,2 .0 , inputsVector [ 5 ] , −2 . 0 , inputsVector [ 3 ] , −2 . 0 ,

inputsVector [ 2 , 0 ] , −2 . 0 , 2 . 0 , 2 . 0 , −2 . 0 , −2 . 0 , 2 . 0 , 2 . 0 , 2 . 0 ,

−2.0 ,−2.0 ,−2.0 ,2.0 , inputsVector [ 5 ] , −2 . 0 , inputsVector [ 4 ] ,

−2.0 , inputsVector [ 2 , 1 ] , −2 . 0 , 2 . 0 , 2 . 0 , −2 . 0 , 2 . 0 , 2 .0 ,−2.0 ,

−2.0 , inputsVector [1 ,0 ] , −2 .0 , −2 .0 , inputsVector [ 2 , 0 ] , −2 . 0 ,

inputsVector [ 2 , 1 ] } ;

s e tVector ve1 = { inputsVector [ 8 , 5 , 7 , 4 , 6 , 3 , 5 , 4 , 3 , 4 , 1 , 3 , 0 ,

1 , 0 , 4 , 1 , 2 , 1 , 3 , 0 , 2 , 0 , 1 , 0 , 1 , 0 , 2 , 1 , 2 , 0 , 5 , 2 , 3 , 0 , 2 , 0 , 3 , 0 , 1 , 0 ,

1 , 2 , 1 , 0 , 2 , 0 , 1 , 0 , 5 , 2 , 4 , 1 , 2 , 1 , 0 , 2 , 0 , 0 , 1 , 0 , 2 , 1 , 1 , 0 , 1 , 0 , 2 , 0 ,

0 , 2 , 1 ] } ;

s e tVector ve2 = { inputsVector [ 9 , 8 , 9 , 7 , 9 , 6 , 9 , 9 , 9 , 8 , 4 , 8 , 3 ,

8 , 8 , 5 , 5 , 4 , 2 , 5 , 5 , 3 , 2 , 4 , 3 , 1 , 0 , 4 , 2 , 3 , 2 , 7 , 5 , 7 , 3 , 7 , 7 , 4 , 4 , 3 , 1 ,

5 , 4 , 2 , 3 , 2 , 0 , 3 , 1 , 6 , 5 , 6 , 4 , 6 , 6 , 5 , 3 , 2 , 4 , 3 , 1 , 2 , 1 , 5 , 5 , 2 , 2 , 4 ,

4 , 1 , 3 , 3 ] } ;

s e tVector ve3 = { inputsVector [ 9 , 9 , 9 , 9 , 9 , 9 , 9 , 9 , 9 , 8 , 8 , 8 , 8 ,

8 , 8 , 7 , 7 , 7 , 7 , 6 , 6 , 6 , 6 , 5 , 5 , 5 , 5 , 4 , 4 , 3 , 3 , 7 , 7 , 7 , 7 , 7 , 7 , 6 , 6 , 6 , 6 ,

5 , 5 , 5 , 4 , 4 , 4 , 3 , 3 , 6 , 6 , 6 , 6 , 6 , 6 , 5 , 5 , 5 , 4 , 4 , 4 , 3 , 3 , 5 , 5 , 4 , 3 ,

4 , 4 , 3 , 3 , 3 ]} ;

s e tVector ve4 = {1 . 0 , inputsVector [ 9 ] , 1 . 0 ,

inputsVector [ 9 ] , 1 . 0 , inputsVector [ 9 ] , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ,

inputsVector [ 8 ] , 1 . 0 , inputsVector [ 8 ] , 1 . 0 , 1 . 0 ,

inputsVector [ 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 ] , 1 . 0 ,

inputsVector [ 7 ] , 1 . 0 , inputsVector [ 7 ] , 1 . 0 , 1 . 0 ,

inputsVector [ 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 , 7 ] , 1 . 0 ,

inputsVector [ 6 ] , 1 . 0 , inputsVector [ 6 ] , 1 . 0 , 1 . 0 ,

inputsVector [ 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 ] , 1 . 0 , 1 . 0 ,

inputsVector [ 5 , 5 ] , 1 . 0 , 1 . 0 , inputsVector [ 4 ] , 1 . 0 , 1 . 0 } ;

dotVectors h a s I n t e r s e c t i o n [ 0 ] = <ve0 , ve1 , ve2 , ve3 , ve4>;

First of all, the 10 entry values for the three 3D-points (Cx, Cy, Cz),
(Ox, Oy, Oz), (Lx, Ly, Lz) and the radius r are assigned to the InputsVector.
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The result of Listing 4 is the multivector hasIntersection, which has to be
reset first. If we indicate multivectors with 32 floats means, that this is only
the worst case while we internally store only the non-zero coefficients. In this
case this is only the coefficient hasIntersection[0].

Next, five vectors (ve1 .. ve4) are set based on entries of the InputsVector
as well as of some constants. Counting their entries, we realize, that all these
vectors are 72-dimensional. Finally, the dot product of the given vectors is
calculated and assigned to the entry 0 of the multivector hasIntersection.
There is an implicit parallelism in this computation according to Fig. 6. The
multiplications of each of the vector coefficients can be done in parallel as
well as parts of the additions.

Figure 6. Parallel dot product of two n-dimensional vec-
tors Vector0 and Vector1 (n parallel products followed by
log(n) parallel addition steps).

The vectors for the computations of Listing 6 are very long. Let us
now look at a second version according to the Gaalop Listing 7. There is an
additional question mark, indicating that also the ray R has to be computed
explicitly.

Listing 7. Gaalop code to be optimized (second version)
S = VecN3(Cx , Cy , Cz) − 0 .5∗ r ∗ r ∗ e i n f ;

O = VecN3(Ox, Oy, Oz ) ;

L = VecN3(Lx , Ly , Lz ) ;

?R = ∗(O ˆ L ˆ e i n f ) ;

PP = R ˆ S ;

? h a s I n t e r s e c t i o n = PP.PP;

Looking at the resulting C++ AMP code, we realize that it is more
compact. We have to compute six coefficients of the multivector R with the
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indices 6, 7, 8, 10, 11 and 13. The meaning of each coefficient in terms of its
blade meaning is indicated in the comments at the end of each line. Here,
we recognize an implicit parallelism of GAPP, since all the coefficients of a
multivector can be computed in parallel.

Listing 8. Resulting C++ AMP code of Listing 7.
R[ 6 ] = Oz − Lz ; // e1 ˆ e2

R[ 7 ] = Ly − Oy; // e1 ˆ e3

R[ 8 ] = Ly ∗ Oz − Lz ∗ Oy; // e1 ˆ e i n f

R[ 1 0 ] = Ox − Lx ; // e2 ˆ e3

R[ 1 1 ] = Lz ∗ Ox − Lx ∗ Oz ; // e2 ˆ e i n f

R[ 1 3 ] = Lx ∗ Oy − Ly ∗ Ox; // e3 ˆ e i n f

h a s I n t e r s e c t i o n [ 0 ] = (R[ 8 ] ∗ R[ 8 ]

+ ((−(2.0 ∗ Cz ∗ R[ 7 ] ) ) − 2 .0 ∗ Cy ∗ R[ 6 ] ) ∗ R[ 8 ]

+ ((−( r ∗ r ) ) + Cz ∗ Cz + Cx ∗ Cx) ∗ R[ 7 ] ∗ R[ 7 ]

+ ( 2 . 0 ∗ Cy ∗ Cz ∗ R[ 6 ] + 2 .0 ∗ Cx ∗ R[ 1 3 ]

+ 2 .0 ∗ Cx ∗ Cy ∗ R[ 1 0 ] ) ∗ R[ 7 ] + ((−( r ∗ r ) )

+ Cy ∗ Cy + Cx ∗ Cx) ∗ R[ 6 ] ∗ R[ 6 ] + ( 2 . 0 ∗ Cx ∗ R[ 1 1 ]

− 2 .0 ∗ Cx ∗ Cz ∗ R[ 1 0 ] ) ∗ R[ 6 ] + R[ 1 3 ] ∗ R[ 1 3 ]

+ 2 .0 ∗ Cy ∗ R[ 1 0 ] ∗ R[ 1 3 ] + R[ 1 1 ] ∗ R[ 1 1 ] )

− 2 .0 ∗ Cz ∗ R[ 1 0 ] ∗ R[ 1 1 ] + ((−( r ∗ r ) )

+ Cz ∗ Cz + Cy ∗ Cy) ∗ R[ 1 0 ] ∗ R[ 1 0 ] ; // 1 .0

The computation for the intersection indicator hasIntersection now
is shorter, since precomputed values of the multivector R can be re-used.
Counting the length of the vectors ve9 .. ve13 for its computations in the
GAPP Listing 9, results in a number of 21.

Listing 9. Resulting GAPP code of Listing 7.
//R[ 6 ] = inputsVector [ 8 ] − inputsVector [ 5 ]

a s s i gn Input sVecto r inputsVector

= [ Cx , Cy , Cz , Lx , Ly , Lz ,Ox,Oy, Oz , r ] ;

resetMv R[ 3 2 ] ;

s e tVector ve0 = { inputsVector [8 , −5 ]} ;

dotVectors R[ 6 ] = <ve0>;

//R[ 7 ] = inputsVector [ 4 ] − inputsVector [ 7 ]

s e tVector ve1 = { inputsVector [4 , −7 ]} ;

dotVectors R[ 7 ] = <ve1>;

//R[ 8 ] = ( inputsVector [ 4 ] ∗ inputsVector [ 8 ] )

// − ( inputsVector [ 5 ] ∗ inputsVector [ 7 ] )

s e tVector ve2 = { inputsVector [4 , −5 ]} ;

s e tVector ve3 = { inputsVector [ 8 , 7 ] } ;

dotVectors R[ 8 ] = <ve2 , ve3>;
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//R[ 1 0 ] = inputsVector [ 6 ] − inputsVector [ 3 ]

s e tVector ve4 = { inputsVector [6 , −3 ]} ;

dotVectors R[ 1 0 ] = <ve4>;

//R[ 1 1 ] = ( inputsVector [ 5 ] ∗ inputsVector [ 6 ] )

// − ( inputsVector [ 3 ] ∗ inputsVector [ 8 ] )

s e tVector ve5 = { inputsVector [5 , −3 ]} ;

s e tVector ve6 = { inputsVector [ 6 , 8 ] } ;

dotVectors R[ 1 1 ] = <ve5 , ve6>;

//R[ 1 3 ] = ( inputsVector [ 3 ] ∗ inputsVector [ 7 ] )

// − ( inputsVector [ 4 ] ∗ inputsVector [ 6 ] )

s e tVector ve7 = { inputsVector [3 , −4 ]} ;

s e tVector ve8 = { inputsVector [ 7 , 6 ] } ;

dotVectors R[ 1 3 ] = <ve7 , ve8>;

resetMv h a s I n t e r s e c t i o n [ 3 2 ] ;

s e tVector ve9 = {R[8 ] , −2 .0 , −2 .0 , inputsVector [ −9 ,2 ,0 ] ,

2 . 0 , 2 . 0 , 2 . 0 , inputsVector [ −9 ,1 ,0 ] , 2 .0 , −2 .0 ,R[ 1 3 ] , 2 . 0 ,

R[11 ] , −2 .0 , inputsVector [ −9 ,2 , 1 ]} ;

s e tVector ve10 = {R[ 8 ] , inputsVector [ 2 , 1 , 9 , 2 , 0 , 1 ,

0 , 0 , 9 , 1 , 0 , 0 , 0 ] ,R[ 1 3 ] , inputsVector [ 1 ] ,R[ 1 1 ] ,

inputsVector [ 2 , 9 , 2 , 1 ] } ;

s e tVector ve11 = {1 . 0 ,R[ 7 , 6 , 7 , 7 , 7 ] , inputsVector [ 2 ] ,

R[ 1 3 ] , inputsVector [ 1 ] ,R[ 6 , 6 , 6 , 1 1 ] , inputsVector [ 2 ] ,

1 . 0 ,R[ 1 0 ] , 1 . 0 ,R[ 1 0 , 1 0 , 1 0 , 1 0 ]} ;

s e tVector ve12 = {1 . 0 ,R[ 8 , 8 , 7 , 7 , 7 , 6 , 7 , 1 0 , 6 , 6 , 6 , 6 , 1 0 ] ,

1 . 0 ,R[ 1 3 ] , 1 . 0 ,R[ 1 1 , 1 0 , 1 0 , 1 0 ]} ;

s e tVector ve13 = { 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ,R[ 7 ] , 1 . 0 ,

R[ 7 ] , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ,R[ 6 ] , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ,

1 . 0 } ;

dotVectors h a s I n t e r s e c t i o n [ 0 ]

= <ve9 , ve10 , ve11 , ve12 , ve13>;
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But, what if we are interested in the point pair because we need it for
further computation? Adding a question mark before the computation of the
point pair instead of the ray, results in the following Listing 10.

Listing 10. Resulting GAPP code including the computa-
tion of the point pair.

a s s i gn Input sVecto r inputsVector

= [ Cx , Cy , Cz , Lx , Ly , Lz ,Ox,Oy, Oz , r ] ;

resetMv PP [ 3 2 ] ;

s e tVector ve0 = { inputsVector [2 ,1 ,0 ,−2 ,−1 ,−0]} ;

s e tVector ve1 = { inputsVector [ 8 , 7 , 6 , 5 , 4 , 3 ] } ;

dotVectors PP[ 1 6 ] = <ve0 , ve1>;

s e tVector ve3 = { inputsVector [ 8 , 5 , 4 , 3 , 2 , 1 , 0 , 5 , 5 , 2 , 1 , 0 ]} ;

s e tVector ve4 = { inputsVector [ 9 , 9 , 8 , 8 , 2 , 1 , 0 , 7 , 6 , 2 , 1 , 0 ]} ;

s e tVector ve5 = { inputsVector [ 9 , 9 ] , 1 . 0 , 1 . 0 ,

inputsVector [ 8 , 8 , 8 ] , 1 . 0 , 1 . 0 , inputsVector [ 5 , 5 , 5 ] } ;

dotVectors PP[ 1 7 ] = <ve2 , ve3 , ve4 , ve5>;

s e tVector ve6 = { inputsVector [8 , −5 ]} ;

dotVectors PP[ 1 8 ] = <ve6>;

s e tVector ve7 = {0.5 ,−0.5 , inputsVector [ −2 ,2 ,0 ] ,

−0.5 ,−0.5 ,−0.5 , inputsVector [ − 0 ] , 0 . 5 , 0 . 5 , 0 . 5 } ;

s e tVector ve8 = { inputsVector [ 7 , 4 , 4 , 5 , 3 , 2 , 1 , 0 , 4 , 2 , 1 , 0 ]} ;

s e tVector ve9 = { inputsVector [ 9 , 9 , 8 , 7 , 7 , 2 , 1 , 0 , 6 , 2 , 1 , 0 ]} ;

s e tVector ve10 = { inputsVector [ 9 , 9 ] , 1 . 0 , 1 . 0 , 1 . 0 ,

inputsVector [ 7 , 7 , 7 ] , 1 . 0 , inputsVector [ 4 , 4 , 4 ] } ;

dotVectors PP[ 1 9 ] = <ve7 , ve8 , ve9 , ve10>;

s e tVector ve11 = { inputsVector [4 , −7 ]} ;

dotVectors PP[ 2 0 ] = <ve11>;

s e tVector ve12 = { inputsVector [4 , −5 ]} ;

s e tVector ve13 = { inputsVector [ 8 , 7 ] } ;

dotVectors PP[ 2 1 ] = <ve12 , ve13>;

s e tVector ve14 = { −0.5 ,0 .5 , inputsVector [2 ,1 ,−2 ,−1] ,

0 .5 ,0 .5 ,0 .5 , −0 .5 , −0 .5 , −0 .5} ;

s e tVector ve15 = { inputsVector [ 6 , 3 , 3 , 3 , 5 , 4 , 2 , 1 , 0 , 2 , 1 , 0 ]} ;

s e tVector ve16 = { inputsVector [ 9 , 9 , 8 , 7 , 6 , 6 , 2 , 1 , 0 , 2 , 1 , 0 ]} ;

s e tVector ve17 = { inputsVector [ 9 , 9 ] , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ,
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inputsVector [ 6 , 6 , 6 , 3 , 3 , 3 ] } ;

dotVectors PP[ 2 2 ] = <ve14 , ve15 , ve16 , ve17>;

s e tVector ve18 = { inputsVector [6 , −3 ]} ;

dotVectors PP[ 2 3 ] = <ve18>;

s e tVector ve19 = { inputsVector [5 , −3 ]} ;

s e tVector ve20 = { inputsVector [ 6 , 8 ] } ;

dotVectors PP[ 2 4 ] = <ve19 , ve20>;

s e tVector ve21 = { inputsVector [3 , −4 ]} ;

s e tVector ve22 = { inputsVector [ 7 , 6 ] } ;

dotVectors PP[ 2 5 ] = <ve21 , ve22>;

resetMv h a s I n t e r s e c t i o n [ 3 2 ] ;

s e tVector ve23 = {PP[ 2 5 , 2 4 ] , 2 . 0 ,PP[ 2 1 ] , 2 . 0 , 2 . 0 ,PP[ −16 ]} ;

s e tVector ve24 = {PP[ 2 5 , 2 4 , 2 2 , 2 1 , 1 9 , 1 7 , 1 6 ]} ;

s e tVector ve25 = {1 . 0 , 1 . 0 ,PP[ 2 3 ] , 1 . 0 ,PP[ 2 0 , 1 8 ] , 1 . 0 } ;

dotVectors h a s I n t e r s e c t i o n [ 0 ] = <ve23 , ve24 , ve25>;

Now, we have to compute 10 coefficients of the multivector PP with
the indices 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25 (which can be done in
parallel). The computations of each coefficient vary from the computations
with one vector (means sum-up of the entries of the vector) up to four vectors
with lengths between two and twelve. The computation for the intersection
indicator hasIntersection now is again shorter consisting only of the dot
product of three 7-dim. vectors.

10. Results

The main contribution of this paper is to make it possible to use Geometric
Algebra for all the heterogeneous computing systems of the HSA Founda-
tion. How easy it is to integrate Geometric Algebra into C++ AMP pro-
grams is shown in Sect. 8. But, what about the runtime-performance? Sect.
9 shows some computing details where the good runtime-performance re-
sults of Gaalop come from. Can we achieve as good results for heterogeneous
systems as with the applications in Sect. 3?

The setup of our first performance tests was a PC with AMD Athlon(tm)
64 X2 Dual Core Processor 4200+ 2 * 2,2 GHz with 4 GB of RAM, an AMD
Radeon HD 5450 GPU with 1GB and the operating system Ubuntu 14.04
LTS (64-Bit). The rendering time for the raytracer using linear algebra on
the CPU was 5,9714 sec. Using Geometric Algebra on the GPU, the runtime
was 5,2469 sec, means the Geometric Algebra implementation on the GPU is
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about 12% faster than the CPU implementation using standard mathematics.
See Sect. 11 for some ideas how to further improve these results.

11. Conclusion and Future Work

Starting from the situation 15 years ago with a great gap between the low
symbolic complexity on the one hand and the high numeric complexity of cod-
ing in GA on the other hand, this paper shows, that, in the meantime, this
gap could be closed, especially for CPUs. Sect 3 presented some competitive
Gaalop applications in the sense of being faster than conventional solutions.
Also the raytracer proof-of-concept of this article using the Gaalop Precom-
piler for C++ AMP is faster than the CPU implementation using standard
mathematics. There is still some research needed in order to achieve a better
result for the GPU solution, since normally there is a better speedup using
GPUs. Nevertheless very important is the main contribution of this paper:
the Gaalop Precompiler for C++ AMP is the first Geometric Algebra tool
supporting a broad range of heterogenous systems, since it is able to support

Figure 7. Solutions of the companies of the HSA founda-
tion as well as of Intel and NVIDIA can be supported by the
Gaalop Precompiler for C++ AMP.

the solutions of the companies of the HSA foundation via the HSAIL out-
put format of their C++ AMP compiler. Since this compiler also supports
OpenCL and SPIR, also Intel and NVIDIA solutions are supported. Since
Gaalop Precompilers are also available for OpenCL and CUDA, there is also
a direct way to support Intel and NVIDIA as diagrammed in Figure 8.

But, even if the current heterogenous systems can be supported by Geo-
metric Algebra, there is still some potential for even better solutions, espe-
cially concerning runtime performance. One idea for improving the runtime
performance of Geometric Algebra applications on heterogeneous systems is
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Figure 8. With the Gaalop Precompilers for OpenCL and
CUDA, Intel and NVIDIA solutions can be supported di-
rectly.

to directly generate optimized HSAIL code from Geometric Algebra algo-
rithms. Another idea with the potential of providing the most benefit for
Geometric Algebra Computing applications is a GAPP co-processor directly
executing GAPP code in hardware.
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Table 3. The 32 blades of 5D Conformal Geometric Alge-
bra that compose a multivector. The entry in the first col-
umn is the index of the corresponding blade. The negated
entries are needed for the selectors of the Geometric Algebra
Parallelism Programs (GAPP) indicating that the negated
value should be used.

Index Negative index Blade Grade

0 −0 1 0

1 −1 e1 1
2 −2 e2 1
3 −3 e3 1
4 −4 e∞ 1
5 −5 e0 1

6 −6 e1 ∧ e2 2
7 −7 e1 ∧ e3 2
8 −8 e1 ∧ e∞ 2
9 −9 e1 ∧ e0 2

10 −10 e2 ∧ e3 2
11 −11 e2 ∧ e∞ 2
12 −12 e2 ∧ e0 2
13 −13 e3 ∧ e∞ 2
14 −14 e3 ∧ e0 2
15 −15 e∞ ∧ e0 2

16 −16 e1 ∧ e2 ∧ e3 3
17 −17 e1 ∧ e2 ∧ e∞ 3
18 −18 e1 ∧ e2 ∧ e0 3
19 −19 e1 ∧ e3 ∧ e∞ 3
20 −20 e1 ∧ e3 ∧ e0 3
21 −21 e1 ∧ e∞ ∧ e0 3
22 −22 e2 ∧ e3 ∧ e∞ 3
23 −23 e2 ∧ e3 ∧ e0 3
24 −24 e2 ∧ e∞ ∧ e0 3
25 −25 e3 ∧ e∞ ∧ e0 3

26 −26 e1 ∧ e2 ∧ e3 ∧ e∞ 4
27 −27 e1 ∧ e2 ∧ e3 ∧ e0 4
28 −28 e1 ∧ e2 ∧ e∞ ∧ e0 4
29 −29 e1 ∧ e3 ∧ e∞ ∧ e0 4
30 −30 e2 ∧ e3 ∧ e∞ ∧ e0 4

31 −31 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5
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