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Compass Ruler Algebra

» The Algebraic Structure

The Compass Ruler Algebra (G531 uses the two Euclidean basis vectors e
and ez of the plane and two additional basis vectors e, ,e_ with positive and
negative signatures, respectively, which means that they square to +1 as usual
(ex) and to —1 (e_).

& =1 e =1, ey -e_ =0, (5.1)
Another basis eg, e, with the following geometric meaning
ep represents the origin,
€~ Tepresents infinity,

(see Sect. 5.9) can be defined with the relations

ep = —(e_ —ey), oo — €_ + €. (5.2)

Lo | =

These new basis vectors are null vectors:
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Compass Ruler Algebra

FIGURE 5.1 The mathematical model behind the Conformal Geometric
Algebra of 1D space (image from [59]).
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Compass Ruler Algebra

» The geometric objects

TABLE 5.1 The representations of the geometric entities of the Compass

Ruler Algebra.

Entity IPNS representation | OPNS representation
Point P=x+- XZF:L + eg

Circle G = P— qr fe s C*"=Pi APy Py

Line L =n-+des L* = Py AP Aes

Point pair | P, = C; A Cy P> =P APy
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IPNS/OPNS

These entities have two algebraic representations: the (standard) IPNS
(inner product null space) and the (dual) OPINS (outer product null space).
The IPNS of the algebraic expression A are all the points X satistving the

equation

A= X =0, (5.8)
The OPNS of the algebraic expression A are all the points X satisfying the
equation

AANX =0, (5.9)

These representations are duals of each other (a superseript asterisk denotes

the dualization operator).
In the following, we present the representations of the basic geometric

entities based on their null spaces.
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= The Point

In order to represent points in Compass Ruler Algebra, the original 2D point
X = r1€1 + T9€e9 (5.10)

is extended to a 4D vector by taking a linear combination of the 4D basis
vectors €4, es, €4, and ey according to the equation

1
P=x+§}{zex—i—f:g. (5:T)

where x? is the inner product

L

‘ 2 2
ef + 27122 (e1 - e2) +aje; = a1 + 3.
\‘—"v'_"'
0

%2 — (z1€1 + x2€9) - (z1€1 + 22€2) = @

(5.12)

For example, for the 2D origin (z1.22) = (0,0) we get P = ep.
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Compass Ruler Algebra

. In order to evaluate the geometric meaning of a point P with 2D coordi-
" The PO' nt nates (p1,p2), we compute its IPNS as its null space with respect to the inner
product. The IPNS of P describes all the points X satisfying the equation

P-X=0. (5.13)
The following GAALOPSecript
listing 5.1 IPNSPoint.clu: Computation of the IPNS of a point.

1 |P = createPoint (pl,p2);
2 |X = createPoint (x,y);
3 |?7IPPoint = P.X;

computes this inner product and assigns it to the variable I[PPoint (GAALOP
computes all the variables indicated by a leading question mark). This result-
ing multivector is equal to

IPPointy = %(—yz +2%pyxy—a?+2xp; xx—p—pl) (5.14)
with the null space
yz—Q*pg*y—|—:r2—2*-p1 *;If-l—pg-i—p%}:{]
or
(y—p2)’ + (2 —p1)* =0

describing exactly the point P.
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A line is defined by
L =n+de., (5.15)

where n = ni1ey + naoes refers to the 2D normal vector of the line L and d is
the distance to the origin. The following GAALOPScript

listing 5.2 [PNSLine.clu: Computation of the IPNS of a line.

1 |X = createPoint(x,y);
L = nl*el+n2*e2+d*einf;
g |[2IP = X.Lsz

computes the inner product of a line L and a general point X . This results in
the IPNS

ni*x+nexy—d=0 (5.16)
which is a line with the corresponding normal vector (nq,n9) and distance d
to the origin.
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Compass Ruler Algebra

= The Line

A line can also be defined with the help of two points that lie on it and

the point at infinity:

L= Py A Bhes. (5.1?)

Note that a line is a circle of infinite radius (see Sect 5.10).
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= The Circle

A circle can be represented with the help of its center point P and its radius r

as :
C=P— E-‘rgem (5.18)
or
1 % 1 5 _
=% 5}(“&9@ 1+ eg — E-‘r €oo (5.19)
or ;
C=x+ E(XE —1r%)ess + €p (5.20)
Note that the representation of a point is simply that of a circle of radius
ZETO,

A circle can also be represented with the help of three points that lie on
it, by
" = 5 N Ps XS (5.21)
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= The Circle
1.9

As an example, we compute the IPNS of the expression ¢g — 57“€~, which
means all the points X satisfving the following equation

1
(Eﬂ. — ir%x) X =0. (5.22)

The following GAALOPScript

Listing 5.3 IPNSOriginCircle.clu: Computation of the IPNS of an origin
circle.

1 |[X = createPoint(x,y);
2 |[C = e0- O0.5*%r*r*einf;
3 |7Result = C.X;

computes this inner product. The resulting multivector is equal to the scalar
value %{:1?2 L4 — T’E) with the null space

22 +y® — 12 =0, (5.23)
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= The radius of a circle

The following GAALOPScript

Listing 5.4 ClircleSquare.clu: The square of a circle.

1 |X = createPoint(x,y);
2 |C = X - 0.5%r*r*xeinf;
3 |?7C8quare = C*C;

computes the square of a circle and results in

C'Squareg = r =,

which means the square of a circle equals to the square of its radius or

r=VC2. (5.24)
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= Normalized objects
Looking at the IPNS representations of point, circle and line of Table 5.1
we realize that they are all vectors of Compass Ruler Algebra. On the other
hand, an arbitrary vector! must not have a representation as a geometric
object. Considering an arbitrary vector

V= x1€] + To€z + T3€s + Ta€Q (5.25)
and its null space
p-X =10 (5.26)
we realize that
(cv) - X =0 (5.27)

with an arbitrary scalar value ¢ # 0 describing the same null space, since the
IPNS equation v - X = 0 is equivalent to the equation (cv)-X =¢(v-X) = 0.
This means that v and cv describe the same geometric object. Please notice
that this reasoning is not only true for vectors but also for arbitrary
multivectors, representing geometric objects.
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= Normalized objects

With this knowledge, we are able to determine what the geometric meaning
of an arbitrary vector v is. If its eg-component is zero, it represents a line

L = z1€1 + x0€g9 + T3€. (5.28)

Its normalized form can be computed by scaling with the length of the 2D
vector (x1,xs), which can be expressed as

L ,
L’?m-rmafized — m (329)

This can be shown based on the following GAALOPScript

Listing 5.5 normalizeLine.clu: Normalization of a line.
line = nl*el+n2%e2+n3*einf;

L = k*line;

3 |?7LAbs = abs(L);

| R
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= Normalized objects

In the case of points and circles, the eg-component equals to 1. This is why
an arbitrary vector v has to be scaled by x4 # 0.

T T T
(= —151 + —EEQ + —Sﬁm + eq. (5.30)
L4 Iy Ly
This can be done based on the formula
G (5.31)

VB
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Thanks a lot ...
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