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Abstract. In this paper, we explore the geometric objects of conformal geometric algebra
based on their IPNS (inner product null space) representation in some detail. Spheres of di-
mension 1 , 2 and three are objects of conformal geometric algebra. Usually, points in con-
formal geometric algebra are represented as ordinary spheres with zero radius, but what about
circles with zero radius? We expect many practical applications of these points with additional
orientation information.
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1 INTRODUCTION

In recent years, geometric algebra, and especially the 5D conformal geometric algebra, has
proved to be a powerful tool for the development of geometrically intuitive algorithms in a lot
of engineering areas like robotics, computer vision and computer graphics.

While points and vectors are normally used as basic geometric objects, in the 5D conformal
geometric algebra we have a wider variety of basic objects. For example, spheres and circles
are simply represented by algebraic objects. To represent a circle you only have to intersect two
spheres, which can be done with a basic algebraic operation. For more details please refer for
instance to the books [4] and [13], as well as to the tutorials [8] and [6].

The goal of this paper is to describe the conformal geometric objects based on the conven-
tional 3D objects like 3D points, 3D vectors or radius as well as in terms of the conventional
products: cross product and scalar product.

It is well known that a sphere

S = x +
1

2
(x2 − r2)e∞ + e0 (1)

can be represented based on its 3D center point x, its scalar product x2 and the radius r. Note
that bold face letters in equations indicate a standard euclidian 3D vector. Usually a sphere with
zero radius is taken as a point in conformal geometric algebra:

P = x +
1

2
x2e∞ + e0 (2)

Alternatively circles can also be described as the intersection of a sphere and a plane (nor-
mal nc) resulting in the following formula.

C = (c× nc)e123 + nc ∧ e0 + (c · nc)(e∞ ∧ e0) (3)

+
[
1

2
(c2 − r2)nc − (c · nc)c

]
∧ e∞.

This new representation brings about the direct possibility to extract the normal nc and the
center point c of the circle multivector. The normal vector nc is a standard euclidian vector
with blades e1,e2, and e3. The operation nc ∧ e0 integrates the normal as linear combination
nc1 ∗ e1 ∧ e0 + nc2 ∗ e2 ∧ e0 + nc3 ∗ e3 ∧ e0 into the circle multivector. It is therefore trivial to
retrieve the normal, by accessing the coefficients of blades e1∧e0, e2∧e0, and e3∧e0. Retrieving
the center point c is slightly more complex and is treated in a detailed way in section 4.2.

An oriented point with vanishing radius is defined by

Op = (c× nc)e123 + nc ∧ e0 + (c · nc)(e∞ ∧ e0) +
[
1

2
c2nc − (c · nc)c

]
∧ e∞. (4)

As with the alternate circle, it is also very simple to extract the properties of point c and
normal nc from an oriented point Op.
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Figure 1: The blades of conformal geometric algebra. Spheres and planes, for instance, are vectors. Lines and
circles can be represented as bivectors. Other mathematical systems like complex numbers or quaternions can be
identified based on their imaginary units i, j, k. This is why also transformations like rotations can be handled
within the algebra.

2 CONFORMAL GEOMETRIC ALGEBRA

Conformal geometric algebra is a 5D geometric algebra based on the 3D basis vectors e1, e2

and e3 as well as on the two additional base vectors e0 representing the origin and e∞ represent-
ing infinity.

Blades are the basic computational elements and the basic geometric objects of geometric
algebras. The 5D conformal geometric algebra consists of blades with grades (dimension) 0,
1, 2, 3, 4 and 5, whereby a scalar is a 0-blade (blade of grade 0). The element of grade five is
called the pseudoscalar. A linear combination of blades is called a k-vector. So a bivector is
a linear combination of blades with grade 2. Other k-vectors are vectors (grade 1), trivectors
(grade 3) and quadvectors (grade 4). Furthermore, a linear combination of blades of different
grades is called a multivector. Multivectors are the general elements of a geometric algebra.

Table 1 lists the two representations of conformal geometric objects. The inner product null
space (IPNS) and the outer product null space (OPNS) [13] are dual to each other. While we
already presented an IPNS representation of circles and spheres, they can also be described with
the outer product of 4 points being part of them. In the case of a plane one of these 4 points
is the point at infinity e∞. Circles can be described with the help of the outer product of 3
conformal points lying on the circle or as the intersection of two spheres.

In the OPNS, lines can be described with the help of the outer product of 2 points (alterna-
tively one point pair) and the point at infinity e∞. In the IPNS, lines can be described with the
help of the outer product of 2 planes, which means the intersection of these planes.

3 OBSERVATIONS ON CONFORMAL GEOMETRIC OBJECTS LOCATED AT THE
ORIGIN

A point P in Conformal Geometric Algebra (CGA) can be defined as P = x + 1
2
x2e∞ + e0

(see table 1), where x is a standard euclidian 3D vector x = x1e1 + x2e2 + x3e3.
In CGA the point at the origin is e0. The inner product null space (IPNS) of an algebraic ex-
pression A is the set of all points P , for which the inner product A · P is equal to zero.
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Table 1: The two representations (IPNS and OPNS) of conformal geometric objects. IPNS and OPNS repre-
sentations are dual to each other, which is indicated by the star symbol. While IPNS is a direct parameterized
representation, OPNS describes the geometric objects through an outer product of conformal points defining the
object. For instance a line is the outer product of two points and the point at infinity.

object IPNS representation OPNS representation
Point P = x + 1

2
x2e∞ + e0

Sphere S = x + 1
2
(x2 − r2)e∞ + e0 S∗ = P1 ∧ P2 ∧ P3 ∧ P4

Plane π = n + de∞ π∗ = P1 ∧ P2 ∧ P3 ∧ e∞
Circle C = S1 ∧ S2 C∗ = P1 ∧ P2 ∧ P3

Line L = π1 ∧ π2 L∗ = P1 ∧ P2 ∧ e∞
Point Pair Pp = S1 ∧ S2 ∧ S3 Pp∗ = P1 ∧ P2

Let us now compute the IPNS of e0

e0 · P = 0. (5)

which gives

e0 · (x +
1

2
x2e∞ + e0) = 0. (6)

with the identity e0 · e∞ = −1 this equals to

− 1

2
x2 = 0. (7)

or
x2

1 + x2
2 + x2

3 = 0 (8)

describing only one point at the origin.
Let us look on what happens if we subtract some amount of infinity. What does, for instance,

e0 − 1
2
r2e∞ mean?

Let us compute the IPNS of the expression

(e0 − 1

2
r2e∞) · P = 0. (9)

which equals to

− 1

2
x2 +

1

2
r2 = 0. (10)

or
x2

1 + x2
2 + x2

3 − r2 = 0 (11)

describing all the points with the same distance r to the origin, namely a sphere at the origin.
A circle at the origin can be described by the intersection of a sphere at the origin with an

origin plane n.

n ∧ (e0 − 1

2
r2e∞) (12)

or
n ∧ e0 − 1

2
r2n ∧ e∞ (13)
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We get a point pair at the origin with the help of an additional intersection with another origin
plane m.

n ∧m ∧ (e0 − 1

2
r2e∞) (14)

or
n ∧m ∧ e0 − 1

2
r2n ∧m ∧ e∞ (15)

A Point pair at the origin can also be described by the intersection of a line and the sphere as

(le123) ∧ (e0 − 1

2
r2e∞) (16)

Please note, that a translation T ∗ E ∗ (T̃ ) of a conformal geometric object E by a versor
T does not change the observations made above, and therefore allows for arbitrary objects in
space.

4 CONFORMAL GEOMETRIC OBJECTS DESCRIBED BY BIVECTORS

In this section we derive alternative descriptions of objects in conformal geometric algebra,
shown in table 2. The major advantage of these descriptions is that the characteristics of their
underlying objects are indicated in their formula.

Table 2: Alternative descriptions of conformal geometric objects, with the feature of direct indication of object
properties.

object description
Line L = ue123 + m ∧ e∞
Circle C = (c× nc)e123 + nc ∧ e0

+(c · nc)(e∞ ∧ e0) +
[

1
2
(c2 − r2)nc − (c · nc)c

]
∧ e∞

Oriented point Op = (c× nc)e123 + nc ∧ e0

+(c · nc)(e∞ ∧ e0) +
[

1
2
c2nc − (c · nc)c

]
∧ e∞

4.1 Lines

It is well known that in Geometric Algebra lines can be expressed as

L = ue123 + m ∧ e∞, (17)

with the 3D pseudoscalar e123 = e1 ∧ e2 ∧ e∞, the two 3D points a, b on the line, u = b − a
as 3D direction vector, and m = a × b as the 3D moment vector (relative to origin). The
corresponding six Plücker coordinates (components of u and m) are (see Figure 2)

(u : m) = (u1 : u2 : u3 : m1 : m2 : m3). (18)

The line L is normalized, if the vector u is normalized

Lnormalized =
ue123 + m ∧ e∞

|u| (19)
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Figure 2: The line L through the 3D points a, b and the visualization of its 6D Plücker parameters based on the
two 3D vectors u and m of equation (18).

If only the algebraic expression for L is known, the normalized line can be computed ac-
cording to the following procedure:

Since L · e0 results in the negative of m

L · e0 = −m, (20)

ue123 = L −m ∧ e∞ can be computed as

ue123 = L + (L · e0) ∧ e∞ (21)

or multiplied by e123 (Note that e2
123 = −1)

u = −(L + (L · e0) ∧ e∞)e123 (22)

and the scaling factor for the normalization can be computed as follows:

|u| = |(L + (L · e0) ∧ e∞)e123| (23)

Another alternative expression for lines is

L = de123 + (d× t) ∧ e∞, (24)

with the 3D pseudoscalar e123 = e1 ∧ e2 ∧ e3, the normalized 3D direction vector d and one 3D
point t of the line.

4.2 Circles and Oriented Points

In this subsection we introduce new formulas for circles and oriented points in CGA, from
which their geometric meaning can be easily derived.

A circle can be described as the intersection of a plane and a sphere (normal nc) resulting in
the following formula

C = (c× nc)e123 + nc ∧ e0 + (c · nc)(e∞ ∧ e0) (25)

+
[
1

2
(c2 − r2)nc − (c · nc)c

]
∧ e∞.
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Proof We start with the intersection of a plane and a sphere.
C = π ∧ S = (nc + de∞) ∧ (c + 1

2
(c2 − r2)e∞ + e0)

C = nc ∧ c + 1
2
(c2 − r2)nc ∧ e∞ + nc ∧ e0 + de∞ ∧ c + 1

2
d(c2 − r2)e∞ ∧ e∞ + d(e∞ ∧ e0)

Now since e∞ ∧ e∞ = 0
C = nc ∧ c + 1

2
(c2 − r2)nc ∧ e∞ + nc ∧ e0 + de∞ ∧ c + d(e∞ ∧ e0),

the plane equation gives d = c · nc

C = nc ∧ c + 1
2
(c2 − r2)nc ∧ e∞ + nc ∧ e0 + (c · nc)e∞ ∧ c + (c · nc)(e∞ ∧ e0),

Reordering and factoring leads to
C = nc ∧ c + nc ∧ e0 + (c · nc)(e∞ ∧ e0) +

[
1
2
(c2 − r2)nc − (c · nc)c

]
∧ e∞.

The identity a× b = −(a ∧ b)e123 = (b ∧ a)e123 gives us
C = (c× nc)e123 + nc ∧ e0 + (c · nc)(e∞ ∧ e0) +

[
1
2
(c2 − r2)nc − (c · nc)c

]
∧ e∞.

An oriented point is a circle with vanishing radius r = lim
rn→0

rn and is defined by

Op = (c× nc)e123 + nc ∧ e0 + (c · nc)E +
[
1

2
c2nc − (c · nc)c

]
∧ e∞. (26)

Most interestingly, the oriented point at the origin is n ∧ e0, which is the intersection of an
origin plane with normal n and the point at the origin e0.

Extracting point and normal from an oriented point. Another advantage of this formula-
tion is the possibility to extract the normal nc and the euclidian 3D point c. Whilst this is trivial
for the normal nc, it is slightly more complex for the point c.

The normal nc is contained in the statement nc ∧ e0, and may be extracted by accessing the
coefficients of blades e1 ∧ e0, e2 ∧ e0, and e3 ∧ e0 of the oriented point multivector Op.

Once we have the normal nc, we may calculate the point c by the following formula. Note
that the expressions (c× nc) and (nc · c) = (c · nc) are also contained as blade coefficients of
the multivector Op, so that the formula can directly be evaluated.

c = nc × (c× nc) + nc(nc · c) (27)

Proof of equation 27. From linear algebra we know that the following equation holds for
three arbitrary vectors f ,g,h. It is a regularly used formula in physics and is called the triple
vector product.

f × (g × h) = g(f · h)− h(f · g) (28)

We now insert f = nc, g = c and h = nc into equation 28.

nc × (c× nc) = c(nc · nc)− nc(nc · c) (29)

By analytically solving with respect to c, we get

c =
nc × (c× nc) + nc(nc · c)

nc · nc

. (30)
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We further simplify this by using our knowledge that the normal nc is normalized. It follows
that nc · nc = 1, which leads to the final result in equation 27.

5 APPLICATIONS

5.1 Inverse Kinematics in Robotics

The paper [7] showed many advantages of a formulation of an inverse kinematics algorithm
in conformal geometric algebra. The algorithm controls a robot, performing a grasping opera-
tion on a target object. Once the object’s position is located, an important part of the algorithm
(see figure 5.1) is responsible for the movement of the robot gripper from its starting position to
the target object. This movement is implemented as a versor-based transformation. A simpler
formulation by an interpolation z′h of oriented points zh and zt

z′h = (1− t)zh + tzt (31)

produces similar promising results, and is therefore subject to further research on this topic.

Figure 3: Movement of a robot gripper from the starting position zh to the target object’s position zt. The current
position is marked by z′h

5.2 Virtual Camera Tracking Shots

In the field of cinematography (film) the term camera tracking shot means the movement
of the recording camera along a trajectory with an alternating orientation. Several other prop-
erties like zoom or focal length may also vary along the trajectory, but we will focus on the
translational and orientational camera properties.

There are several approaches [1] for this problem. The most popular one is to model the
camera path by a parametric curve and to define the orientation seperately. A parametric curve
is defined by a discrete ordered set of points in space on which it performs an interpolation
with arbitrary differentiability. Orientation has to be treated differently in this approach, which
introduces additional complexity.

An oriented point approach in comparison may simply perform a linear, quadratic or cubic
interpolation on a discrete ordered set of oriented points, and may thereby simplify the formu-
lation.
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5.3 Modified Coons Patches

Coons Patches [3] are parametric surfaces in space defined between four given curves. A
simplified approach is to define four points with corresponding normals in three-dimensional
space and to construct a surface between them by interpolating. Since oriented points can be
interpolated directly, they provide a simple framework for this simplified approach.

5.4 Molecular Dynamics

Molecular Dynamics (MD) is the simulation of a system of molecules according to known
physical interaction rules, for a limited period of time. It is often refered to as a virtual mi-
croscope, which gives us a detailed virtual picture of the processes inside a large system of
molecules. As molecules approximately behave like very small rigid bodies, the well known
laws of rigid body motions can be applied to them. More detailed, each molecule has the prop-
erties of its position of its center of mass, its orientation, its linear and angular velocity, as well
as its linear an angular acceleration.

Geometric Algebra has been applied to a Molecular Dynamics Simulation before in a differ-
ent formulation. The existing approach expresses the molecule motions in terms of transforma-
tion versors (combined position and orientation), velocity screws (lin. and ang. velocity) and
derivatives of velocity screws (lin. and ang. acceleration) [14].

A versor is a transformation, a screw is a differentiation of a transformation. Oriented points
and their derivatives on the contrary, are simple geometric concepts. Both have complicated
mathematical formulations, but an oriented point and its derivatives are quite simple to under-
stand from a geometrical perspective in comparison to a versor and its derivatives.

In terms of runtime performance both yield a very similar performance, because both lead to
the same arithmetic instructions when broken down by an optimizing compiler like Gaalop [11].

6 IMPLEMENTATIONAL ASPECTS

The paper [9] showed for the first time that implementations of geometric algebra algorithms
can be faster than conventional ones. This is due to optimization approaches like Gaalop [10]
and Gaigen [5], which are powerful tools making it easy to implement performant algorithms
in CGA.

In the meantime, there is even additional potential for runtime improvements in the ad-
vancing field of General Purpose GPU computing, and with new programming languages like
OpenCL [12]. Algebraically, lines, circles, and oriented points, are 10-dimensional bivectors,
that can be handled in parallel using the 16-dimensional vector data types OpenCL is providing.

Gaalop Compiler Driver (GCD [2]) applies the compiler driver concept to C++/CUDA and
OpenCL programs, simplifying the optimized integration of GA-based algorithms into pro-
gramming toolchains. It invocates Gaalop in the background and thus also profits from all its
advantages.
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