Gaalop Precompiler Manual

Patrick Charrier (patrick.charrier@stud.tu-darmstadt.de)

January 13, 2014

1 Introduction and The Horizon example

In the following, the so called “Horizon example” is used to explain the setup
and basic workflow of Gaalop Precompiler [I]. This guide is mainly intended as
a technical manual. For a more mathematical description of Geometric Algebra
we refer to [2].

However, it is not necessary to understand the example, in order to learn how
to work with Gaalop GPC in the succeeding sections. For a quick start, jump to:

° sectionto learn using Gaalop Precompiler for C/C++
e or section [3| for Gaalop Precompiler targeting OpenCL.

1.1 Mathematical background

Consider an observer standing on a planet. Given a description of the particular
planet and the viewpoint of the observer, we try to find an algebraic expression
of the horizon as seen by the observer, provided there is no occlusion of any sort
other than the planet itself, in the scene.

We define P as the viewpoint of the observer, S as a sphere describing the planet
with center point M and radius r. Let mg, m,, m. be the 3D coordinates of the
planet’s center and p;,py,p. be the ones of the viewpoint, then M, P and S
have the following definition in 5D conformal space.

1
M =mge; + myes +m ez + §(mi + mi +m?)es + €0

1

5 (P + 7y + e +eo

P =p,e; +pyes +p.e3+

1
S=M—§r2eoo

o

Figure 1: Calculation of the intersection circle (horizon)

Given these definitions, we may construct another sphere K around P. The
radius for this second sphere is computed by the inner product S - P. The circle
presenting the horizon may then be calculated by the outer product of both
spheres. Figure [1|illustrates the calculation.

K=P+ (S Plex

C=5SNK

2 How To Use Gaalop GPC for C4++

This manual shows the particular steps that need to be performed, to create,
setup and build an application using Gaalop GPC for C++.

1. Create the file horizon.cpg with the contents below. For a mathematical
description of the code, you may refer to section

Beware: Do NOT copy-and-paste this code. The PDF format
uses strange character encodings that have lead to a huge variety
of errors in the past. A much better way is to copy the source
code package from http://www.gaalop.de/wp-content/uploads/
gpc_tutorials.zip.

#include <iostream>

int main() {
#pragma gpc begin
#pragma clucalc begin
P = VecN3(1,1,0);
r = 1;

http://www.gaalop.de/wp-content/uploads/gpc_tutorials.zip
http://www.gaalop.de/wp-content/uploads/gpc_tutorials.zip

S = e0—0.5%r*rxeinf;
C=S"(P+({P.S)*xeinf);
?homogeneousCenter = Cxeinfx*C;
?7scale = —homogeneousCenter. einf;
?EuclideanCenter = homogeneousCenter / scale;
#pragma clucalc end
std ::cout << mv_get_bladecoeff(homogeneousCenter ,e0)
<< std::endl;
std :: cout << mv_get_bladecoeff(EuclideanCenter ,e0)
<< std ::endl;
std :: cout << mv_get_bladecoeff(EuclideanCenter ,el)
<< 7,7 << mv_get_bladecoeff(EuclideanCenter ,e2)
<< 77 << mv_get_bladecoeff(EuclideanCenter ,e3);
#pragma gpc end
return 0;

}

Listing 1: horizon.cpg source file

mv_get_bladecoeff(homogeneousCenter,e0)

As you might have guessed from the code above, the command
mv_get_bladecoeff(homogeneousCenter,e0) will retrieve the value of the co-
efficient of blade e0 from the multivector homogeneousCenter. It works
accordingly for other multivectors like EuclideanCenter and other blades
such as el, e2 and e3. A full list of all blades of Conformal Geometric
Algebra may be found in section [4] table

Helper Functions

Above, mv_get_bladecoeff is called a helper function. There are many other
possibilities for accessing multivector blade coefficients, which are for ex-
ample useful for reading and writing from/to arrays or OpenCL-vectors.
All helper functions are explained in the Language Specification in sec-
tion [f] For quick reference, refer to table [f] directly.

#pragma-layers
The structure of the code of listing [I] consists of three layers, also called
blocks:

e #pragma clucalc-block:
contains pure CLUCalc-code.

e #pragma gpc-block:
contains C/C++-code and helper functions.

e outer block:
contains pure C/C++-code.

Scoping
Gaalop Precompiler allows for regular scope handling across #pragma-
blocks. Refer to section [6] for more information on this feature.

. In the same directory as the horizon.cpg (project directory) create the

CMakeLists.txt build script:

Beware: Do NOT copy-and-paste this code. The PDF format
uses strange character encodings that have lead to a huge variety
of errors in the past. A much better way is to copy the source
code package from http://www.gaalop.de/wp-content/uploads/
gpc_tutorials.zip.

10.

11.

12.

PROJECT (horizon)

SET (CMAKEMODULE PATH ${PROJECT_SOURCE.DIR})
FIND_PACKAGE (GPC)

GPC_CXX ADD_EXECUTABLE(horizon ”horizon.cpg”)

Listing 2: CMakeLists.tat build script

. The Gaalop Precompiler installation contains the file FindGPC.cmake un-

der share/cmake-2.8/Modules. Copy this file to the project directory,
where horizon.cpg and CMakeLists.txt reside.

. Start CMake.
. Fill in the source directory (first input field). Fill in the destination direc-

tory (second input field).

. In the window opening, choose GNU make generator.
. Click Configure.
. Fill in the root path to Gaalop GPC in the GPC_ROOT_DIR field. On

Linux this should be automatically discovered.

. Click Configure again. All other Gaalop GPC-related paths should now be

discovered.

Click Generate.
Figure [2| shows how CMake may look like after Configuration and Gener-
ation.

Open the CMake generated destination directory in your terminal or con-
sole.

Enter make (Unix) or MinGW (Windows) and confirm with the Enter key.
Wait until the build processes finishes.

Hint: Using CMake and Gaalop GPC, builds are also easily possible with
Visual Studio, Borland Builder or any other build tool of your choice.

Start the compiled application (figure .
Unix: ./horizon
Windows: horizon.exe

http://www.gaalop.de/wp-content/uploads/gpc_tutorials.zip
http://www.gaalop.de/wp-content/uploads/gpc_tutorials.zip

CMake 2.8.3 - /build/GAC-Horizon_GCD

File Tools Options Help

Where is the source code: dies/Geometric_Algebra_C: _Docs/courses/gac_ws1011/slides/GAC-Horizon_GCD| | Browse Source...

Where to build the binaries: | /build/GAC-Horizon_GCD ~ | | Browseuild..

Search: & Grouped & Advanced (4 Add Entry
Name Value
¥ G
GCD_INCLUDE_DIR Just/local/include
GCD_JAR Justflocal/share/gcd/gaalop/starter-1.0.0,jar
GCD_LIBRARY Just/local/lib/libged.a
GCD_ROOT_DIR Justflocal

GCD_WITH_MAPLE
GCD_WITH_MAXIMA
v Java

Java_JAR_EXECUTABLE Just/bin/jar
Java_JAVAC_EXECUTABLE Just/bin/javac
lava IAVA FXECIITARI luselhiniava
Press Configure to update and display new values in red, then press Generate to generate selected build files.
Configure Current Generator: Eclipse CDT4 - Unix Makefiles I

Figure 2: CMake-configuration for Gaalop GPC for C++

Py

patrick@patrick-1000H: /build/GAC-Horizon_GCD
File Edit View Search Terminal Help
7 trick-1086H: /build/GAC-Horizon GCD$ make

horizon
:/build/GAC-Horizon GCD$

Figure 3: Screenshot of Gaalop GPC for C4++ build process.

3 How To Use Gaalop GPC for OpenCL

The Horizon example is not perfectly suited as an OpenCL application, but here
is how the horizon could be computed for thousands of observers at once.

1. Create the file horizon.clg with the following contents:

__kernel void horizonKernel(__global floatx circleCenters,
__global const float* points,

const unsigned int num_points){
const int id = get_global_id (0);
#pragma gpc begin
P = VecN3(points[id],
points [id]+num_points ,
points [id]+2*num_points);

#pragma clucalc begin
r = 1;
S = e0—0.5%r*xr*xeinf;
C=8S"(P+({P.S)*einf);

?homogeneousCenter = Cxeinfx*C;
?7scale = —homogeneousCenter. einf ;
?EuclideanCenter = homogeneousCenter / scale;
#pragma clucalc end
circleCenters = mv_to_stridedarray (EuclideanCenter ,
id , num_points
el,e2,e3);
#pragma gpc end

}
Listing 3: horizon.clg OpenCL kernel source file

Refer to point [1] of section [2] for more information on the syntax and the
#pragma-statements. You may also refer to section [5] (table [5) for direct
information on the mv_to_stridedarray() helper function.

. The fastest way to carry out the following steps is to copy one of the ex-
amples that come with your OpenCL distribution and modify it according
to your needs. Only the most important parts of the code are pointed out
in the following listings. The code resides in the horizon.cpp source-file.
Remember to put all files (horizon.cpp, horizon.clg and CMakeLists.txt)
into the same directory (project directory).

. // list platforms

std :: vector<cl :: Platform> platforms;

cl:: Platform :: get(&platforms);

std::cout << 7listings._platforms\n”;

for (std::vector<cl::Platform >::const_iterator it =
platforms.begin (); it != platforms.end(); ++it)

std :: cout << it —>getInfo<CLPLATFORMNAME> () << std::endl;

// create context

cl_context_properties properties[] = {CL.CONTEXTPLATFORM,
(cl_context_properties)(platforms[0])(), 0 };

cl:: Context context(CLDEVICE_.TYPE ALL, properties);

std :: vector<cl :: Device> devices = context.getlnfo<
CL.CONTEXT_DEVICES> ();
cl::Device& device = devices. front ();

// create command queue
¢l :: CommandQueue commandQueue(context , device);

Listing 4: List platforms and create context and command queue.

. // settings
const size_t numPoints = 10000;

cl_float circleCenters[3*numPoints];
cl_float points[3*xnumPoints];

Listing 5: Create a host buffer.

5. // Allocate the OpenCL buffer memory objects for source
// and result on the device GMEM
clDeviceVector<cl_float > dev_circle_centers (context,

commandQueue ,numPoints * 3,CLMEMREAD.ONLY);
clDeviceVector<cl_float > dev_points(context ,
commandQueue, numPoints * 3,CLMEMREAD_ONLY);

Listing 6: Create a device buffer with the same size.

6. // Asynchronous write of data to GPGPU device
dev_points = points;

Listing 7: Copy the host buffer to the device buffer.

7. // read the OpenCL program from source file
std:: string sourceString;
readFile (sourceString , ”horizon.gcl.cl”);
cl::Program:: Sources clsource (1, std:: make_pair (
sourceString.c_str (), sourceString.length()));
cl::Program program (context, clsource);

// build

program . build (devices);

std :: cout

<< program . getBuildInfo <CLPROGRAM BUILD_ LOG>(device)
<< std ::endl;

// create kernel and functor
cl:: Kernel horizonKernel (program, ”horizonKernel”);
cl:: KernelFunctor horizonFunctor =
horizonKernel . bind (commandQueue,
cl : : NDRange (numPoints) , ¢l : : NullRange) ;

Listing 8: Load the OpenCL-kernel.

8. // Launch kernel
horizonFunctor (dev_circle_centers.getBuffer (),
dev_points . getBuffer ());

// Synchronous/blocking read of results,
// and check accumulated errors
dev_circle_centers.copyTo(circleCenters);
Listing 9: Set the device buffers as kernel arguments and start the kernel by
using the functor.

9.

10.

11.

12.

13.
14.

15.
16.
17.
18.

19.
20.

21.

// Synchronous/blocking read of results,
// and check accumulated errors
dev_circle_centers .copyTo(circleCenters);

Listing 10: Read back the results from device to host.

// print first circle center
std ::cout << circleCenters [0] << ”7,” << circleCenters [1]
<< 7,7 << circleCenters [2] << std::endl;

Listing 11: Print the center of the first circle.

CMAKE MINIMUM REQUIRED (VERSION 2.6)
PROJECT (horizon)
SET (CMAKEMODULE PATH ${PROJECT_SOURCE.DIR })
FIND_PACKAGE (OpenCL REQUIRED)
FIND_PACKAGE (GPC REQUIRED)
GPC_.OPENCL_ADD EXECUTABLE(horizon
”horizon .cpp”
“horizon.clg”)

Listing 12: Create the file CMakeLists.txt with the following contents.

The Gaalop Precompiler installation contains the file Find GPC.cmake un-
der share/cmake-2.8/Modules. Copy this file to the project directory,
where horizon.cpg and CMakeLists.txt reside.

Start CMake.

Fill in the source directory (first input field). Fill in the destination direc-
tory (second input field).

In the window opening, choose GNU make as generator.
Click Configure.
Fill in the path to Gaalop GPC in the GPC_ROOT_DIR field.

Set OPENCL_INCLUDE_DIR to the include directory of your OpenCL dis-
tribution and OPENCL_LIBRARIES to the corresponding library. (Hint:
ATI Stream SDK OpenCL library is located in /lib/x86/*OpenCL.lib.)

Click Configure again.

Click Generate.
Figure [4] shows how CMake may look like after Configuration and Gener-
ation.

Open the CMake generated destination directory in your terminal or con-
sole.

Enter make (Unix) or MinGW (Windows) and confirm with the Enter key.
Wait until the build processes finishes.

uild/GAC-Horize

Options _Help

Where is the source code: s/Geometric_Algebra_C Doc:

-_ws1011/slid, -Horizon_GCD_OpencL | | Browse Source...

Where to build the binaries: | /build/GAC-Horizon_GCD_OpencL ~ | Browseuild...

Search: & Grouped & Advanced (4 Add Entry
Name Value
v GeD
GCD_INCLUDE_DIR Just/local/include
GCD_JAR Just/local/share/gcd/gaalop/starter-1.0.0.jar
GCD_LIBRARY Just/local/lib/libged.a
GCD_ROOT_DIR

Justlocal
GCD_WITH_MAPLE

GCD_WITH_MAXIMA

> Java

¥ OPENCL
OPENCL_INCLUDE DIR

/opt/AMDAPP/include
OPENCI 1 1RRARIFS

Jont/aMDAPP/lib/xR6/lihOnencl <o o
Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Current Generator: Eclipse CDT4 - Unix Makefiles]

Figure 4: CMake configuration for Gaalop GPC for OpenCL.

22. Start the compiled application (figure .
Unix: ./horizon
Windows: horizon.exe
(] patrick @patrick-1000H: /build/GAC-Horizon_GCD_OpenCL

File Edit View Search Terminal Help

BH: /build/GAC-Horizon GCD OpenCL$ make
i cl.cl

horizon
:/build/GAC-Horizon GCD OpencLs [

Figure 5: Screenshot of a Gaalop GPC for OpenCL build process.

4 Multivectors and Blades of Conformal Geo-
metric Algebra

An element of Conformal Geometric Algebra (CGA) is referred to as a multivec-
tor. A multivector consists of a linear combination of so called blades. Blades
define the basis of CGA and are combinations of the vectors ey, es, e3, €9 and
€x- All possible blades and their grading are listed in table

’ blade \ grade ‘ ’ blade \ grade ‘
’1 ‘0 ‘ 61/\62/\63 3
el 1 e1 N ex A e 3
es 1 e1 Nea Aeg 3
es 1 e1 Neg A e 3
oo 1 e1 Neg Aegy 3
€o 1 e1 N\ ex N eg 3
e1 N e D) es Nes N es 3
e1 Aes 2 62/\63/\60 3
€1 M o D) es N e N eg 3
e1 A€o D) e3 N\ eso N ey 3
es N es 2 er Nea ANes N\ e 4
€9 N o 2 e1 Nea Aes Neg 4
es A € 2 e1 NeaNeso Neg 4
es A o 2 e1 Nes Nes Neg 4
ez N\ eg 2 ea Neg N\ex N ey 4
o N €g 2 61/\62/\63/\600/\60‘5 ‘

Table 1: The 32 blades, that a multivector in 5D-Conformal Geometric Algebra
is composed of.

10

5 Gaalop Precompiler Language Specification

Multivectors have a limited number of blades. For example in Conformal Geo-
metric Algebra their size is limited to 32 blades. A multivector storage for CGA
therefore has to save a maximum of 32 blade coefficients. A naive approach may
therefore simply save the maximum number of coefficients in an array.

The problem with this approach is, that the number of blades grows exponen-
tially with dimensionality. A 9D-Algebra [3] for example, that is proven to be
useful in some cases, has exactly 512 blades and 512 blade coefficients, which
are too many to save them efficiently in an array for each multivector. Since we
want to support even higher dimensions, this is not an option.

Fortunately, the simple observation that the majority of multivector blade co-
efficient of a multivector equals zero, helps us to overcome this problem. The
obvious solution is to save only non-zero blade coefficients. This technique is
explained in full detail in section [7] To assist with this approach, several helper
functions are defined in table Bl

The purpose of these helper functions, listed in table [b| is the transformation
between multivectors and C/C+4/OpenCL/CUDA language concepts like float-
variables, arrays, or vectors. For example, mv_get_bladecoeff() is responsible
for extracting a blade coefficient from a multivector, whereas mv_from_array()
constructs a multivector from a C-like array.

11

coeff = mv_getbladecoeff(mv,blade);

Get the coefficient of blade blade of mul-
tivector mv.

mv = mv_from_vec(vec);

Construct multivector mv from OpenCL-
vector vec.

mv = mv_from_array(array,blades,..);

Construct multivector mv from array

array.

mv = mv_from _stridedarray (array,index,stride,blades ,...); | Construct multivector mv from
array array at index index
with stride stride. Example

mv = mv_from_stridedarray (array,0,nummvs

el,e2,e3,e0, einf);.

Py

array = mv_to_array(mv,blades,...);

Write the blades blades,... of mul-
tivector mv to array array. Example
array = mv_to_array(mv,el,e2,e3,e0,einf);.

array = mv_to_stridedarray(mv,index,stride,blades ,...);

Write the blades blades,... of mul-
tivector mv to array array at index
index with stride stride. Example
array = mv_to_stridedarray(mv,0,nummvs,
el,e2,e3,e0, einf);.

vec = mv_to_vec(mv);

Write the multivector mv to OpenCL-
vector vec.

Table 2: Gaalop GPC helper functions

6 Multivector Scoping

The Scoping feature allows multivectors from one #pragma gpc-block to be

accessed in other #pragma gpc-blocks.

The following code is valid Gaalop GPC-syntax:

#pragma gpc begin

#pragma clucalc begin // block A

mvl = ...;

mv2 = ...;

7a = mvlxmv2;
#pragma clucalc end

// some C++ code

#pragma clucalc begin // block B

// automatically imports variable a from block A

b = a + 10;
#pragma clucalc end

12

#pragma gpc end

Listing 13: Simplified way of reusing multivectors from previous #pragma-
blocks.

The solution guarantees correct scoping. For example, the following listing will
cause a compilation error:

#pragma gpc begin

{ // scope 1
#pragma clucalc begin // block A
mvl = ...;
mv2 = ...;
7a = mvlxmv2;

#pragma clucalc end

}

// some code

{ // scope 2
#pragma clucalc begin // block B

?b = a + 10; // Compilation will fail,
// because a was declared in a different scope.
#pragma clucalc end
}
#pragma gpc end
Listing 14: Multivectors are not available in different scopes.

Whereas outer scopes are imported into inner scopes as usual (listing . The
scoping rules work in a way a programmer would expect them to work, without
any knowledge of the underlying concept.

#pragma gpc begin
{ // begin outer scope
#pragma clucalc begin // block A
mvl = ...
mv2 = ...;
7a = mvlxmv2;
#pragma clucalc end

// some C++ code

{ // begin inner scope

#pragma clucalc begin // block B
?b = a + 10; // Will work as ezpected.

#pragma clucalc end

Y // end inner scope

} // end outer scope
#pragma gpc end
Listing 15: Outer scope multivectors are handled as expected.

13

7 Compressed Multivector Storage

The naive approach to multivector storage is to save all multivector blade coef-
ficients in one array sequentially, including the ones equal to zero. This leads to
a non-optimal memory and cache efficiency, ultimately with higher dimensional
algebras. A higher efficiency is achieved by only storing the non-zero entries of
a multivector in one array sequentially.

An example output, including all meta-info, may then look like listing [I6] Note
that these aspects are internal details. It is not necessary to understand this
listing in order to start programming with Gaalop GPC. The listing is intended
for those who wish to understand the internal works of Gaalop GPC.

//#pragma gpc multivector VO0_t_dt
float VO_t_dt[6];
J//#pragma gpc multivector VI1_t_dt
float V1_t_dt[6];

//#pragma gpc multivector_component VI_t_dt el“e2 VI_t_dt[0]
V1_tdt[0] = ((I-2 — I_1) % V013 % V023 — aml2) / 1.3;
//#pragma gpc multivector_component VI_t_dt el"e3 VI_t_dt[1]
V1t.dt[1] = ((I.3 — I.1) V012 % V023 + aml3) / I1.2;
//#pragma gpc multivector_component VI_t_dt el “einf VI_t_dt[2]
Vi_t_dt[2] = (—(array-lmom [0] / mass));
//#pragma gpc multivector_component VI_t_dt e2"e3 VI_t_dt[3]
V1i_tdt[3] = ((I-3 — 1_2) % V012 % V013 — am23) / I_1;
//#pragma gpc multivector_component VI_t_dt e2 einf VI_t_dt[4]
V1_t_dt[4] = (—(array_lmom[1l] / mass));
//#pragma gpc multivector_component VI_t_dt e3 einf VI_t_dt[5]
V1_t_dt[5] = (—(array-lmom [2] / mass));
//#pragma gpc multivector_component VO_-t_dt el “e2 VO_-t_dt[0]
VO_t_dt[0] = dt / 2.0 x V1_t_dt[0] + array_VO[(index) +

0 * (numMolecules)];
//#pragma gpc multivector_component VO_-t_dt el"e3 VO_-t_dt[1]
VOo_t_dt[1] = dt / 2.0 * V1_t_dt[1] + array_VO[(index) +

1 * (numMolecules)];
//#pragma gpc multivector_component VO_-t_dt el “einf VO_-t_dt[2]
VO_t-dt[2] = dt / 2.0 x V1_t_.dt[2] + array_-VO[(index) +

2 % (numMolecules)];
//#pragma gpc multivector_component VO_-t_dt e2"e3 VO_-t_dt[3]
VO_t_dt[3] = dt / 2.0 x V1_t_.dt[3] + array_-VO[(index) +

3 % (numMolecules)];
//#pragma gpc multivector_component VO_-t_dt e2 einf VO_t_dt[4]
VOo_t_dt[4] = dt / 2.0 x V1_t_dt[4] + array_-VO[(index) +

4 % (numMolecules)];
J//#pragma gpc multivector_component VO_-t_dt e3 einf VO_t_dt[5]
VO_t_dt[5] = dt / 2.0 x V1_t_.dt[5] + array_-VO[(index) +

5 % (numMolecules)];

Listing 16: An example output of codegen—compressed.

14

References

Patrick Charrier. Geometric algebra enhanced precompiler for c++ and
opencl. Master’s thesis, TU Darmstadt, 2012.

Dietmar Hildenbrand. Foundations of Geometric Algebra Computing.
Springer, 2013.

Julio Zamora-Esquivel. G6,3 geometric algebra. In ICCAY, 7th International
Conference on Clifford Algebras and their Applications, 2011.

15

	Introduction and The Horizon example
	Mathematical background

	How To Use Gaalop GPC for C++
	How To Use Gaalop GPC for OpenCL
	Multivectors and Blades of Conformal Geometric Algebra
	Gaalop Precompiler Language Specification
	Multivector Scoping
	Compressed Multivector Storage

