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Gaalop - High Performance
Computing based on
Conformal Geometric Algebra

Dietmar Hildenbrand, Andreas Koch

ABSTRACT We present Gaalop (Geometric algebra algorithms optimizer), our
tool for high performance computing based on Conformal Geometric Algebra
(GA). The main goal of Gaalop is to realize implementations that are most likely
faster than conventional solutions. We describe the concepts, the state-of-the-art
as well as the future perspectives of Gaalop dealing with optimized software im-
plementations, hardware implementations as well as mixed solutions.
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1 Introduction

In recent years, Geometric Algebra, and especially the 5D Conformal Ge-
ometric Algebra, proved to be a powerful tool for the development of ge-
ometrically intuitive algorithms in a lot of engineering areas like robotics,
computer vision and computer graphics. However, runtime performance of
these algorithms was often a problem.

In this paper, we present our approach for the automatic generation of
high performance implementations. In the chapters 2 and 3, we present
some related work as well as the basics of Conformal Geometric Algebra.

Our main goal with Gaalop is to realize implementations that are most
likely faster than conventional solutions. The main concepts combining
both approaches for the optimization of software and of hardware imple-
mentations are presented in chapter 4. The corresponding architecture of
Gaalop is described in chapter 5. Its current state-of-the-art as well as its
future perspectives can be found in the chapter 6.
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2 Related Work

Despite the tremendous expressive power of the GA, it has only seen limited
use in practical applications. One of the reasons for this might be that
the actual processing of GA algorithms requires significant computational
effort. Related tools with the intention of optimizing GA implementations
focus either on pure software or pure hardware solutions.

2.1 Software Implementations

The most advanced pure software solution is Gaigen developed at the uni-
versity of Amsterdam (see [2] and [3]). You can find some benchmarks
comparing Gaigen with other software implementations in [3].

2.2 Hardware Implementations

To resolve the above mentioned quandary, it is promising to look at dedi-
cated hardware architectures for the acceleration of GA algorithms. Current
integrated circuit technology offers a means to achieve this in the form of
field-programmable gate arrays (FPGAs). These so-called reconfigurable
devices allow the implementation of a wide variety of digital logic circuits
without the need for a very expensive photochemical circuit fabrication.
Furthermore, the same device is able to realize different logic circuits by
reconfiguring them onto the same silicon area.

Prior Attempts

The first serious approach is described in [15]. That accelerator realizes
the geometric product implemented on a 20 MHz FPGA connected via the
PCI bus to the host computer. Due to the limited capacity of the FPGA
employed, techniques such as wide parallel or pipelined processing, and the
use of fast on-chip memories, were not exploited. Similarly, subspace coef-
ficients consist only of 24 bit integers, other fixed or floating point formats
are not supported. The architecture is able to process multivectors of up
to eight dimensions, with smaller vectors being processed faster. While the
resulting accelerator does achieve a speedup over a conventional software
programmable processor when counting clock cycles, comparisons with ac-
tual clockcycles lead to a practical slow-down when using the FPGA-based
solution over simple software running on a conventional computer.

A different approach was presented in [5]: This accelerator supports func-
tions beyond the geometric product, namely, the outer product, contrac-
tions etc., each being implemented on a dedicated hardware unit. The archi-
tecture is limited to multivectors of three to four dimensions. As before, the
coefficients are limited to integers, in this case 16 bit wide. The FPGA im-
plementation requires a lot of communication with the host computer over
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the PCI bus. And additionally, when taking the different clock frequencies
into account to compute the real world execution times, this approach does
not lead to a speedup compared to a software implementation.

An update of this work is given in [4]: the operation-specific hardware
units have now been replaced by a variable number of so-called slices. Each
slice is able to compute all operations of the four-dimensional GA. The co-
efficients have now been extended to 32 bit integers. In terms of hardware,
a slice consists of a 32 bit wide arithmetic logic unit capable of addition,
subtraction, multiplication, and logical computations. The GA operations
are decomposed into these primitive calculations, with their execution be-
ing orchestrated step-by-step by on-chip software (microcode). The FPGA
implementation achieves a clock frequency of 45 MHz and runs by a factor
3x to 4x faster than a software programmable processor when counting cy-
cles. When actually considering the 2 GHz clock frequency of the reference
processor, the actual execution time again slows down by a factor of 9x to
12x versus software.

The first coprocessor to lift the integer limitation on coefficients is the
custom-fabricated integrated circuit (ASIC) implementation introduced in
[12], which allows two-dimensional multivectors with double precision floating-
point coefficients. At its core, it consists of a floating point adder and mul-
tiplier each, supported by smaller hardware units to compute the product
of basis blades. While pipeline-parallel execution is employed within these
compute units, actual GA operations (geometric product, rotor, etc) are
again computed sequentially by decomposing them into primitive calcula-
tions controlled by microcode. The experimental evaluation of the system
in [13] shows a real wall-clock speed-up of 3x over a software programmable
processor. However, the authors do not state which processor they used as
a reference.

2.3 Our Proof-of-Concept Approach

In [8] we could show that an approach with symbolic simplification of GA
algorithms is able to lead to an implementation which is three times faster
than a conventional solution. In a second stage we implemented this algo-
rithm also on hardware and got an additional speedup of more than 100
times (see [9]). Please find some detailed information about our hardware
approach as follows:

When studying all of the prior hardware attempts, it is obvious that
most of them lead to an application slowdown instead of the hoped-for
acceleration. The major reason for this disappointing result is due to the
architectural choices made. The discrepancy in achievable clock frequencies
of conventional processors (which are now into multiple gigahertz), and that
of FPGAs (which currently top out at 500-600 MHz), implies the need for
massive parallelism in the FPGA to achieve better performance.

As a proof-of-concept, we implemented an accelerator [9] for a specific
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GA algorithm, namely the inverse kinematics of the arm of a virtual hu-
man. It is a completely different architectural approach compared to the
approaches described above. Instead of coarse granular computation units
capable of handling entire GA operators, we decomposed the GA descrip-
tion into the underlying scalar equations. These equations are optimized
symbolically and employ only basic arithmetic operators. The resulting set
of equations was then implemented one arithmetic operator at a time. For
each of these arithmetic operators, carefully examined the range of values to
be processed for the specific problem. With this data, and external require-
ments on computational precision (in this case, the positional accuracy of
the hand), we determined for each operator the optimal numerical repre-
sentation (e.g., values in the range of 0 to 100 with 1/16mm of accuracy
would be represented as 11 bit unsigned fixpoint numbers). The circuits
of the operators were then optimally matched to their representation as as
well as to one of their operands being the constant.

The resulting accelerator, which exploits parallelism between multivector
components, between fine-grained arithmetic operators, and in a pipeline
fashion over the entire computation, achieves currently a real-world speedup
in execution time of 185x over a conventional processor with a 1.5 GHz clock
frequency. The compute pipeline consists of 363 stages with an average of
12 arithmetic operators per stage. This extreme degree of parallelism allows
the real-world acceleration even though the FPGA device (which is by now
two generations out of date) only runs at 100 MHz clock frequency.

One of the aims of the Gaalop project is to develop a tool flow for au-
tomatically executing the optimization and hardware generation which we
had to perform manually for our reference design. Before giving an overview
of the planned flow, we will first give a brief introduction into GA.

3 Conformal Geometric Algebra

While points and vectors are normally used as basic geometric entities,
in the 5D Conformal Geometric Algebra we have a wider variety of basic
objects.

For example, spheres and circles are simply represented by algebraic ob-
jects. To represent a circle you only have to intersect two spheres, which
can be done with a basic algebraic operation. Alternatively you can simply
combine three points to obtain the circle through these three points.

Table 1.1 lists the two representations of the geometric entities in Confor-
mal Geometric Algebra. In this table x and n are marked bold to indicate
that they represent 3D entities as linear combination of the 3D base vectors
e1, e2 and e3 .

x = x1e1 + x2e2 + x3e3 (3.1)
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TABLE 1.1. Representations of the conformal geometric entities

entity standard representation direct representation
Point P = x + 1

2x
2e∞ + e0

Sphere s = P − 1
2r2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Plane π = n + de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Line l = π1 ∧ π1 l∗ = x1 ∧ x2 ∧ e∞
Point Pair Pp = s1 ∧ s2 ∧ s3 P ∗p = x1 ∧ x2

The additional two base vectors are indicated by

• e0 representing the 3D origin

• e∞ representing the point at infinity

The {si} represent different spheres and the {πi} different planes.
The two representations are dual to each other. In order to switch between
the two representations, the dual operator which is indicated by ’ ∗ ’, can be
used. For example in the standard representation a sphere is represented
with the help of its center point P and its radius r , while in the direct
representation it is constructed by the outer product ’∧ ’ of four points
xi that lie on the surface of the sphere (x1 ∧ x2 ∧ x3 ∧ x4 ). In standard
representation the dual meaning of the outer product is the intersection of
geometric entities. For example a circle is defined by the intersection of two
spheres ( s1 ∧ s2 ).

Blades are the basic computational elements and the basic geometric
entities of the geometric algebra. The 5D Conformal Geometric Algebra
consists of blades with grades 0, 1, 2, 3, 4 and 5, whereby a scalar is a
0-blade (blade of grade 0). There exists only one element of grade five
in the Conformal Geometric Algebra. It is therefore also called the pseu-
doscalar. A linear combination of blades is called a k-vector. So a bivector
is a linear combination of blades with grade 2. Other k-vectors are vectors
(grade 1), trivectors (grade 3) and quadvectors (grade 4). Furthermore, a
linear combination of blades of different grades is called a multivector.
Multivectors are the general elements of a Geometric Algebra. Table 1.2
lists all the 32 blades of Conformal Geometric Algebra. The indices indicate
1: scalar, 2..6: vector 7..16: bivector, 17..26: trivector, 27..31: quadvector,
32: pseudoscalar.

A point P = x1e1+x2e2+x3e3+ 1
2x

2e∞+e0 (see table 1.1 and equation
(3.1) ) for instance can be written in terms of a multivector as the following
linear combination of blades

P = x1 ∗ blade[2] + x2 ∗ blade[3] + x3 ∗ blade[4] +
1
2
x2 ∗ blade[5] + blade[6]

(3.2)
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TABLE 1.2. The 32 blades of the 5D Conformal Geometric Algebra

Index blade Index blade
1 1 17 e1 ∧ e2 ∧ e3

2 e1 18 e1 ∧ e2 ∧ e∞
3 e2 19 e1 ∧ e2 ∧ e0

4 e3 20 e1 ∧ e3 ∧ e∞
5 e∞ 21 e1 ∧ e3 ∧ e0

6 e0 22 e1 ∧ e∞ ∧ e0

7 e1 ∧ e2 23 e2 ∧ e3 ∧ e∞
8 e1 ∧ e3 24 e2 ∧ e3 ∧ e0

9 e1 ∧ e∞ 25 e2 ∧ e∞ ∧ e0

10 e1 ∧ e0 26 e3 ∧ e∞ ∧ e0

11 e2 ∧ e3 27 e1 ∧ e2 ∧ e3 ∧ e∞
12 e2 ∧ e∞ 28 e1 ∧ e2 ∧ e3 ∧ e0

13 e2 ∧ e0 29 e1 ∧ e2 ∧ e∞ ∧ e0

14 e3 ∧ e∞ 30 e1 ∧ e3 ∧ e∞ ∧ e0

15 e3 ∧ e0 31 e2 ∧ e3 ∧ e∞ ∧ e0

16 e∞ ∧ e0 32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0

For more details please refer for instance to the book [2] as well as to the
tutorials [7] and [6].

4 Concepts

The main goal of Gaalop is the combination of the elegance of algorithms
using Geometric Algebra with the generation of implementations that are
most likely faster than conventional implementations. Depending on the
application these can be either optimized software implementations or op-
timized hardware implementations or a mixture between them.

For that purpose we propose a two-stage approach with

• symbolic optimization

• use of the inherent fine-grained parallel structure

of Geometric Algebra algorithms.

4.1 Symbolic Optimization

We use the symbolic computation functionality of Maple (together with
a library for geometric algebras [1]) in order to optimize parts of a GA
algorithm in a way as described in the following example:

The following code
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px:= x1*e1 + x2*e2 + x3*e3;

P1 := conformal(px);

py:= y1*e1 + y2*e2 + y3*e3;

P2 := conformal(py);

S1 := P1 - 0.5*r1*r1*einf;

S2 := P2 - 0.5*r2*r2*einf;

C_e := S1 &w S2;

gaalop(C_e);

describes the intersection of the sphere S1 (center at P1 and radius r1 )
with another sphere S2 (center at P2 and radius r2 ). The resulting in-
tersection circle Ce is optimized with the help of symbolic computations
and simplifications by executing gaalop(C_e);.

The resulting C-code generated by Gaalop is as follows:
float C_e [32];

C_e[7] = x1*y2-x2*y1;

C_e[8] = x1*y3-x3*y1;

C_e[9] = -.5*y1*x1*x1-.5*y1*x2*x2-.5*y1*x3*x3+.5*y1*r1*r1

+.5*x1*y1*y1+.5*x1*y2*y2+.5*x1*y3*y3-.5*x1*r2*r2;

C_e[10] = -1.*y1+x1;

C_e[11] = -x3*y2+x2*y3;

C_e[12] =-.5*y2*x1*x1-.5*y2*x2*x2-.5*y2*x3*x3+.5*y2*r1*r1

+.5*x2*y1*y1+.5*x2*y2*y2+.5*x2*y3*y3-.5*x2*r2*r2;

C_e[13] = -1.*y2+x2;

C_e[14] = -.5*y3*x1*x1-.5*y3*x2*x2-.5*y3*x3*x3+.5*y3*r1*r1

+.5*x3*y1*y1+.5*x3*y2*y2+.5*x3*y3*y3-.5*x3*r2*r2;

C_e[15] = -1.*y3+x3;

C_e[16] = -.5*y3*y3+.5*x3*x3+.5*x2*x2+.5*r2*r2

-.5*y1*y1-.5*y2*y2+.5*x1*x1-.5*r1*r1;

Gaalop always computes optimized 32-dimensional multivectors. Since a
circle is described with the help of a bivector, only the blades 7 to 16 (see
table 1.1) are used. As you can see, all the corresponding coefficients of this
multivector are very simple expressions with basic arithmetic operations.

4.2 Use of Inherent Fine-Grained Parallel Structure

With the help of symbolic optimization the GA algorithm is transformed
into an algorithm computing the coefficients of 32D multivectors using only
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basic arithmetical operations. This can be implemented very efficiently in
digital logic on silicon devices such as FPGAs using parallel computation of
coefficients of multivectors, deeply pipelined processing, and the exploita-
tion of constant values by propagating them directly into the circuit. These
techniques are described in detail in section 2.3 and in [9].

5 The Architecture of Gaalop

Figure 1 shows an overview over the architecture of Gaalop. Its input is a
GA algorithm. Via symbolic simplification it is transformed into an generic
intermediate representation (IR) that can be used for the generation of
different output formats such as C-code, FPGA descriptions (as a structural
hardware description, currently written in the Verilog language, CLUCalc-
code in order to visualize the results (see [14]).

The basis of the mapping the IR, which is expressed on an abstract
mathematical/behavioral level, to a hardware accelerator is the technol-
ogy already used in the COMRADE compiler [11]. COMRADE is designed
to translate from ANSI C (complete language, no additional user annota-
tions required) into hybrid hardware/software applications, with the hard-
ware parts being executed on an FPGA. Since GA algorithms are far more
abstract than C (which contains, e.g. pointers and gotos), they are con-
siderably easier to optimize and translate efficiently to an FPGA-based
accelerator.

FIGURE 1. Architecture of Gaalop

6 State-of-the-art and Future Perspectives

Gaalop is currently able to handle sequential GA algorithms. It optimizes
parts of the algorithm at locations where this is explicitly indicated. The
algorithm is currently transformed into C-code as well as CLUCalc-code.
Please find always the newest information on the Gaalop homepage ([10]).
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In the future we will be able to handle not only sequential algorithms
but also loops, conditions etc. We will generate additional output formats
like Java and Latex.

One focus will lie on the automatic compilation of hardware descriptions
as well as on mixed solutions handling reasonable combinations of software
and hardware implementations.

From the runtime performance point-of-view, Gaalop is just able to au-
tomatically generate software implementations comparable to the software
implementation of our proof-of-concept application (see section 2.3). In
this application we are three times faster than the conventional algorithm
(see [8]). In the future, we expect an additional speedup of more than 100
times based on the automatic generation of hardware implementations as
described in [9].

7 Conclusion

Geometric Algebra is applicable in many different engineering scenarios and
provides a straightforward and intuitive problem solving approach. With
the help of our Gaalop tool these algorithms can be automatically trans-
formed into high runtime performance implementations. With these results,
we are convinced that Conformal Geometric Algebra will be able to become
more and more fruitful in a great variety of engineering applications.
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