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1 Introduction

During the last decade Geometric Algebra (GA) has become increasingly popular in expressing solutions to geometry

related problems in scienti�c applications of robotics, dynamics, computer graphics and computer vision. Video game

developers are becoming aware of GA, in search for simpler and faster ways to describe their lighting [3] and physics

algorithms. The majority of developers makes use of C-related programming languages like C++, OpenCL [20] or

CUDA [22], which are performant and abstract enough for most needs.

From a programmer's perspective, the integration of GA directly into C++, OpenCL, and CUDA, and yields a high

level of intuitiveness. Coupled with a highly e�cient generative software tool like Gaalop [17] in the background, an

integration sets new standards to GA-powered software development. An advanced integration itself including other

comforts, and to make GA-usage available to a broad audience, is the purpose of this work.

1.1 Quick Start

To quickly start programming with Gaalop Precompiler (Gaalop GPC) , the precompiler developed in this thesis, it

is a good idea to start by reading the Language Speci�cation in chapter 5, and to continue with the Start Guide in

appendix A. A basic knowledge of GA and CLUScript is however required to understand this thesis in full detail.

Refer to [24] for an introduction to both topics.

1.2 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) is a new way of expressing many geometry focused mathematical problems. It

deals naturally with intersections and transformations of planes, lines, spheres, circles, points and point pairs, but

is also good at representing mechanics and dynamics. In Linear Algebra one would have to di�erentiate a plane-

sphere intersection into three distinct cases, namely circle intersection, point intersection and no intersection. In

Conformal Geometric Algebra the intersection itself is formulated as one operation on the plane (P) and the sphere

(S) respectively.

R= S ∧ P

The three di�erent cases of Linear Algebra are implicitly contained in the one result R of Conformal Geometric Algebra,

being more compact and better readable. Similar observations can be made in other applications of geometry related

mathematics. Applied to computer programs, GA therefore has a high potential for improving code readability and to

shorten production cycles. It has also been proven, that if implemented right, Geometric Algebra has at least similar

performance, but sometimes even better performance, than conventional approaches [18].

Multivectors of Conformal Geometric Algebra

An element of Conformal Geometric Algebra is referred to as multivector. A multivector consists of a linear combina-

tion of so called blades. Blades de�ne the basis of CGA and are combinations of the vectors e1, e2, e3, e0 and e∞. All
possible blades and their grading are listed in table 1.2.

1.3 Higher Dimensional Algebras

The paper [30] introduced a new algebra called the G6,3 Algebra that supports features far beyond of what is possible

with Conformal Geometric Algebra. Mathematical objects such as ellipsoids, cylinders, quadrics, and 1D-quadratic

strings are represented as multivectors, much like spheres, planes, circles, points and point-pairs are represented in

CGA. All the geometric objects contained in Conformal Geometric Algebra and all operations on multivectors, such

as translation, rotation, re�ection, scaling and even intersection using the outer-product ∧ are also representable in

G6,3 Algebra, along with some additional operations like non-uniform scaling. We strongly believe that this algebra

and even higher dimensional algebras, not subject to research yet, have even more potential than the well-known

Conformal Geometric Algebra and lesser dimensional algebras. This is why support for the G6,3 Algebra has been

integrated into Gaalop by [27], and the reason that this functionality is also a substantial factor in the design of

6



blade grade

1 0

e1 1

e2 1

e3 1

e∞ 1

e0 1

e1 ∧ e2 2

e1 ∧ e3 2

e1 ∧ e∞ 2

e1 ∧ e0 2

e2 ∧ e3 2

e2 ∧ e∞ 2

e2 ∧ e0 2

e3 ∧ e∞ 2

e3 ∧ e0 2

e∞ ∧ e0 2

blade grade

e1 ∧ e2 ∧ e3 3

e1 ∧ e2 ∧ e∞ 3

e1 ∧ e2 ∧ e0 3

e1 ∧ e3 ∧ e∞ 3

e1 ∧ e3 ∧ e0 3

e1 ∧ e∞ ∧ e0 3

e2 ∧ e3 ∧ e∞ 3

e2 ∧ e3 ∧ e0 3

e2 ∧ e∞ ∧ e0 3

e3 ∧ e∞ ∧ e0 3

e1 ∧ e2 ∧ e3 ∧ e∞ 4

e1 ∧ e2 ∧ e3 ∧ e0 4

e1 ∧ e2 ∧ e∞ ∧ e0 4

e1 ∧ e3 ∧ e∞ ∧ e0 4

e2 ∧ e3 ∧ e∞ ∧ e0 4

e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Tabelle 1.1.: The 32 blades of 5D Conformal Geometric Algebra, that a multivector is composed of.

Gaalop Precompiler. Gaalop and Gaalop Precompiler support higher algebras without major performance decreases,

only at the cost of longer compile times.

Abbildung 1.1.: A hyperboloid in G6,3 Algebra

1.4 High Level Programming Languages

Modern very high level software development tools, like Java [28], de�ne a very abstract language, on which program-

mers and scientists can work in a natural way and with results of moderate performance. Machine level languages on

the other hand, like Assembler, tend to produce very fast results, but with less intuition, which often leads to longer

and more costly development cycles.

In order to shorten development time and to produce fast code at the same time, the solution lies somewhere in

between. Object oriented programming languages like C++, C#, Objective Pascal and Smalltalk provide a good level

of abstraction, but also excellent performance. They seem to be a good choice for most modern scienti�c and business

projects and are therefore the most common languages, lead by C and C++.
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Recently NVIDIA's Compute Uni�ed Device Language (CUDA) programming language enabled users to utilize the

very high computing power of modern graphics chips. CUDA device code is a subset of the common C language with

some extensions added to it.

The new computing language standard named OpenCL, created by the independent Khronos Group, is being sup-

ported by a broad range of devices and o�ers the most promising features.

We strongly believe, that the applications of Geometric Algebra are most likely to be found in high performance

applications, such as games, industrial or scienti�c software. Since, as described above, C-like languages are leading

the �eld of high performance computing, possible integration of GA-code into C/C++/OpenCL/CUDA has the most

advantage.

1.5 Contributions of this work

The foundations of this work were made in the paper [9] and the thesis [8]. The project was called Gaalop Compiler

Driver (Gaalop GCD) at the time. While the concept reached its goal of integrating GA directly into high performance

applications, it was much more a proof-of-concept than a �nal solution and it was far less than complete from a user

friendliness point of view. The primary goal of this work is therefore the improvement of usability and stability.

By rethinking a former method, runtime performance and e�ciency was also slightly improved (section 7.8 and

section 9.7). Other in�uences such as higher dimensional algebras (see paper [30] and section 1.3) and the new GAPP

language have also been taken into account. CMake functionality has been further extended by making the most

important internal Gaalop settings controllable through CMake, and by improving the build logic in general.

Work on the Geometric Algebra Parallelism Programs language compiler middle-end started with [27], but no backend

that took advantage of this work was established yet. A secondary goal of this work was therefore the implementation

of such a backend based on OpenCL and testing its performance.

The molecular dynamics simulation [26], described in detail in chapter 9, has been a useful testing and comparison

environment between conventional Linear Algebra and Geometric Algebra implementations in the past and is reused

for the same purpose by this work. It is a good indicator for performance and numerical stability issues, and bugs in

general. It is very complex and several implementations in C++, OpenCL, and CUDA exist. It was required to rewrite

and test huge amounts of code to adapt it to the new language, and to make full use of the new Interface Feature

de�ned in chapter 7. The OpenCL implementation also o�ers the possibility to evaluate both GAPP and non-GAPP

compiled code.

A realtime OpenCL raytracer (chapter 10) was implemented as a use-case for the evaluation of Gaalop GPC with

higher dimensional algebras and the new GAPP OpenCL backend.
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2 Related Work

Combining both the aspects of Conformal Geometric Algebra and Modern Programming Languages (namely C++,

OpenCL and CUDA), promises to have a high potential for scienti�c work. Unfortunately CGA has such a high level

of abstraction, that it does not naturally �t into C++, OpenCL or CUDA programs. In order to solve this problem

and to make GA-based implementations faster, recent approaches try to wrap GA into template multivector classes

(Gaalet [25]) or make use of a Domain Speci�c Language (DSL) as input language for a code generator (Gaalop [17],

Gaigen2 [12] and GMac [11]). All software tools are very well suited in their domain and produce good results.

2.1 Performance of Geometric Algebra in comparison to conventional approaches

The 2006 paper Competitive runtime performance for inverse kinematics algorithms using conformal geometric al-

gebra. [18] compares Gaalop, Gaigen and a conventional approach. It concludes that Gaalop and Gaigen excel the

performance of the conventional approach by a factor of three. On the other hand Gaalop and Gaigen both required

a lot more implementation e�ort. Since then, a lot of work has been put into both tools, and the e�ort required to

implement applications was shrink signi�cantly while the stability constantly improved.

The 2010 molecular dynamics simulation, described in chapter 9 and in the initial project documentation [26], showed

slightly better performance of a Geometric Algebra solver compared to a conventional solver.

2.2 CLUScript

Conformal Geometric Algebra can not be expressed in terms of regular mathematical syntax. CGA-speci�c operators

like the outer product ∧, inner product . and geometric product ∗ require special treatment in regular programming

languages or the de�nition of a completely new Domain Speci�c Language (DSL).

The DSL that powers this work is CLUScript. The especially designed integrated development environments for

CLUScript are called CLUCalc (old) and CLUViz (new), and are freely available at [24]. In words of the author Dr.

Christian Perwass [23,24]:

CLUCalc/CLUViz is a freely (for non-commercial use) available software tool for 3D visualizations and

scienti�c calculations that was conceived and written by Dr. Christian Perwass. CLUCalc interprets

a script language called CLUScript, which has been designed to make mathematical calculations and

visualizations very intuitive.

Indeed, CLUScript is a very intuitive language and we have found CLUCalc to be an advanced tool for developing

and testing Geometric Algebra algorithms. It is easy to use, installs and runs smoothly on Windows platforms.

Unfortunately, the support for Linux and Macintosh platforms is very limited, but it may run with some e�ort.

2.3 OpenCL

Shortly after General Purpose Computing on Graphic Cards (GPGPU) became increasingly popular, the need for an

open standard arose. One could of course use pre-existing technologies like NVIDIA CUDA or ATI Close To Metal,

but this would mean, that every Compute Application had to be specialized for every possible device and its respective

software library. Therefore, the proposal for the open computing standard OpenCL [20] was brought to Khronos Group

by Apple Computers. Khronos Group founded a working group, in which industry leaders like AMD, Intel, NVIDIA

and Qualcomm negotiated a speci�cation. The speci�cation was �nished November 18, 2008 and reviewed internally

by Khronos members until December 8, 2008, when it was released to the public. It took another few months until

the industry �nished their implementations, released Software Development Kits and �xed the initial bugs, but at

the moment of writing, it is time to actively start using OpenCL in compute intensive applications. So far, AMD,

NVIDIA, Apple and Intel have released OpenCL SDKs.
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2.4 Gaalop as the foundation of this work

The Geometric Algebra Algorithms Optimizer (Gaalop) [17] was developed by TU Darmstadt (Germany) and is

a powerful tool for optimizing algorithms, expressed in Geometric Algebra. It generates non GA-speci�c code from

code de�ned in a GA-speci�c language and symbolically optimizes the algorithm on-the-�y, optionally invoking a

Computer Algebra System (CAS) . In this context, GA can be seen as a higher level mathematical language that is

being transformed into simple arithmetic mathematical language by Gaalop. Philosophically spoken, Gaalop could be

de�ned as a math compiler.

CLUScript as an input language and C/C++ as output language has proven to be an extremely powerful combination.

It is also possible to generate Field Programmable Array (FPGA) , LaTeX and CLUScript representations. For

evaluation purposes it is often helpful to choose CLUScript output, then replace the original CLUScript code with

the optimized code and test the result for the same functionality as the original code.

With recent work [27], Gaalop is no longer dependent on Maple. It can optimize CLUScript code with its internal

Table Based Approach and several other internal optimization mechanisms. It may also invoke the Open-Source CAS

Maxima on-the-�y, but this feature is completely optional.

Gaalop is especially good at optimizing larger connected chunks of code, where other tools mainly focus on single

statements.

2.5 Alternatives to Gaalop GPC

Several similar tools exist as alternatives to Gaalop GPC. This section motivates why those do not match our general

requirements on tools for Geometric Algebra Computing.

2.5.1 Gaigen

Gaigen [12] is being implemented by Daniel Fontijne at the University of Amsterdam. At the time of writing, it is in

its third major version and is being developed since 2005. All versions work through e�cient generation of C++ code,

that is later linked to the �nal application binary. The latest version Gaigen2 has a very remarkable pro�ling feedback

mechanism, that bases the regeneration of code on the latest application runtime pro�ling. As [11] notes, Gaigen2

may have some problems with over-�tting that pro�ling feedback and also causes some practical programming issues

related to the classes and functions required to import into the application, but in general it is ready for practical use.

2.5.2 GMac

GMac [11] is being developed by Ahmad Eid at Port-Said, Suez Canal University. It is based on C# and the Computer

Algebra System Mathematica. GMac is very advanced in terms of stability and concepts, for such it builds upon the

advantages of Gaigen and Gaalop, while trying to avoid their disadvantages. While it succeeds in these goals, it makes

itself dependent on the Closed-Source CAS Mathematica and a �xed programming language.

2.5.3 Gaalet

Gaalet [25] is a header-only C++ library that makes heavy use of the expression-template programming-technique of

C++ and lazy-evaluation. Its performance is slightly less than that of Gaalop [26] and with modern C++ compilers

such as gcc 4.5 or higher, compile time for expression-templates is signi�cantly reduced. It is perhaps the most suitable

implementation in environments where one can not install a lot of dependencies, such as the dedicated machines of

the High Performance Computing Centre (HLRS) in Stuttgart, where Gaalet originates from.

2.5.4 Requirements Evaluation

The options above do not match our general requirements on tools for Geometric Algebra Computing for the following

reasons:

� Gaigen2 in its current form requires user interaction to get the code generation and feedback mechanism

running. This collides with the no-user interaction policy of precompilers entirely. It can therefore not easily be

integrated into a compiler toolchain. It is solely constructed to generate C++ code, leaving the upcoming �eld

of GPU computing languages and other languages completely out of context.
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� GMac requires no user-interaction, but is tightly coupled with C#, which is a very modern language, but

unfortunately not a widely used one in high performance computing. Existing code bases will therefore most

likely not pro�t from the advantages of GMac. Also, we want to maintain the possibility of choice between a

variety of languages, instead of being focused on one language in particular.

� Gaalet is a very mature approach, but is tightly coupled with C++ as well. Like Gaigen, it is too complex to

be used in OpenCL or CUDA.

Experience shows, that GA is best optimized in connected chunks of code, rather than just simple statements. The

tools above do not o�er as much support for such functionality as Gaalop does.

But most importantly, all of the above tools are heavily dependent on a speci�c programming language, that is C++ or

C#. Those languages are very complex, it is therefore very likely to assume, those tools will ever be able to cope with

much simpler languages like C, OpenCL, CUDA or Java. Since especially GPU-Computing languages like OpenCL

and CUDA promise to have an even more important role in the future, we can not ignore them for the purpose of

Geometric Algebra Computing. This is a major problem with all approaches above.
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3 Previous Work

Some functionality used in Gaalop Precompiler is not entirely new. Gaalop Compiler Driver already de�ned some

functionality that is being extended by Gaalop GPC. We brie�y explain this functionality, and show how it had to be

adapted to �t into the advanced concepts of Gaalop GPC.

3.1 The state of Gaalop Compiler Driver

The previous work on Gaalop Compiler Driver (Gaalop GCD) showed the successful integration of Geometric Algebra

code into modern high level programming languages. However, there was still potential to make development easier

and friendlier.

As a demonstration, consider the following example.

void So lverMolecu le : : convertFrom ( const Molecule& molecule ) {
mass = molecule . mass ;
I_1 = molecule . I1 ;
I_2 = molecule . I2 ;
I_3 = molecule . I3 ;
atomIndices = molecule . atomIndices ;

//map molecule data to gaalop data
const f l o a t lpx = molecule . l po s [ 0 ] ;
const f l o a t lpy = molecule . l po s [ 1 ] ;
const f l o a t lpz = molecule . l po s [ 2 ] ;
const f l o a t arw = molecule . a rot [ 0 ] ;
const f l o a t arx = −molecule . a rot [ 1 ] ;
const f l o a t ary = −molecule . a rot [ 2 ] ;
const f l o a t arz = −molecule . a rot [ 3 ] ;
const f l o a t lvx = molecule . l v e l [ 0 ] ;
const f l o a t lvy = molecule . l v e l [ 1 ] ;
const f l o a t l v z = molecule . l v e l [ 2 ] ;
const f l o a t avx = molecule . ave l [ 0 ] ;
const f l o a t avy = molecule . ave l [ 1 ] ;
const f l o a t avz = molecule . ave l [ 2 ] ;

#pragma gcd begin
ro t o r = arw + arx * e2 ^ e3 + ary * e3 ^ e1 + arz * e1 ^ e2 ;
t r a n s l a t o r = 1 − ( 0 . 5 * lpx * e1 ^ e i n f + 0 .5 * lpy * e2 ^ e i n f + 0 .5 * l p z

* e3 ^ e i n f ) ;
?Din = t r a n s l a t o r * r o t o r ;

l v = lvx * e1 + lvy * e2 + lvz * e3 ;
av = avx * e1 + avy * e2 + avz * e3 ;

?Vin = e i n f * l v − e1^e2^e3*av ;
#pragma gcd end

// map gaalop data to molecule data
D0 [ 0 ] = Din_SCALAR;
D0 [ 1 ] = Din_E12 ;
D0 [ 2 ] = Din_E13 ;
D0 [ 3 ] = Din_E1INF ;
D0 [ 4 ] = Din_E23 ;
D0 [ 5 ] = Din_E2INF ;
D0 [ 6 ] = Din_E3INF ;
D0 [ 7 ] = Din_E123INF ;

V0 [ 0 ] = Vin_E12 ;
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V0 [ 1 ] = Vin_E13 ;
V0 [ 2 ] = Vin_E1INF ;
V0 [ 3 ] = Vin_E23 ;
V0 [ 4 ] = Vin_E2INF ;
V0 [ 5 ] = Vin_E3INF ;

}

Listing 3.1: Gaalop Compiler Driver for C++ input code.

The above code snippet is taken from the Molecular Dynamics simulation described in deep detail in chapter 9. Firstly,

it constructs a versor Din out of the previously declared rotor with the name rotor and a translator, name of translator .

The components of rotor and translator are taken from the C/C++-arrays molecule.lpos, molecule.arot respectively. A

versor is a multivector in Conformal Geometric Algebra that describes a transformation in three-dimensional space. A

versor is similar to a matrix, for that it is able to translate, rotate, or scale a geometric object. Secondly, the velocity

screw Vin is constructed out of the multivector components contained in molecule. lvel , and molecule.avel. A velocity

screw is a multivector that de�nes linear and angular velocity of a geometric object. The integral of a velocity screw

is a versor.

Notice the large assignment blocks before #pragma gcd begin and after #pragma gcd end. Their purpose is the explicit

transfer of data between multivectors and arrays. Much of this code is purely mechanical and increases the code size.

The automation of this purely mechanical work is a part of this work and is described in full detail in chapter 5.

3.2 Multivector Scoping

The Scoping feature allows multivectors from one #pragma gpc-block to be accessed in other #pragma gpc-blocks.

The following code is valid Gaalop GPC-syntax:

#pragma gpc begin
#pragma c l u c a l c begin // block A

mv1 = . . . ;
mv2 = . . . ;
?a = mv1*mv2 ;

#pragma c l u c a l c end

. . . // some C++ code

#pragma c l u c a l c begin // block B − automat i ca l l y imports v a r i ab l e a from block A
?b = a + 10 ;

#pragma c l u c a l c end
#pragma gpc end

Listing 3.2: Simpli�ed way of reusing multivectors from previous #pragma-blocks.

The solution guarantees correct scoping. For example, the following listing will cause a compilation error:

#pragma gpc begin
{ // scope 1

#pragma c l u c a l c begin // block A
mv1 = . . . ;
mv2 = . . . ;
?a = mv1*mv2 ;

#pragma c l u c a l c end
}

. . . // some code

{ // scope 2
#pragma c l u c a l c begin // block B

?b = a + 10 ; // Compilation w i l l f a i l ,
// because a was dec l a r ed in a d i f f e r e n t scope .

#pragma c l u c a l c end
}

#pragma gpc end
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Listing 3.3: Multivectors are not available in di�erent scopes.

Whereas outer scopes are imported into inner scopes as usual (listing 3.4). The scoping rules work in a way a

programmer would expect them to work, without any knowledge of the underlying concept.

#pragma gpc begin
{ // begin outer scope

#pragma c l u c a l c begin // block A
mv1 = . . . ;
mv2 = . . . ;
?a = mv1*mv2 ;

#pragma c l u c a l c end

. . . // some C++ code

{ // begin inner scope
#pragma c l u c a l c begin // block B

?b = a + 10 ; // Wil l work as expected .
#pragma c l u c a l c end

} // end inner scope
} // end outer scope

#pragma gpc end

Listing 3.4: Outer scope multivectors are handled as expected.

3.3 Compressed Multivector Storage

The naive approach to multivector storage is to save all multivector blade coe�cients in one array sequentially,

including the ones equal to zero. This leads to a non-optimal memory and cache e�ciency, ultimately with higher

dimensional algebras. A higher e�ciency is achieved by only storing the non-zero entries of a multivector in one array

sequentially.

An example output, including all meta-info, may then look like listing 3.5. Note that these aspects are internal details.

It is not necessary to understand this listing in order to start programming with Gaalop GPC. The listing is intended

for those who wish to understand the internal works of Gaalop GPC.

//#pragma gpc mul t ivec to r V0_t_dt
f l o a t V0_t_dt [ 6 ] ;
//#pragma gpc mul t ivec to r V1_t_dt
f l o a t V1_t_dt [ 6 ] ;

//#pragma gpc multivector_component V1_t_dt e1^e2 V1_t_dt [ 0 ]
V1_t_dt [ 0 ] = ( ( I_2 − I_1 ) * V013 * V023 − am12) / I_3 ;
//#pragma gpc multivector_component V1_t_dt e1^e3 V1_t_dt [ 1 ]
V1_t_dt [ 1 ] = ( ( I_3 − I_1 ) * V012 * V023 + am13) / I_2 ;
//#pragma gpc multivector_component V1_t_dt e1^ e i n f V1_t_dt [ 2 ]
V1_t_dt [ 2 ] = (−(array_lmom [ 0 ] / mass ) ) ;
//#pragma gpc multivector_component V1_t_dt e2^e3 V1_t_dt [ 3 ]
V1_t_dt [ 3 ] = ( ( I_3 − I_2 ) * V012 * V013 − am23) / I_1 ;
//#pragma gpc multivector_component V1_t_dt e2^ e i n f V1_t_dt [ 4 ]
V1_t_dt [ 4 ] = (−(array_lmom [ 1 ] / mass ) ) ;
//#pragma gpc multivector_component V1_t_dt e3^ e i n f V1_t_dt [ 5 ]
V1_t_dt [ 5 ] = (−(array_lmom [ 2 ] / mass ) ) ;
//#pragma gpc multivector_component V0_t_dt e1^e2 V0_t_dt [ 0 ]
V0_t_dt [ 0 ] = dt / 2 .0 * V1_t_dt [ 0 ] + array_V0 [ ( index ) + 0 * ( numMolecules ) ] ;
//#pragma gpc multivector_component V0_t_dt e1^e3 V0_t_dt [ 1 ]
V0_t_dt [ 1 ] = dt / 2 .0 * V1_t_dt [ 1 ] + array_V0 [ ( index ) + 1 * ( numMolecules ) ] ;
//#pragma gpc multivector_component V0_t_dt e1^ e i n f V0_t_dt [ 2 ]
V0_t_dt [ 2 ] = dt / 2 .0 * V1_t_dt [ 2 ] + array_V0 [ ( index ) + 2 * ( numMolecules ) ] ;
//#pragma gpc multivector_component V0_t_dt e2^e3 V0_t_dt [ 3 ]
V0_t_dt [ 3 ] = dt / 2 .0 * V1_t_dt [ 3 ] + array_V0 [ ( index ) + 3 * ( numMolecules ) ] ;
//#pragma gpc multivector_component V0_t_dt e2^ e i n f V0_t_dt [ 4 ]
V0_t_dt [ 4 ] = dt / 2 .0 * V1_t_dt [ 4 ] + array_V0 [ ( index ) + 4 * ( numMolecules ) ] ;
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//#pragma gpc multivector_component V0_t_dt e3^ e i n f V0_t_dt [ 5 ]
V0_t_dt [ 5 ] = dt / 2 .0 * V1_t_dt [ 5 ] + array_V0 [ ( index ) + 5 * ( numMolecules ) ] ;

Listing 3.5: An example output of codegen−compressed.

In listing 3.5, the pragmas //#pragma gpc multivector and //#pragma gpc multivector_component are the Gaalop

Precompiler versions of #pragma gcd multivector and #pragma gcd multivector_component. They identify which ar-

ray element belongs to which multivector blade coe�cient. This information is important for further operations on

multivector in following #pragma-blocks.

The exact speci�cation of these meta-information #pragma-statements is as follows:

//#pragma gpc multivector_component mvName mvBlade arrayEntry

Listing 3.6: Meta-information #pragma-statement speci�cation with mvName being the name of the multivector

mvBlade being the name of the blade and arrayEntry being the storage location.

Note that this concept is also valid for OpenCL vectors, which is a very important fact for the GAPP OpenCL

backend, described in chapter 6.

3.4 History, Architecture and Concepts with focus on Implementation

This section brie�y describes the history of versions of Gaalop Precompiler (formerly Gaalop Compiler Driver) with

focus on implementation.

3.4.1 The �rst version

The �rst version of Gaalop Precompiler, then called Gaalop Compiler Driver was based on C++. It was itself compiled

to a native executable that called Gaalop during runtime. At the time this was the most �exible possibility of

implementing the tool. The basic idea was to completely hide the complex inner implementation details and mimic

the interface of the standard compiler of a platform. On Linux, this would for example mean that Gaalop GCD could be

called just like the GNU Compiler Collection (gcc) , for example gcd−cxx −o test.o test.cpp. On Windows Gaalop GCD

would mimic the Microsoft Visual C++ Compiler (cl.exe), such that it could be called like gcd−cxx /o test.obj test .cpp.

After the transformation process, Gaalop GCD would simply call gcc to actually compile the �le. In general this

approach was very useful and it guaranteed a lot of �exibility.

The downside however, was a very hard maintainability. Since Gaalop GCD was calling Gaalop internally, it had to

know its path and it also had to create and delete intermediate �les.

3.4.2 The second version

This version tried to overcome the maintainability problems of the �rst version by completely implementing Gaalop

Compiler Driver in Java. This had a very positive impact on code size and maintainability, but lost some of the

�exibility of the �rst approach. The build was now completely reliant on CMake to handle generation of code �les

using the Gaalop GCD Java version, and secondly compilation by a compiler of your choice.

3.4.3 The third version

With the start of this work Gaalop Compiler Driver was renamed to Gaalop Precompiler (Gaalop GPC), emphasizing

its advanced functionality compared to Gaalop Compiler Driver. Introducing a new set of commands (see chapter 5)

drastically increased the code size of Gaalop GPC. Restructuring was required to keep the code maintainable. The

current version of Gaalop GPC therefore has three major logical parts, described in section 7.1.
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4 Concept Phase

The �nal language speci�cation described in chapter 5 was not our �rst concept of the language syntax. Initially a

much more integrated version was de�ned. At the time, a tight coupling between the embedded Geometric Algebra

code and the native language code made sense.

4.1 Requirements

From a high level perspective, we have several requirements on the integration of Geometric Algebra code into native

language code.

� The integration has to be as smoothly as possible. Programming with Gaalop GPC should feel natural and

intuitive.

� The concept should support as many programming languages as possible.

� The embedded Geometric Algebra code should be conform to the CLUScript language, as much as possible.

� The user should have to know as little as possible about the tool itself and the underlying optimization tech-

niques. The user should be able to be productive with a minimum learning curve.

From the implementation perspective Gaalop GPC should

� be implemented as simple as possible,

� reuse as much Gaalop functionality as admissible,

� and utilize a maximum of modern parsing technology, e.g. ANTLR.

4.2 Arrays, vectors and lists as the common denominator of programming languages

Geometric Algebra is based on multivectors. Those have to be expressed in the best possible form in the target

programming language.

Multivectors are consisted of multiple blades and their coe�cients. From a programming perspective, a multivector

could be seen as a plain collection of coe�cients, without interpreting it in any mathematical way. The simplest

possible notion of such a collection is an array in most programming languages, especially in C, OpenCL, CUDA and

Java. An obvious solution to bridge the gap between the two paradigms stated above, is therefore to generate arrays

from multivectors.

Since Gaalop is perfect in doing so, it is a reasonable choice as the foundation of this work, especially because one of

the requirements stated in section 4.1 is to support as many programming languages as possible.

Even if a language does not support arrays, like the functional programming language Haskell [2], it will most likely

have some similar low end storage container like lists, so that Gaalop could still target it through the implementation

of a new backend.

The Gaalop GAPP OpenCL backend, described in chapter 6, also supports the usage of OpenCL vectors instead of

arrays, enabling the power of Single Instruction Multiple Data (SIMD) vector operations on GPUs.

We conclude, that Gaalop as the foundation of this work has the most potential for bringing Geometric Algebra to

most programming languages, primarily because of its focus on low level storage containers which are available in all

programming languages.

4.3 The �rst concept

Based on Gaalop as the foundation of this work, we now lay focus on de�ning a concept to embed Geometric

Algebra code into native language code, sustaining the requirements stated above. Listing 4.1 shows an example

conforming to the very �rst concept of Gaalop Precompiler. As you can see, Geometric Algebra code is very smoothly

embedded into the surrounding C++ code. The code contains two kinds of multivectors, temporary and array-mapped
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multivectors. Temporary multivectors are marked with const tempmv and array-mapped multivectors are declared with

const �oatmv.

void So lverMolecu le : : convertFrom ( const Molecule& molecule ) {
mass = molecule . mass ;
I_1 = molecule . I1 ;
I_2 = molecule . I2 ;
I_3 = molecule . I3 ;
atomIndices = molecule . atomIndices ;

const tempmv lp = mv_from_array ( molecule . lpos , e1 , e2 , e3 ) ;
const tempmv ro to r = mv_from_array ( molecule . arot ,1 ,− e2^e3 ,−e3^e1 ,−e1^e2 ) ;
const tempmv lv = mv_from_array ( molecule . l v e l , e1 , e2 , e3 ) ;
const tempmv av = mv_from_array ( molecule . avel , e1 , e2 , e3 ) ;

const tempmv t r a n s l a t o r = 1 − 0 .5* lp^ e i n f ;
const f loatmv Din = t r a n s l a t o r * r o t o r ;
const f loatmv Vin = e i n f * l v − e1^e2^e3*av ;

D0 = mv_to_array (Din , 1 , e1^e2 , e1^e3 ,
e1^e in f , e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

V0 = mv_to_array (Vin , e1^e2 , e1^e3 ,
e1^e in f , e2^e3 , e2^e in f , e3^ e i n f ) ;

}

Listing 4.1: Example for the �rst concept.

Array-mapped multivectors are optimized and transformed into C �oat -arrays by Gaalop GPC and may be accessed

from native code later on. Temporary multivectors on the other hand may only be used as source multivectors for

computations resulting in array-mapped multivectors.

The const quali�er is required on purpose, because multivectors may by de�nition only be assigned once in Gaalop.

Multivectors may be constructed from arrays by mv_from_* commands and may be saved to arrays by using mv_to_*

commands.

4.3.1 Variable Masking

In listing 4.1 line 8, molecule.lpos is used as the �rst parameter of mv_from_array(). According to the speci�cation

of mv_from_array() (later de�ned in chapter 5), molecule.lpos is required to be an array, which is in fact the case.

In previous versions of Gaalop GPC it was only allowed to use parameters that ful�ll the standard requirements for

identi�ers meaning that their name may only contain letters and numbers and have to start with a letter. With this

new version of Gaalop GPC that need is eliminated.

4.3.2 Pragma Output

The thesis [27] de�ned //#pragma output mv mvBlades, a new #pragma-statement allowing to specify exactly which

particular multivector blade coe�cients of a multivector get compiled into an output array, skipping all the others.

This is useful for the case, that a user only wants to use certain multivector blade coe�cients, but leave out others.

Without using this #pragma-statement, unused coe�cients, not equalling zero, would still be computed and would

still a�ect runtime performance in many ways. Using //#pragma output completely removes unnecessary code.

Its syntax is the following:

//#pragma output mv mvBlades

Whereas mv is the target multivector and mvBlades are the blades that the �nal output should contain. Not specifying

//#pragma output for a particular multivector will lead to all multivector blade coe�cient being output.

Pragma output could have been easily integrated into the �rst concept. The method, actually implemented for the

second concept is documented in section 7.6. It is mostly equivalent to how it would have been implemented in the

�rst concept.
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4.3.3 Evaluation Only Multivectors

The problem of Evaluation Only Multivectors is described in full detail in section 7.7. This functionality was being

discussed at the time primarily with focus on Gaalop, but the mapping of this functionality from Gaalop to Gaalop

GPC was an obvious question to ask. The most likely answer would have been that integration is established through

a new type const evalmv.

4.3.4 Advantages

The main advantage of this de�nition is a borderless integration of Geometric Algebra code code into native code. It

would feel very naturally for most programmers to write code this way.

4.3.5 Disadvantages

There are two major disadvantages of the �rst concept.

Firstly, and most importantly, from a technical point of view it is a problem to construct a compiler realizing this

concept. De�ning two di�erent grammars for two di�erent languages is a straightforward task, but de�ning one

grammar for both languages is not. Most modern parsers and parser generation tools like ANTLR [29] are not

designed for such a job.

Secondly, choosing this de�nition would include making a major design decision against code-compatibility with CLU-

Script. The code would not be directly be compatible with CLUScript, meaning that one could not just test the same

code in CLUCalc as well as Gaalop GPC without major code restructuring.

Also, the approach to Evaluation Only Multivectors as designed for the �rst concept, described in subsection 4.3.3, has

the problem that is not easy to explain the user the three types of multivectors that would have been involved in order

to optimally write Gaalop GPC code. This problem was elegantly avoided in the �nal de�nition of the speci�cation,

and the solution is explained in detail in section 7.7.

4.3.6 Conclusion

Primarily the �rst disadvantage led us to conclude, that this concept of the language speci�cation, although it has

a certain feel of completeness, the grammar is just too complex. Context-speci�c grammar is a major problem in

compiler construction, and in practice is usually avoided by design. Designing a language containing context-speci�c

grammar is a choice against almost all language implementation tools, like ANTLR [29], LLVM, etc., to our knowledge.

This would not necessarily mean it is not possible to use any of these tools, but dominating problems would certainly

arise. The �rst concept may still be realized in a future version of Gaalop Precompiler, but at this time our goals do

not meet up with the consequences of this concept.

4.4 The second and �nal concept

Listing 4.2 shows an example of the second concept, that was speci�cally designed to address the problems of the �rst

concept.

void So lverMolecu le : : convertFrom ( const Molecule& molecule ) {
mass = molecule . mass ;
I_1 = molecule . I1 ;
I_2 = molecule . I2 ;
I_3 = molecule . I3 ;
atomIndices = molecule . atomIndices ;

#pragma gpc begin
lp = mv_from_array ( molecule . lpos , e1 , e2 , e3 ) ;
r o t o r = mv_from_array ( molecule . arot ,1 ,− e2^e3 ,−e3^e1 ,−e1^e2 ) ;
l v = mv_from_array ( molecule . l v e l , e1 , e2 , e3 ) ;
av = mv_from_array ( molecule . avel , e1 , e2 , e3 ) ;

#pragma c l u c a l c begin
t r a n s l a t o r = 1 − 0 .5* lp^ e i n f ;
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?Din = t r a n s l a t o r * r o t o r ;
?Vin = e i n f * l v − e1^e2^e3*av ;

#pragma c l u c a l c end

D0 = mv_to_array (Din , 1 , e1^e2 , e1^e3 ,
e1^e in f , e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

V0 = mv_to_array (Vin , e1^e2 , e1^e3 ,
e1^e in f , e2^e3 , e2^e in f , e3^ e i n f ) ;

#pragma gpc end
}

Listing 4.2: Gaalop Precompiler for C++ input code.

4.4.1 The two di�erent types of blocks

Deviating from Gaalop Compiler Driver and the �rst de�nition, there are now two di�erent types of #pragma-blocks:

� #pragma gpc-blocks marked by #pragma gpc begin and #pragma gpc end.

� and #pragma clucalc-blocks marked by #pragma clucalc begin and #pragma clucalc end.

While the latter may solely contain pure Geometric Algebra code, the former may contain a mix of both Geometric

Algebra code and native language code, more speci�cally the commands of chapter 7.

This solves the problem of parsing in an elegant way, since no longer context-speci�c grammar is required to parse

the Geometric Algebra code, which is now exclusively contained within the #pragma clucalc-block.

The second problem of CLUScript code compatibility is also intrinsically solved, since the #pragma clucalc-block now

contains pure CLUScript code.
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5 Gaalop Precompiler Language Speci�cation

Multivectors have a limited number of blades. For example in Conformal Geometric Algebra their size is limited to

32 blades. A multivector storage for CGA therefore has to save a maximum of 32 blade coe�cients. A naive approach

may therefore simply save the maximum number of coe�cients in an array.

The problem with this approach is, that the number of blades grows exponentially with dimensionality. A 9D-Algebra

[30] for example, that is proven to be useful in some cases, has exactly 512 blades and 512 blade coe�cients, which are

too many to save them e�ciently in an array for each multivector. Since we want to support even higher dimensions,

this is not an option.

Fortunately, the simple observation that the majority of multivector blade coe�cient of a multivector equals zero,

helps us to overcome this problem. The obvious solution is to save only non-zero blade coe�cients. This technique

has been previously used in Gaalop Compiler Driver and is explained in full detail in section 3.3. To assist with this

approach, several helper functions are de�ned in table 5.

The purpose of these helper functions, listed in table 5, is the transformation between multivectors and

C/C++/OpenCL/CUDA language concepts like �oat -variables, arrays, or vectors. For example, mv_get_bladecoe�()

is responsible for extracting a blade coe�cient from a multivector, whereas mv_from_array() constructs a multivector

from a C-like array.

coe� = mv_getbladecoe�(mv,blade); Get the coe�cient of blade blade of multivector mv.

mv = mv_from_vec(vec); Construct multivector mv from OpenCL-vector vec.

mv = mv_from_array(array,blades,..); Construct multivector mv from array array.

mv = mv_from_stridedarray(array,index,stride,blades,...); Construct multivector mv from array array

at index index with stride stride . Exam-

ple mv = mv_from_stridedarray(array,0,nummvs,

e1,e2,e3,e0, einf ); .

array = mv_to_array(mv,blades,...); Write the blades blades ,... of multivectormv to array array.

Example array = mv_to_array(mv,e1,e2,e3,e0,einf);.

array = mv_to_stridedarray(mv,index,stride,blades,...); Write the blades blades ,... of multivector mv

to array array at index index with stride stride .

Example array = mv_to_stridedarray(mv,0,nummvs,

e1,e2,e3,e0, einf ); .

vec = mv_to_vec(mv); Write the multivector mv to OpenCL vector vec.

Tabelle 5.1.: Gaalop GPC helper functions
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6 Geometric Algebra Parallelism Programs OpenCL

Backend

The paper [16] introduced a new approach to make advantage of the parallel instruction processing power available

on many modern computing devices named Geometric Algebra Parallelism Programs, speci�cally for GA. Its main

purpose is the best possible utilization of Instruction Level Parallelism (ILP) by harvesting the intrinsic parallelism of

Geometric Algebra exposed by the Table Based Approach (TBA) algorithm, described in the same paper. At its core,

this new technology is a new intermediate representation language, on which a whole variety of platform backends,

like SSE [5], AVX [4], OpenCL, CUDA, or even a fully dedicated FPGA soft-core processor could build upon.

While the GAPP technology itself was completely realized in Gaalop, no backend was implemented yet. A secondary

task of this thesis was therefore the ful�lment of a GAPP backend targeting the Open Computing Language (OpenCL)

. The choice of OpenCL as the �rst target language was speci�cally made, because it is the computing language running

on the highest number of platforms with a theoretical support of operations on vectors of up to 16 entries (�oat16).

The rest of this chapter explains in detail how the corresponding GAPP instructions are translated into OpenCL code

by the backend and gives a short explanation what their purpose is in the �rst place.

Further focus is laid on the evaluation of GAPP code versus non-GAPP code.

6.1 Instruction Set

assignInputsVector inputsVector= [val0, . . . , valn];
Assigns a set of input scalar variables or constants to a vector. This vector is further used as a source for values for

the following commands.

resetMv mvdest;

Zeros all blades of multivector mvdest.

assignMv mvdest[sel0, . . . , seln] = {const1, . . . , constn};
Assigns the constants const1, . . . , constn to the multivector mvdest as blade coe�cients speci�ed by the selectors

sel0, . . . , seln.
setMv mvdest[dest0, . . . , destn] = varsrc[src0, . . . , srcn];
Copies the selected blades from multivector or vector varsrc to multivector mvdest. dest0, src0, dest1, src1, up to dest31 and

src31, are blade selectors. Note that it is invalid language syntax to have more than one source multivector speci�ed

in this command. To copy elements from several multivectors it is required to use multiple setMv commands, one for

each multivector. This command is restricted to one source and one destination multivector.

setVector partdest = {var1src[sel0, . . . , seln], var2src[sel0, . . . , seln], . . .};
Composes the vector (part of a multivector) partdest from selected elements of multiple source multivectors or vectors

varn. sel0, sel1, up to sel31, are a blade selectors. Parts and blade selectors are explained in detail in [16].

dotVectors mvdest[sel] =< part1, part2 >;
Performs a scalar multiplication (dot product) on the two vectors (parts of multivectors) part1 and part2. Saves the

result in multivector mvdest at the location selected by selector sel.

Tabelle 6.1.: Geometric Algebra Parallelism Programs (GAPP) language

6.2 Preliminary steps and considerations

Code Generation requires certain knowledge that is not available during the Code Generation process itself. This

knowledge has therefore to be gained by some preliminary preprocessing steps.

6.2.1 Multiple blocks

Gaalop GPC code is usually made up by multiple #pragma gpc-blocks containing one or more #pragma clucalc-blocks.

Sharing of information is allowed between the blocks in the same scope for all variables.
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The only exception to this rule is the specially declared helper vector named inputsVector. Its name cannot be the

same across blocks, because two blocks in the same scope would then come into con�ict with each other, if they

declared inputsVector without any further considerations.

The obvious solution here is to rename inputsVector for each block. This can be achieved by a static counter n, counting
the current block number, and by then su�xing inputsVector with n.

The specially declared temporary variables dot with su�x m, introduced in subsection 6.3.5 by the dotVectors com-

mand, also have to be taken into account. This is simply done by globally counting m, similar to n.

6.2.2 Compressed multivector sizes

More speci�cally, the Code Generator needs the exact size of compressed multivectors beforehand. This is equal to the

number of blades with non-zero coe�cients. To determine this number for each multivector, a pre-pass of all GAPP

commands is executed. This pre-pass simply counts the number of set commands on each multivector, totalling to

the number of non-zero coe�cients.

6.2.3 Internal multivector blade map

To maintain the correct handling of Compressed Multivector Storage in correlation with GAPP an internal map-

ping of blades to OpenCL array/vector entries for each multivector is required. This is implemented as a cascade

of map data-structures, an outer map of type HashMap<String,HashMap<Integer,String>> and an inner map of type

HashMap<Integer,String>>. The inner map stores a multivector index of type integer as key and the full storage

location as value of type string. The outer map simply has the multivector name as a key of type string and the full

inner map as value.

An example for this is the component e1 of multivector point, which is stored in the corresponding array �oat point [3] .

// pragma gpc mul t ivec to r po int
f l o a t po int [ 5 ] ;

// pragma gpc multivector_component po int e1 po int [ 0 ]
po int [ 0 ] = x ;
// pragma gpc multivector_component po int e2 po int [ 1 ]
po int [ 1 ] = y ;
// pragma gpc multivector_component po int e3 po int [ 2 ]
po int [ 2 ] = z ;
. . .

Here, the following mapping would occur inside the internal multivector blade map.

point −> 1 ( e1 ) −> point [ 0 ]
po int −> 2 ( e2 ) −> point [ 1 ]
po int −> 3 ( e3 ) −> point [ 2 ]

If point was a OpenCL vector instead of an array, then the mapping would be the following:

point −> 1( e1 ) −> point . x
po int −> 2( e2 ) −> point . y
po int −> 3( e3 ) −> point . z

With this internal abstraction, we can now store multivectors in arrays, vectors or even arrays of vectors, depending on

our needs. The abstraction mechanism will always return the true storage location of the multivector blade coe�cient

given a multivector component.

6.2.4 OpenCL vector size logic

This number may then be used to determine the required sizes of OpenCL vectors. This scheme is described in

table 6.2.

6.3 Code Generation

This section shows by example, to which OpenCL code a particular GAPP command is evaluated.
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compressed multivector size = 1 �oat

compressed multivector size = 2 �oat2

compressed multivector size >= 3 �oat4

compressed multivector size >= 5 �oat8

compressed multivector size >= 9 �oat16

Tabelle 6.2.: OpenCL vector size logic

6.3.1 resetMv

resetMv simply declares an OpenCL vector of the size determined in subsection 6.2.2 and subsection 6.2.4.

Source Code

resetMv D1_t ;

Listing 6.1: Example of the GAPP command resetMv.

Generated Code

//#pragma gpc mul t ivec to r D1_t
f l o a t 8 D1_t ;

Listing 6.2: Example of OpenCL code generated from the GAPP command resetMv.

6.3.2 setMv

setMv �rstly determines the current set index. This is simply the total number of sets on the target multivector minus

one. The number of sets can be easily determined as the size of the internal multivector blade map described in

subsection 6.2.3. Then sets the new entries counting from that position.

Source Code

setMv D1_t [ 3 ] = inputsVector_0 [ 0 ] ;

Listing 6.3: Example of the GAPP command setMv.

Generated Code

D1_t . s3 = inputsVector_0 [ 0 ] ;

Listing 6.4: Example of OpenCL code generated from the GAPP command setMv.

6.3.3 assignMv

Like setMv, except that it retrieves the source data from constants instead of multivectors or vectors.

Source Code

assignMv D1_t [ 4 ] = 5 . 0 ;

Listing 6.5: Example of the GAPP command assignMv.

Generated Code

D1_t . s4 = 5 .0 f ;

Listing 6.6: Example of OpenCL code generated from the GAPP command assignMv.
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6.3.4 setVector

setVector �rstly declares a multivector of a size determined by the OpenCL vector size logic. The input parameter for

this vector size logic is the number of arguments supplied to the setVector command.

Secondly it assigns its arguments as initial values of the newly declared multivectors. Since the number of arguments

might not be equal to the size determined by the OpenCL vector size logic, it is required to �ll possible un�lled space

with zero so it does not a�ect further calculations.

Source Code

se tVector ve1 = { inputsVector_0 [ 1 5 , 1 1 , 2 0 ] } ;

Listing 6.7: Example of the GAPP command setVector.

Generated Code

f l o a t 4 ve1 = ( f l o a t 4 ) ( inputsVector_0 [ 1 5 ] , inputsVector_0 [ 1 1 ] , inputsVector_0 [ 2 0 ] , 0 ) ;

Listing 6.8: Example of OpenCL code generated from the GAPP command setVector.

6.3.5 dotVectors

dotVectors is responsible for the computation of dot products of one or more vectors declared by setVector. It performs

this in two steps. Firstly the parallel multiplication of up to 16 �oats, and secondly a tree-like sum reduction of the

result of the �rst step.

Source Code

dotVectors D2_t [ 3 ] = <ve33 , ve34 , ve35 >;

Listing 6.9: Example of the GAPP command dotVectors.

Generated Code

//#pragma gpc multivector_component D2_t e1^ e i n f D2_t . s3
f l o a t 1 6 dot29 = ve33 * ve34 * ve35 ;
f l o a t 8 dot30 = dot29 . l o + dot29 . h i ;
f l o a t 4 dot31 = dot30 . l o + dot30 . h i ;
f l o a t 2 dot32 = dot31 . l o + dot31 . h i ;
D2_t . s3 = dot32 . l o + dot32 . h i ;

Listing 6.10: Example of OpenCL code generated from the GAPP command dotVectors.

The second line in this example performs two element-wise parallel multiplications of �oat16 OpenCL vectors. The

result is then sum-reduced and �nally stored in the vector entry D2_t.s3 in the last line.

6.3.6 assignInputsVector

assignInputsVector is a special command to declare input variables supplied to the GAPP program.

Source Code

as s i gn Input sVecto r inputsVector = [ dt , array_V0 [ ( index ) + 2 * ( numMolecules ) ] , . . . ] ;

Listing 6.11: Example of the GAPP command assignInputsVector.

Generated Code

inputsVector_0 [ 0 ] = dt ;
inputsVector_0 [ 1 ] = array_V0 [ ( index ) + 2 * ( numMolecules ) ] ;
inputsVector_0 [ 2 ] = array_D0 [ ( index ) + 6 * ( numMolecules ) ] ;
inputsVector_0 [ 3 ] = array_D0 [ ( index ) + 5 * ( numMolecules ) ] ;
inputsVector_0 [ 4 ] = array_V0 [ ( index ) + 5 * ( numMolecules ) ] ;
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inputsVector_0 [ 5 ] = array_V1 [ ( index ) + 0 * ( numMolecules ) ] ;
inputsVector_0 [ 6 ] = array_V1 [ ( index ) + 2 * ( numMolecules ) ] ;
inputsVector_0 [ 7 ] = array_D0 [ ( index ) + 3 * ( numMolecules ) ] ;
inputsVector_0 [ 8 ] = array_V0 [ ( index ) + 4 * ( numMolecules ) ] ;
inputsVector_0 [ 9 ] = array_D0 [ ( index ) + 0 * ( numMolecules ) ] ;
. . .

Listing 6.12: Example of OpenCL code generated from the GAPP command assignInputsVector.

6.4 Comparison between GAPP and non-GAPP code

The tables 6.3 and 6.4 show analyses of GAPP and non-GAPP code against multiple AMD-GPUs produced by the

AMD APP KernelAnalyzer tool.

An analysis of the data in the tables shows slightly better performance of GAPP over the non-GAPP implementation

on older devices, and equalling performance on newer ones, for all six tested kernels of the Molecular Dynamics

application of chapter 9. The benchmarks were performed over 15 AMD devices, both legacy and state-of-the-art,

over low-end, mainstream, performance and high-end price segments. The order of devices in the table is by their age,

starting from legacy FireStream devices, ending with state-of-the-art Radeon HD 6000 series devices. In the following,

4000 series devices are referred to as old devices, whereas 5000 and 6000 series devices are considered as new, since

there seems to have been a major change in architecture and compiler technology between beginning with 5000 series

devices. In the tables, the two di�erent groups of devices, old and new, are separated by two horizontal lines.

The most important parts of both tables are the throughput columns. They depict how many million threads of the

�rst sample kernel may approximately be processed per second per device.

If you compare both tables the picture becomes very clear. GAPP almost doubles the performance for old devices

in terms of throughput (last column), reversely correlating with the of the average execution time in column 4, the

number of arithmetic logic operations in column 5, and the number of estimated cycles in column 7. For new devices

however, the performance equals exactly, for the same measured units for both versions of the code, with the exception

of the �rst two models of the Radeon HD 5000 series.

Further research has to show, how exactly it is possible to further improve performance for OpenCL code generated

from GAPP, especially on new devices. Experience shows, that sometimes small tweaks can change the performance

in signi�cant ways.

Conventions

In the tables below the following conventions are used.

GPR b= General Purpose Registers used.

SReg b= If General Purpose Registers are used register entries are stored in local memory and called Scratch Registers

(lower is better, zero is preferred).

ALU b= Arithmetic Logic Unit operations used (lower is better.)

Fetch b= Number of fetch operations (lower is better).

ALU:Fetch b= Ratio between Arithmetic Logic Unit and fetch operations (ALU ops are cheaper than fetch ops.).

Bottleneck b= The most probable bottleneck.

Thread/Clock b= Average thread throughput per clock cycle.

Throughput b= The expected throughput in thread executions per second.
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Name GPR SReg Avg ALU Fetch Est Cycles ALU:Fetch Bottleneck Throughput

FireStream 9250 39 0 12.56 172 20 12.56 2.27 ALU Ops 796 M Threads/Sec

FireStream 9270 39 0 12.56 172 20 12.56 2.27 ALU Ops 955 M Threads/Sec

Radeon HD 4550 39 0 57.02 174 20 57.02 4.69 ALU Ops 84 M Threads/Sec

Radeon HD 4670 30 12 21.71 205 63 19.16 0.87 Global Fetch 313 M Threads/Sec

Radeon HD 4770 39 0 15.88 174 20 15.88 2.29 ALU Ops 756 M Threads/Sec

Radeon HD 4870 39 0 12.56 172 20 12.56 2.27 ALU Ops 955 M Threads/Sec

Radeon HD 4890 39 0 12.56 172 20 12.56 2.27 ALU Ops 1083 M Threads/Sec

Radeon HD 5450 35 0 40.12 140 20 40.12 7.20 ALU Ops 65 M Threads/Sec

Radeon HD 5670 35 0 17.42 140 20 17.42 3.58 ALU Ops 356 M Threads/Sec

Radeon HD 5770 35 0 9.85 140 20 9.85 1.78 ALU Ops 1380 M Threads/Sec

Radeon HD 5870 35 0 9.70 140 20 9.70 0.89 Global Write 1402 M Threads/Sec

Radeon HD 6450 35 0 49.27 140 20 49.27 7.11 ALU Ops 244 M Threads/Sec

Radeon HD 6670 35 0 19.40 140 20 19.40 3.56 Global Write 660 M Threads/Sec

Radeon HD 6870 35 0 9.70 140 20 9.70 0.89 Global Write 1485 M Threads/Sec

Radeon HD 6970 39 0 9.70 175 20 9.70 1.11 Global Write 1452 M Threads/Sec

Tabelle 6.3.: GAPP code analysis results. The two horizontal lines separate old devices from new devices, with old

above and new below the two lines.

Name GPR SReg Avg ALU Fetch Est Cycles ALU:Fetch Bottleneck Throughput

FireStream 9250 44 0 23.37 328 20 23.37 4.22 ALU Ops 428 M Threads/Sec

FireStream 9270 44 0 23.37 328 20 23.37 4.22 ALU Ops 513 M Threads/Sec

Radeon HD 4550 44 0 103.85 328 20 103.85 8.54 ALU Ops 46 M Threads/Sec

Radeon HD 4670 30 17 36.18 382 105 31.93 0.94 Global Fetch 188 M Threads/Sec

Radeon HD 4770 44 0 29.21 328 20 29.21 4.22 ALU Ops 411 M Threads/Sec

Radeon HD 4870 44 0 23.37 328 20 23.37 4.22 ALU Ops 513 M Threads/Sec

Radeon HD 4890 44 0 23.37 328 20 23.37 4.22 ALU Ops 582 M Threads/Sec

Radeon HD 5450 25 0 24.24 83 20 24.24 4.35 ALU Ops 107 M Threads/Sec

Radeon HD 5670 25 0 10.49 83 20 10.49 2.16 ALU Ops 591 M Threads/Sec

Radeon HD 5770 25 0 9.70 83 20 9.70 1.07 Global Write 1402 M Threads/Sec

Radeon HD 5870 25 0 9.70 83 20 9.70 0.53 Global Write 1402 M Threads/Sec

Radeon HD 6450 25 0 38.80 83 20 38.80 4.26 Global Write 309 M Threads/Sec

Radeon HD 6670 25 0 19.40 83 20 19.40 2.13 Global Write 660 M Threads/Sec

Radeon HD 6870 25 0 9.70 83 20 9.70 0.53 Global Write 1485 M Threads/Sec

Radeon HD 6970 20 0 9.70 93 20 9.70 0.60 Global Write 1452 M Threads/Sec

Tabelle 6.4.: Non-GAPP (TBA) code analysis results. The two horizontal lines separate old devices from new devices,

with old above and new below the two lines.
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7 Implementation Details

This chapter provides some insights into the inner workings of Gaalop Precompiler. It may be used as a useful

documentation for further projects based on Gaalop GPC.

The speci�c contributions are

� a new set of Interface Features for simpli�ed communication between Geometric Algebra code and native

language code,

� reimplementing existing Interface Features with focus on higher algebras and GAPP,

� automatic utilization of #pragma output and #pragma onlyEvaluate features of Gaalop,

� internal performance optimizations reducing storage redundancy for better cache e�ciency,

� a more robust and purely Java-based implementation utilizing the ANTLR parser generator,

� advanced algebra con�guration features through the Gaalop Precompiler CMake settings,

� and the integration of the Visualization Code Inserter stage (by Christian Steinmetz) for future work on

raytracing and automatic visualization code generation.

7.1 Software Architecture

Internally, Gaalop Precompiler code is divided into three logical sub-modules; the Input Files Composer, the Block

Transformer, and the Output File Composer. This approach is much better to understand than the purely monolithic

design of Gaalop Compiler Driver, and enhances maintainability a lot.

The diagram in �gure 7.1 depicts the Software Architecture of Gaalop GPC from a high level perspective. Gaalop

GPC performs the following actions on each run, with numbers applying to the numbers of the diagram �gure 7.1.

1. The Main unit is executed on startup and controls all other units. Its �rst action is to call the Input Files

Composer.

2. The Input Files Composer unit loads the source �le from disk, parses through it, does some preprocessing for

mv_* commands, extracts #pragma clucalc-blocks and gives a list of them back to the Main unit.

3. The Main unit passes the list of #pragma clucalc-blocks to the Block Transformer.

4. The Block Transformer unit sends each #pragma clucalc-block through Gaalop piece-by-piece.

5. Gaalop optimizes each block, returns the results as C code through the Compressed Multivector Storage secti-

on 3.3 back-end and sends it back to the Block Transformer.

6. The Block Transformer handles Multivector Scoping section 3.2 on blocks and gives control back to the Main

unit.

7. The Main unit transfers everything to the Output File Composer.

8. The Output File Composer parses through the original source �le and replaces the original #pragma clucalc-

blocks with their optimized version. Also, it generates import statements

The following subsections describe the three important subunits with more detail.

7.1.1 Input Files Composer

The purpose of this part is

1. to read in the source �le,

2. to extract the blocks containing the Geometric Algebra code (in between #pragma-blocks),

3. to generate multivector import handling code from mv_from_* statements and to prepend it to the existing

block-code,
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Abbildung 7.1.: Software Architecture

4. and �nally, to save the blocks into an internal list.

7.1.2 Block Transformer

This part simply transforms the extracted blocks piece-by-piece using the regular Gaalop-routines internally. It also

handles masking and de-masking of variables, detailed in section 4.3.1. Most importantly, it handles Multivector

Scoping (section 3.2).

7.1.3 Output File Composer

The purpose of this part is

1. to read in the original source �le,

2. to replace all blocks of original Geometric Algebra code code with their optimized native language version,

3. to parse mv_to_* statements and to replace them with generated multivector-to-array export handling code,

4. and �nally, to save everything into an intermediate �le, ready for compilation by regular compilers.

7.2 Variable Masking Implementation

As described in section 4.3.1, Gaalop GPC does no longer require input variables to be valid CLUScript identi�ers.

This section lays out, how this is achieved.

If Gaalop GPC were to use the quali�er molecule.lpos exactly as it is internally, this would most likely result in

unde�ned behaviour for that it would be interpreted as the inner product . of molecule and lpos.

Gaalop GPC therefore substitutes molecule.lpos and all other incoming values by a hash string of the form hash*.

After optimization by Gaalop it will replace all occurring hash* terms back to their original form.

For the purpose of replacing and its reverse, a global hash map is used internally.

7.3 Command-wise parsing

Since we are embedding a domain speci�c language into another language, the standard techniques of parsing do not

apply. Therefore, a much simpler method has to be used to parse the contents of a #pragma gpc-block. Being inside

a #pragma gpc-block Gaalop GPC reads the contents of the block, until it

� either �nds the end of the block,

� or �nds an embedded #pragma clucalc-block (see section 4.4.1),
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� or �nds a semicolon.

In case it �nds a semicolon, it assumes a complete command has been found and is now contained in an internal

bu�er, called the command bu�er.

The next step is now to search for occurrences of the mv_getbladecoe�() since this command may be embedded in

any native code. If found, Gaalop GPC simply replaces the command with the referenced multivector component. For

example,

i f ( mv_get_bladecoeff ( ind i1 , 1 ) < 0 | |
mv_get_bladecoeff ( ind i2 , 1 ) < 0 | |
mv_get_bladecoeff ( ind i3 , 1 ) < 0)

re turn ;

, gets replaced to:

i f ( i nd i 1 [ 0 ] < 0 | |
i nd i 2 [ 0 ] < 0 | |
i nd i 3 [ 0 ] < 0)

re turn ;

In case nomv_get_bladecoe�() occurrence is found, it is further searched for occurrences ofmv_from_*() ormv_to_*()

commands. If any of those are found, the whole command is then parsed by a special parser generated by the ANTLR

Parser Generator for improved robustness. After parsing, a specialized function handles code generation for each

particular command, as described in section 7.5.

If none of the above is found, the command is assumed as a native command and directly written to the output bu�er.

7.4 ANother Tool for Language Recognition (ANTLR)

Gaalop Precompiler is heavily based on the ANother Tool for Language Recognition Parser Generator tool. The

tool generates Java parser source code from an abstract language de�nition. Especially all the Gaalop GPC helper

functions from chapter 5 are parsed this way. ANTLR greatly increases the robustness of Gaalop GPC, while most of

the existing Gaalop parser descriptions could be reused.

7.5 Code Generation

This section shows in examples, how the new Interface Feature methods get transformed into code internally.

coe� = mv_getbladecoe�(mv,blade);

Get the coe�cient of blade blade of multivector mv.

The code

i f ( mv_get_bladecoeff ( ind i1 , 1 ) < 0)
re turn ;

gets transformed into

i f ( i nd i 1 [ 0 ] < 0)
re turn ;

mv = mv_from_vec(vec);

Construct multivector mv from OpenCL-vector vec.

The code

ray_dir_mv = mv_from_vec( ray_dir_vec , e1 , e2 , e3 ) ;

gets transformed into

ray_dir_mv = ray_dir_vec . s0 * e1 + ray_dir_vec . s1 * e2 + ray_dir_vec . s2 * e3 ;
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mv = mv_from_array(array,blades,..);

Construct multivector mv from array array.

The code

ray_dir = mv_from_array ( ray_dir_arr , e1 , e2 , e3 ) ;

gets transformed into

ray_dir_mv = ray_dir_arr [ 0 ] * e1 + ray_dir_arr [ 1 ] * e2 + ray_dir_arr [ 2 ] * e3 ;

mv = mv_from_stridedarray(array,stride,blades,...);

Construct multivector mv from array array with stride stride .

The code

ray_dir_mv = mv_from_stridedarray ( ray_dir_arr , index , s t r i d e , e1 , e2 , e3 ) ;

gets transformed into

ray_dir_mv = ray_dir_arr [ index + 0* s t r i d e ] * e1
+ ray_dir_arr [ index + 1* s t r i d e ] * e2
+ ray_dir_arr [ index + 2* s t r i d e ] * e3 ;

array = mv_to_array(mv,blades,...);

Write the blades blades ,... of multivector mv to array array.

Example array = mv_to_array(mv,e1,e2,e3,e0,einf);.

The code

ray_dir_arr = mv_to_array ( ray_dir_mv , e1 , e2 , e3 ) ;

gets transformed into

ray_dir_arr [ 0 ] = ray_dir_mv [ 0 ] ;
ray_dir_arr [ 1 ] = ray_dir_mv [ 1 ] ;
ray_dir_arr [ 2 ] = ray_dir_mv [ 2 ] ;

array = mv_to_stridedarray(mv,stride,blades,...);

Write the blades blades ,... of multivector mv to array array with stride stride .

Example: array = mv_to_array(mv,nummvs,e1,e2,e3,e0,einf);.

The code

ray_dir_arr = mv_to_stridedarray ( ray_dir_mv , index , s t r i d e , e1 , e2 , e3 ) ;

gets transformed into

ray_dir_arr [ index + 0* s t r i d e ] = ray_dir_mv [ 0 ] ;
ray_dir_arr [ index + 1* s t r i d e ] = ray_dir_mv [ 1 ] ;
ray_dir_arr [ index + 2* s t r i d e ] = ray_dir_mv [ 2 ] ;

vec = mv_to_vec(mv);

Write the multivector mv to OpenCL vector vec.

The code

ray_dir_vec = mv_to_vec( ray_dir_mv , e1 , e2 , e3 ) ;
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gets transformed into

ray_dir_vec . s0 = ray_dir_mv [ 0 ] ;
ray_dir_vec . s1 = ray_dir_mv [ 1 ] ;
ray_dir_vec . s2 = ray_dir_mv [ 2 ] ;

7.6 Integration of Pragma Output into Gaalop Precompiler

The fact that Gaalop GPC knows exactly which multivector blade coe�cient are actually needed through the mv_to_*

statements, can be made advantage of in order to generate //#pragma output statements automatically. This is done

through an internal hash map of lists. Each time a mv_to_* command is parsed by the Input Files Composer

(subsection 7.1.1) it inserts an entry into the list assigned to a particular multivector.

At the end of each #pragma gpc-block, the map and the containing lists are iterated through and //#pragma output

statements get generated and prepended to all #pragma clucalc-blocks inside the #pragma gpc-block.

7.7 Pragma Only Evaluate

Christian Steinmetz came up with the idea, that we might need another type of multivector in Gaalop. This addresses

the speci�c case, that a user wishes to de�ne a multivector that is to be used in further calculations, but not subject

to explicit output as array-mapped multivector. Such a multivector may in theory just be declared as temporary

multivector.

The following example listing depicts the problem.

?p = VecN3(px , py , pz ) ;
? s = p − 0 .5* r * r * e i n f ;

Listing 7.1: Original Geometric Algebra code without //#pragma onlyEvaluate usage.

In practice, declaring it as temporary might not be suitable, because it might result in a very long optimization and

compile time. The usual approach is therefore, to mark this multivector as array-mapped even though it is not used

in native code.

The problem with this approach is, that all multivector component will be computed, but most likely not all of them

will be used in the following computations. Some amount of them will therefore waste processing time, cache and

memory.

The code above is for example transformed into the following C code by Gaalop.

p [ 0 ] = px ; // e1
p [ 1 ] = py ; // e2
p [ 2 ] = pz ; // e3
p [ 3 ] = (px * px + py * py + pz * pz ) / 2 .0 f ; // e i n f
p [ 4 ] = 1 .0 f ; // e0
s [ 0 ] = p [ 0 ] ; // e1
s [ 1 ] = p [ 1 ] ; // e2
s [ 2 ] = p [ 2 ] ; // e3
s [ 3 ] = p [ 3 ] − r / 2 .0 f * r ; // e i n f
s [ 4 ] = 1 .0 f ; // e0

Listing 7.2: Generated C code without //#pragma onlyEvaluate usage.

If you look closely, you will notice, that even though p[4] , is not used in s, it is still declared in line 5.

The solution we came up with for this problem is to mark multivectors, for which this problem applies for evaluation

only. This is speci�cally done by an internal statement //#pragma evaluateOnly mvName. Multivectors marked by this

are referred to as Evaluation Only Multivector.

The following listing depicts this solution.

//#pragma onlyEvaluate p s
p = VecN3(px , py , pz ) ;
s = p − 0 .5* r * r * e i n f ;

Listing 7.3: Original Geometric Algebra code with //#pragma onlyEvaluate usage.
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In contrary to listing 7.2, p[4] is now removed from the generated code.

p [ 0 ] = px ; // e1
p [ 1 ] = py ; // e2
p [ 2 ] = pz ; // e3
p [ 3 ] = (px * px + py * py + pz * pz ) / 2 .0 f ; // e i n f
s [ 0 ] = p [ 0 ] ; // e1
s [ 1 ] = p [ 1 ] ; // e2
s [ 2 ] = p [ 2 ] ; // e3
s [ 3 ] = p [ 3 ] − r / 2 .0 f * r ; // e i n f
s [ 4 ] = 1 .0 f ; // e0

Listing 7.4: Generated C code with //#pragma onlyEvaluate usage.

7.7.1 Integration into Gaalop Precompiler

Integration of this feature into Gaalop GPC is easy. Subsection 7.6 describes an internal hash map of lists that

track the multivector blade coe�cients actually needed in the code. The simple, but reasonable assumption that

multivector blade coe�cients are only accessed through mv_to_*() or mv_get_bladecoe�() Interface Features, lets

us follow that multivectors not contained in the hash map are meant for evaluation only. In this particular case, we

will simply generate a //#pragma evaluateOnly statement, and prepended it to all #pragma clucalc-blocks inside the

#pragma gpc-block.

7.8 Resolving of the const �oat and array entry redundancy problem

Gaalop Compiler Driver allowed access of multivector blade coe�cient either through the getMvComp() function with

direct access to the underlying array (Compressed Multivector Storage, see section 3.3), or through prede�ned �oat

constants.

Using these �oat constants it was for example possible to access the blade e1, of the multivector s de�ned above,

through the statement s_E1.

This was possible, since Gaalop GCD internally generated code similar to the following example code, with compressed

array and �oat constants redundantly.

f l o a t p [ 4 ] ;
const f l o a t p_E1 = p [ 0 ] = px ; // e1
const f l o a t p_E2 = p [ 1 ] = py ; // e2
const f l o a t p_E3 = p [ 2 ] = pz ; // e3
const f l o a t p_EINF = p [ 3 ] = (px * px + py * py + pz * pz ) / 2 .0 f ; // e i n f
f l o a t s [ 5 ]
const f l o a t s_E1 = s [ 0 ] = p [ 0 ] ; // e1
const f l o a t s_E2 = s [ 1 ] = p [ 1 ] ; // e2
const f l o a t s_E3 = s [ 2 ] = p [ 2 ] ; // e3
const f l o a t s_EINF = s [ 3 ] = p [ 3 ] − r / 2 .0 f * r ; // e i n f
const f l o a t s_E0 = s [ 4 ] = 1 .0 f ; // e0

Note that this is ine�cient because each multivector blade coe�cient is stored twice, but it was necessary at the time

because there was the need for an easy access method.

The introduction of the new Interface Feature (chapter 5) solves this problem elegantly. It is now very easy to access

the blade coe�cient e1 of s through mv_get_bladecoe�(s,e1), for example.
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8 The Horizon example

The horizon example is a simple application that has very often been used to demonstrate the usage of Gaalop. It is

therefore a must to test this same example with Gaalop Precompiler.

Mathematical background

Consider an observer standing on a planet. Given a description of the particular planet and the viewpoint of the

observer, we try to �nd an algebraic expression of the horizon as seen by the observer, provided there is no occlusion

of any sort other than the planet itself, in the scene.

We de�ne P as the viewpoint of the observer, S as a sphere describing the planet with center point M and radius r.
Let mx , my , mz be the 3D coordinates of the planet's center and px , py , pz be the ones of the viewpoint, then M , P
and S have the following de�nition in 5D conformal space.

M = mx e1 +my e2 +mze3 +
1

2
(m2

x +m2
y +m2

z )e∞ + e0

P = px e1 + py e2 + pze3 +
1

2
(p2

x + p2
y + p2

z )e∞ + e0

S = M −
1

2
r2e∞

Abbildung 8.1.: Calculation of the intersection circle (horizon)

Given these de�nitions, we may construct another sphere K around P. The radius for this second sphere is computed

by the inner product S · P. For a mathematical background on this, see [10] for example. The circle presenting the

horizon may then be calculated by the outer product of both spheres. Figure 8.1 illustrates this calculation.

K = P + (S · P)e∞

C = S ∧ K
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CLUScript implementation

Listing 8.1 shows the CLUScript equivalent of the equations above. The goal is to �nd an algebraic expression for the

horizon on the earth as seen from a view point P.

P = VecN3(px , py , pz ) ; // view point
M = VecN3(mx,my,mz ) ; // cente r po int o f earth
S = M−0.5* r * r * e i n f ; // sphere r ep r e s en t i ng earth
K = P+(P. S)* e i n f ; // sphere around P
?C=S^K; // i n t e r s e c t i o n c i r c l e

Listing 8.1: The Horizon example in CLUScript.

Variables px, py, pz and mx, my, mz are free variables, that will be handled symbolically.

OpenCL implementation

Finally, the CLUScript code may be embedded into an OpenCL kernel, resulting in the code of listing 8.2.

__kernel void hor i zonKerne l ( __global f l o a t * c i r c l eCen t e r s , __global const f l o a t * po in t s )
{

const i n t id = get_global_id ( 0 ) ;
#pragma gpc begin

P = VecN3( po in t s [ id ] ,
po in t s [ id ]+num_points ,
po in t s [ id ]+2*num_points ) ;

#pragma c l u c a l c begin
r = 1 ;
S = e0−0.5* r * r * e i n f ;
C = S^(P+(P. S)* e i n f ) ;

? homogeneousCenter = C* e i n f *C;
? s c a l e = −homogeneousCenter . e i n f ;
? Eucl ideanCenter = homogeneousCenter / s c a l e ;

#pragma c l u c a l c end
c i r c l eC en t e r s = mv_to_stridedarray ( Eucl ideanCenter ,

id , num_points , e1 , e2 , e3 ) ;
#pragma gpc end

}

Listing 8.2: The Horizon example in OpenCL.
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9 Molecular Dynamics using Gaalop GPC for OpenCL

A molecular dynamics simulation models the point-pair interactions of a system of molecules, each one consisting

of several atoms, and numerically solves Newton's and Euler's equations of motion for each molecule. This chapter

presents a molecular dynamics simulation based on Gaalop GPC for OpenCL.

Abbildung 9.1.: Screenshot of the molecular dynamics simulation using CGA.

The Gaalop GPC implementation is faster compared to the conventional implementation, which is not self-evident

for CGA-based implementations of such complexity. Further tests have shown, that Gaalop GPC yields also a higher

numerical stability in terms of energy conservation. This might be due to the fact, that the advanced symbolic

simpli�cation by Gaalop GPC minimizes the amount of operations, which otherwise would have been potential sources

for numerical errors.

9.1 Molecular Dynamics in a Nutshell

Abbildung 9.2.: The forces between all the atoms of the molecules result in a movement of the molecules.

In the following, we describe very brie�y, how molecular dynamics is modelled in our simulation:

� A molecule is a compound of several atoms, which are assumed to be static inside the molecule.

� Every atom sends out attraction or repulsion forces to every other atom.
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� These forces then result in a movement of the molecules according to Newton's and Euler's laws. This is

simulated for 1000s of molecules in parallel.

The Lennard Jones potential

Abbildung 9.3.: The Lennard Jones potential describes the energy level between two atoms dependent on the distance

between them (Image source: [6]).

A potential function describes the energy level between two atoms dependent on the distance between them. A popular

approximation of the potential between real physical atoms, is the so called Lennard Jones potential, which we make

strong use of in this application.

The usual method here is to derive the forces of each atom from the potentials. Mathematically and in the context

of molecular dynamics, a force pointing to the direction of lowest local energy is de�ned as the negative gradient

−∇Φ(~d), where ~d = ~p ji is the distance between the two atom positions and Φ is the Lennard Jones potential function

Φ(r) = 4ε
�

�σ

r

�12

−
�σ

r

�6�

, (9.1)

where ε is a scale factor and σ is the distance at which the repulsive part overweights the attractive part of the

potential.

9.2 Software Architecture

An initialization on the host (CPU) is needed prior to running the simulation itself (see section 9.3). This consists

of loading a so called MOLD �le, which is a snapshot of a group of real physical state of molecules including their

de�nition.

The actual simulation is done by the OpenCL solver for the molecular dynamics computations initiated by some

kernel calls. The OpenCL solver is separated into the following three parts:

1. Molecule verlet time integration step 1

The kernel in section 9.4 updates the molecule's position and orientation. N computations are required for N

molecules.

2. Computation of potential forces

This updates each molecule's force and torque. n x (n-1) computations are required for n atoms. The kernel of

section 9.5 is responsible for this step.

3. Molecule verlet time integration step 2

The kernel in section 9.6 updates the molecule's linear and angular velocity. N computations are required for

N molecules.

The downloaded data can be used for the visualization of the motion of the molecules.

The following listings show code extracted from the OpenCL versions of the solver implemented in Gaalop GPC for

OpenCL.
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Abbildung 9.4.: Code architecture of the molecular dynamics application.

9.3 Initialization

The listing 9.1 shows host/CPU code for the initialization of the molecular dynamics simulation.

void convertStandardModelToSolverModel ( const BaseModel& model ) {
const MoleculeVector& molecu le s = model . molecu le s ;
const AtomVector& atoms = model . atoms ;
const i n t numMolecules = molecu le s . s i z e ( ) ;
const s i ze_t numAtomPositions = atoms . s i z e ( ) ;
f o r ( i n t index = 0 ; index < numMolecules ; ++index ) {

// get molecule
const Molecule& molecule = molecu le s [ index ] ;

#pragma gpc begin
lp = mv_from_array ( molecule . lpos , e1 , e2 , e3 ) ;
r o t o r = mv_from_array ( molecule . arot , 1 ,

e2^e3 , e3^e1 , e1^e2 ) ;
l v = mv_from_array ( molecule . l v e l , e1 , e2 , e3 ) ;
av = mv_from_array ( molecule . avel , e1 , e2 , e3 ) ;

#pragma c l u c a l c begin
// compute s t a r t va lue s
t r a n s l a t o r = 1 − 0 .5 * lp^ e i n f ;
?D_in = t r a n s l a t o r * r o t o r ;
?V_in = e i n f * l v − e1^e2^e3*av ;

#pragma c l u c a l c end

host_mol_D0 = mv_to_stridedarray (D_in , index , numMolecules ,
1 , e1^e2 , e1^e3 ,
e1^e in f , e2^e3 ,
e2^e in f , e3^e in f ,
e1^e2^e3^ e i n f ) ;

host_mol_V0 = mv_to_stridedarray (V_in , index , numMolecules ,
e1^e2 , e1^e3 ,
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e1^e in f , e2^e3 ,
e2^e in f , e3^ e i n f ) ;

#pragma gpc end

}

// f i l l dev i c e bu f f e r , copy host bu f f e r to dev i ce bu f f e r s
commandQueue . enqueueWriteBuffer (dev_mol_D0 . ge tBu f f e r ( ) , CL_TRUE, 0 ,

host_mol_D0 . s i z e ( ) * s i z e o f ( f l o a t ) , &host_mol_D0 . f r on t ( ) ) ;
commandQueue . enqueueWriteBuffer (dev_mol_V0 . ge tBu f f e r ( ) , CL_TRUE, 0 ,

host_mol_V0 . s i z e ( ) * s i z e o f ( f l o a t ) , &host_mol_V0 . f r on t ( ) ) ;
s td : : f i l l ( host_mol_V1 . begin ( ) , host_mol_V1 . end ( ) , 0 . 0 f ) ;
commandQueue . enqueueWriteBuffer (dev_mol_V1 . ge tBu f f e r ( ) , CL_TRUE, 0 ,

host_mol_V1 . s i z e ( ) * s i z e o f ( f l o a t ) , &host_mol_V1 . f r on t ( ) ) ;
s td : : f i l l (host_mol_lmom . begin ( ) , host_mol_lmom . end ( ) , 0 . 0 f ) ;
commandQueue . enqueueWriteBuffer (dev_mol_lmom . ge tBu f f e r ( ) , CL_TRUE, 0 ,

host_mol_lmom . s i z e ( ) * s i z e o f ( f l o a t ) , &host_mol_lmom . f r on t ( ) ) ;
s td : : f i l l (host_mol_amom . begin ( ) , host_mol_amom . end ( ) , 0 . 0 f ) ;
commandQueue . enqueueWriteBuffer (dev_mol_amom. ge tBu f f e r ( ) , CL_TRUE, 0 ,

host_mol_amom . s i z e ( ) * s i z e o f ( f l o a t ) , &host_mol_amom . f r on t ( ) ) ;

}

Listing 9.1: Gaalop GPC code for the conversion of the properties (position, orientation, linear and angular velocity)

of the molecules into the CGA-representation as versor Din and velocity screw Vin.

The goal is to convert the data of all the molecules into their GA representation and to prepare this data for the GPU.

Location and orientation of all the molecules are transformed to their displacement versor Din. Linear and angular

velocity are de�ned through the molecule's velocity screw Vin, an expression of combined linear and angular velocity

(refer to [14] and [15]).

The consecutive steps are as follows:

1. Take the position lp from the molecule position array lpos and the orientation rotor from the quaternion arot.

2. Take the linear velocity lv from the molecule velocity array lvel and the angular velocity av from the molecule

array avel.

3. De�ne a translator from the Euclidean translation vector lp.

4. The displacement versor Din is simply the geometric product of translator and rotor.

5. The velocity screw Vin is de�ned as the di�erence of the geometric product of e∞ with the euclidean linear

velocity vector lv, and the geometric product of e1 ∧ e2 ∧ e3 with the euclidean angular velocity vector av.

6. Move the Din and Vin data of each molecule to the strided arrays host_mol_D0 and host_mol_V0. They

are versor type multivectors consisting of the scalar, six 2-blades and one 4-blade. Note that versors are even

multivectors with blades of even grade.

7. Copy all the host bu�ers to the corresponding device bu�ers

9.4 Velocity Verlet Step 1

Wisely chosen OpenCL kernels are called one or many times per frame, as the one in listing 9.2. This kernel computes

the �rst half of an implicit velocity verlet integration on a molecule. A velocity verlet numerical integrator propagates

the position and velocity of a mass point for a given time step.

__kernel void ve r l e tS t ep1 (__global f l o a t * array_D0 ,
__global f l o a t * array_V0 ,
__global const f l o a t * array_V1 ,
const f l o a t dt ,
const unsigned i n t numMolecules ) {

// compute index
const unsigned i n t index = get_global_id ( 0 ) ;
// clamp
i f ( index >= numMolecules )
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r e turn ;

#pragma gpc begin
D0_t = mv_from_stridedarray ( array_D0 , index , numMolecules ,

1 , e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

V0_t = mv_from_stridedarray ( array_V0 , index , numMolecules ,
e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

V1_t = mv_from_stridedarray ( array_V1 , index , numMolecules ,
e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

#pragma c l u c a l c begin
// c a l c u l a t i o n
const f loatmv D1_t = 0 .5 * D0_t * V0_t ;
const f loatmv D2_t = 0 .5 * D1_t * V0_t + 0 .5 * D0_t * V1_t ;

const f loatmv D0_t_dt = D0_t + D1_t * dt + 0 .5 * D2_t * dt * dt ;
const f loatmv V0_t_05dt = V0_t + 0 .5 * V1_t * dt ;

#pragma c l u c a l c end
array_D0 = mv_to_stridedarray (D0_t_dt , index , numMolecules ,

1 , e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

array_V0 = mv_to_stridedarray (V0_t_dt , index , numMolecules ,
e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

#pragma gpc end
}

Listing 9.2: Compute intensive Gaalop GPC for OpenCL code for the �rst step of the velocity verlet numerical

integration of a molecule displacement versor and velocity screw.

The code performs the displacement propagation and computes the midpoint velocity, as described in the following

equations:

Displacement propagation: D(t +∆t) = D(t) + Ḋ(t)∆t + 1
2

D̈(t)(∆t)2

Midpoint velocity: Vb

�

t + ∆t
2

�

= Vb(t) + V̇b(t)
∆t
2

Acceleration: V̇b(t +∆t) = e∞v̇b(t +∆t)− e123ω̇b(t +∆t)
Velocity propagation: Vb(t +∆t) = Vb

�

t + ∆t
2

�

+ 1
2
V̇b(t +∆t)∆t
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2
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2
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4
DV 2

b +
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2
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and with the Euclidean pseudoscalar

e123 = e1 ∧ e2 ∧ e3

where the state of a molecule is described by

D(t) as its displacement versor in the inertial frame,

Vb(t) as its velocity screw in body frame (V = DVb(D̃) in inertia frame),

v̇b(t) its translational acceleration,
ω̇b(t) its rotational acceleration.

The convention for the variable names is as follows: Displacement versors and velocity screws are indicated by the

letters D and V, followed by the number of di�erentiations (D1, for instance, means the �rst di�erentiation of the

displacement versor).

A more detailed description of this approach can be found in [26].
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9.5 Accumulate Forces per Atom

After executing the �rst part of the velocity verlet algorithm, it is now required to update forces and torques acting

upon all molecules.

The net force acting upon a molecule ~fm is equal to the sum of forces
∑

i
~fi acting upon its atoms. The net torque ~t i

acting upon a molecule is equal to the sum of cross products
∑

i
~fi × ~ri =

∑

i−(~fi ∧ ~ri)e123 of the molecule's atoms,

where ~ri is the position of atom i. It can be proven that the outer-product −(u∧ v )e123 is equal to the cross product

u× v .

__kernel void accumulateForcesPerAtom() computes ~fi and ~fi ∧ ~ri on a per atom basis. The summation is then conse-

cutively performed in void computeMoleculeForceAndTorque(), as explained below.

__kernel void accumulateForcesPerAtom (
__global f l o a t * array_mol_lmom_temp ,
__global f l o a t * array_mol_amom_temp ,
__global const f l o a t * array_mol_D0 ,
__global const f l o a t * array_atom_pos ,
__global const unsigned i n t * array_atom_pos_ind ,
__global const unsigned i n t * array_atom_mol_ind ,
const f l o a t eps i l on , const f l o a t sigma ,
const unsigned i n t numMolecules ,
const unsigned i n t numAtoms ,
const unsigned i n t numAtomPositions ) {

// compute index
const unsigned i n t atom_index1 = get_global_id ( 0 ) ;
// clamp
i f ( atom_index1 >= numAtoms)

re turn ;

// get atom data
const unsigned i n t atom_mol_ind1

= array_atom_mol_ind [ atom_index1 ] ;

/*
* Precache a number o f BLOCK_SIZE ve r s o r s i n to f a s t l o c a l memory .
* BLOCK_SIZE i s a p r ep ro c e s s o r d e f i n i t i o n supp l i ed by the host
* at compi la t ion time .
* Let every thread load from the s t r i d ed g l oba l memory array in to
* non−s t r i d ed l o c a l memory array in p a r a l l e l .
*/

__local f l o a t * ve r so r1
= &array_versor_cache_block [ 8 * get_loca l_id ( 0 ) ] ;

__local f l o a t array_versor_cache_block [ 8 * BLOCK_SIZE ] ;
{

unsigned i n t sh i f t ed Index ;
ve r so r1 [ 0 ] = array_mol_D0 [ sh i f t ed Index

= atom_mol_ind1 ] ;
v e r so r1 [ 1 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 2 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 3 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 4 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 5 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 6 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
v e r so r1 [ 7 ] = array_mol_D0 [ sh i f t ed Index

+= numMolecules ] ;
}
__local unsigned i n t array_atom_mol_ind2_block [BLOCK_SIZE ] ;
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__local f l o a t 4 array_gpos2_block [BLOCK_SIZE ] ;

f l o a t 4 pos1 , gpos1 ;
{

const unsigned i n t atom_pos_ind1
= array_atom_pos_ind [ atom_index1 ] ;

pos1 = ( f l o a t 4 ) ( array_atom_pos [ atom_pos_ind1 ] ,
array_atom_pos [ numAtomPositions
+ atom_pos_ind1 ] ,
array_atom_pos [ ( numAtomPositions << 1)
+ atom_pos_ind1 ] , 0 . 0 f ) ;

#pragma gpc begin
p1 = VecN3( pos1 ) ;
D1 = mv_from_array ( versor1 ,

1 , e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

#pragma c l u c a l c begin
// c a l c u l a t e
: gp1 = D1*p1*(~D1 ) ;

#pragma c l u c a l c end
gpos1 = mv_to_vector ( gp1 , e1 , e2 , e3 ) ;

#pragma gpc end
}

// accumulate f o r c e s
f l o a t 4 accumulated_forces = ( f l o a t 4 ) ( 0 . 0 f ) ;
{

f o r ( unsigned i n t atom_index2_block = 0 ;
atom_index2_block < numAtoms ;
atom_index2_block += BLOCK_SIZE)

computeLennardJonesForce(&accumulated_forces , gpos1 ,
array_mol_D0 , array_atom_pos ,
array_atom_mol_ind , array_atom_pos_ind ,
array_atom_mol_ind2_block , array_gpos2_block ,
ep s i l on , sigma ,
atom_mol_ind1 , atom_index2_block ,
numMolecules , numAtoms , numAtomPositions ) ;

}

// trans form and save molecule ' s f o r c e and torque
computeMoleculeForceAndTorque (array_mol_lmom_temp ,

array_mol_amom_temp ,
versor1 , pos1 ,
accumulated_forces ,
atom_index1 , numAtoms ) ;

}

The following two utility device functions

� void computeLennardJonesForce()

� void computeMoleculeForceAndTorque()

are invoked by

__kernel void accumulateForcesPerAtom(). Their purpose is the computation of the forces acting between two atoms

of di�erent molecules.

The catch here is, that the atom positions are expressed in their molecule's frame. A transformation to in-

ertia frame coordinates is therefore required prior to computing their forces. The inertia frame transformation

D j ~p ji D̃ j with molecule versor D j and atom position ~p ji performs this job for atom 2, whereas the position of

atom 1 is already pre-transformed by __kernel void accumulateForcesPerAtom() prior to calling the device functi-

on void computeLennardJonesForce().
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Once both atoms are transformed, the computation of Lennard Jones potential forces is performed easily by

void computeLennardJonesForceSimple(). Mathematically, a force pointing to the direction of lowest local energy is

de�ned as the negative gradient −∇Φ(~d), where ~d = ~p ji is the distance between the two atom positions.

void computeLennardJonesForce (
f l o a t 4 * accumulated_forces ,
const f l o a t 4 gpos1 ,
__global const f l o a t * array_mol_D0 ,
__global const f l o a t * array_atom_pos ,
__global const unsigned i n t * array_atom_mol_ind ,
__global const unsigned i n t * array_atom_pos_ind ,
__local unsigned i n t * array_atom_mol_ind2_block ,
__local f l o a t 4 * array_gpos2_block ,
const f l o a t eps i l on , const f l o a t sigma ,
const unsigned i n t atom_mol_ind1 ,
const unsigned i n t atom_index2_block ,
const unsigned i n t numMolecules ,
const unsigned i n t numAtoms ,
const unsigned i n t numAtomPositions ) {

i f ( atom_index2_block + get_local_id (0 ) < numAtoms) {
const unsigned i n t atom_mol_ind2

= array_atom_mol_ind [ atom_index2_block
+ get_loca l_id ( 0 ) ] ;

array_atom_mol_ind2_block [ get_local_id ( 0 ) ]
= atom_mol_ind2 ;

const unsigned i n t atom_pos_ind2
= array_atom_pos_ind [ atom_index2_block
+ get_loca l_id ( 0 ) ] ;

#pragma gpc begin
D2 = mv_from_array (array_mol_D0 , 1 , e1^e2 , e1^e3 , e1^e in f ,

e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;
p2 = mv_from_stridedarray ( array_atom_pos ,

atom_pos_ind2 , numAtomPositions , e1 , e2 , e3 ) ;
#pragma c l u c a l c begin

// c a l c u l a t e
: gp2 = D2*p2*(~D2 ) ;

#pragma c l u c a l c end
array_gpos2_block [ get_loca l_id (0) ]=mv_to_vector ( gp2 , e1 , e2 , e3 ) ;

#pragma gpc begin
}

// sync f o r shared memory con s i s t ency
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// compute lennard jone s f o r c e us ing transformed po s i t i o n s
f o r ( unsigned i n t index_block = 0 ;

index_block < BLOCK_SIZE;
++index_block )
i f ( atom_index2_block + index_block < numAtoms

&& atom_mol_ind1
!= array_atom_mol_ind2_block [ index_block ] )

computeLennardJonesForceSimple ( accumulated_forces ,
gpos1 , array_gpos2_block [ index_block ] , ep s i l on , sigma ) ;

}

void computeLennardJonesForceSimple ( f l o a t 4 * accumulated_forces ,
const f l o a t 4 pos1 ,
const f l o a t 4 pos2 ,
const f l o a t eps i l on ,
const f l o a t sigma ) {

// compute lennard jone s p o t e n t i a l f o r c e
const f l o a t 4 di s tVec = pos1 − pos2 ;
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const f l o a t distPow2 = distVec . x * distVec . x
+ distVec . y * distVec . y
+ distVec . z * distVec . z ;

const f l o a t distPow6 = distPow2 * distPow2 * distPow2 ;
const f l o a t distPow8 = distPow6 * distPow2 ;
const f l o a t distPow14 = distPow8 * distPow6 ;
const f l o a t sigmaPow6 = sigma * sigma * sigma

* sigma * sigma * sigma ;
const f l o a t sigmaPow12 = sigmaPow6 * sigmaPow6 ;
const f l o a t f a c t o r = (24 . 0 f * ep s i l o n )

* ( sigmaPow12 / distPow14
− sigmaPow6 / distPow8 ) ;

accumulated_forces [ 0 ] . x += distVec . x * f a c t o r ;
accumulated_forces [ 0 ] . y += distVec . y * f a c t o r ;
accumulated_forces [ 0 ] . z += distVec . z * f a c t o r ;

}

Listing 9.3 is responsible for transforming a force into a molecule's local coordinate system, computing the torque by

multiplying the transformed force with the position it acts upon, and for saving both in memory.

The explicit steps are as follows:

1. Transform the force into molecule body frame using the operation D̃ f D.
f is the force and D is the molecule's versor.

2. The torque is computed by a simple outer product ∧ of the force application point and the force itself.

The operands and the result are expressed in terms of the body frame.

void computeMoleculeForceAndTorque (__global f l o a t * atom_lmom_temp ,
__global f l o a t * atom_amom_temp,
__local const f l o a t * versor1 ,
const f l o a t 4 loca lPos ,
const f l o a t 4 g loba lForce ,
const unsigned i n t atom_index ,
const unsigned i n t numAtoms)

{
#pragma gpc begin

molecu leVersor = mv_from_array ( versor1 ,
1 , e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^e in f , e1^e2^e3^ e i n f ) ;

#pragma c l u c a l c begin
posLocal = VecN3( l o ca lPos ) ;
f o r c eG loba l = VecN3( g loba lForce ) ;

// c a l c u l a t e
: l o c a l_ f o r c e = ~molecu leVersor

* f o r c eG loba l
* molecu leVersor ;

: l oca l_torque = posLocal ^ l o c a l_ f o r c e ;
#pragma c l u c a l c end

atom_lmom_temp = mv_to_stridedarray ( l o ca l_ fo r c e , atom_index ,
numAtoms , e1 , e2 , e3 ) ;

atom_amom_temp = mv_to_stridedarray ( loca l_torque , atom_index ,
numAtoms , e1 , e2 , e3 ) ;

#pragma gpc end
}

Listing 9.3: Gaalop GPC for OpenCL code for the computation of force and torque

9.6 Velocity Verlet Step 2

This kernel performs the second step of the velocity verlet implicit integration. Mathematically, it integrates accele-

ration and velocity propagation as de�ned below:
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Acceleration: V̇b(t +∆t) = e∞v̇b(t +∆t)− e123ω̇b(t +∆t)
Velocity propagation: Vb(t +∆t) = Vb

�

t + ∆t
2

�

+ 1
2
V̇b(t +∆t)∆t

__kernel void ve r l e tS t ep2 (__global f l o a t * array_V0 ,
__global f l o a t * array_V1 ,
__global f l o a t * array_lmom ,
__global f l o a t * array_amom ,
__global const f l o a t * array_masses ,
__global const f l o a t * ar ray_iner t ia ,
const f l o a t dt ,
const unsigned i n t numMolecules ) {

// compute index
const unsigned i n t index = get_global_id ( 0 ) ;
// clamp
i f ( index >= numMolecules )

re turn ;

#pragma gpc begin
lmom = mv_from_stridedarray ( array_lmom , index ,

numMolecules , e1 , e2 , e3 ) ;
amom = mv_from_stridedvec (array_amom , index ,

numMolecules , e1 , e2 , e3 ) ;
V0 = mv_from_stridedarray ( array_V0 , index , numMolecules ,

e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

const f l o a t mass = array_masses [ index ] ;
const f l o a t I_1 = ar ray_ine r t i a [ s h i f t ed Index

= index ] ;
const f l o a t I_2 = ar ray_ine r t i a [ s h i f t ed Index

+= numMolecules ] ;
const f l o a t I_3 = ar ray_ine r t i a [ s h i f t ed Index

+= numMolecules ] ;
#pragma c l u c a l c begin

avel1_t = V023 ;
avel2_t = V013 ;
avel3_t = V012 ;
v1_t_dt = lmom / mass ;

// temporary va lue s
w1_t_dt_1 = (am23 − ( I_3 − I_2 ) * avel2_t * avel3_t ) / I_1 ;
w1_t_dt_2 = (am13 − ( I_1 − I_3 ) * avel3_t * avel1_t ) / I_2 ;
w1_t_dt_3 = (am12 − ( I_2 − I_1 ) * avel1_t * avel2_t ) / I_3 ;
w1_t_dt = e1 * w1_t_dt_1 + e2 * w1_t_dt_2 + e3 * w1_t_dt_3 ;

// c a l c u l a t e
: V1_t_dt = e i n f * v1_t_dt − e1^e2^e3 * w1_t_dt ;
: V0_t_dt = V0_t_05dt + 0 .5 * V1_t_dt * dt ;

#pragma c l u c a l c end
array_V0 = mv_to_stridedarray (V0_t_dt , index , numMolecules ,

e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

array_V1 = mv_to_stridedarray (V1_t_dt , index , numMolecules ,
e1^e2 , e1^e3 , e1^e in f ,
e2^e3 , e2^e in f , e3^ e i n f ) ;

#pragma gpc end
}

9.7 Evaluation of Gaalop GPC on the Molecular Dynamics simulation

Evaluating the performance of Gaalop Precompiler in terms of code quality in the case of the Molecular Dynamics

simulation showed that Gaalop GPC meets up with the initial requirements de�ned in section 4.1. The code size has

shrunk by about 40 percent, while readability has improved. Runtime performance has slightly improved due to the

optimization in section 7.8.
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10 Realtime OpenCL Raytracer

The Realtime OpenCL Raytracer is a project adopted from the original sources by the paper [21]. Our �rst goal was

to adapt the original code in such a way that it can be used with Gaalop Precompiler and to visualize all triangles

using Geometric Algebra-based ray-triangle tests. This goal was achieved in a way similar to [7]. The application is

primarily a proof-of-concept for the applicability of higher dimensional algebras in Gaalop GPC, but is also a possible

basis for the integration of visualization into Gaalop GPC as a language feature, outlined in section 11.

10.1 Visualizing the G6,3 Algebra

Our second interest is in visualizing the nine-dimensional G6,3 Algebra, described in section 1.3, primarily as a proof-

of-concept for the successful integration of higher dimensional algebras into Gaalop GPC. This algebra, like any other

Geometric Algebra, de�nes its geometric objects on the so called Inner Product Null Space (IPNS) .

The IPNS of a multivector mv is de�ned as all points p in G6,3 Algebra space, which satisfy the equation IPS(p) = 0,
where IPS is the so called Inner Product Space IPS(p) =mv.p. Since mv might have a di�erent grade than p, it follows
that IPS is a �eld of multivectors spanned over 3D-space. The only exception is the special case that mv is a grade-one
vector, for which IPS will be a scalar �eld since p is itself a grade-one vector.

To satisfy the IPNS equation mv.p = 0 for a point p, the Inner Product Space IPS must have a value of 0 for all

blades IPSi at the given point. One could reformulate this to f (p) =
∑

i IPSi(p)2, which transforms the problem to a

minimization (optimization) task.

This may be further transformed into a one-dimensional problem by substituting p with p(t) = b+ t ∗ d with b and

d being vectors. The full equation now looks as follows:

f (t) =
∑

i IPSi(p(t))2

If we now interpret b as the origin and d as the direction, we have a raytracing application on an implicit sur-

face. The task is now to �nd the smallest t for which f (t)< ε is satis�ed, with ε being small.

The line search itself is implemented using a fairly simple method. Starting at the ray origin, we iterate along the ray

by incrementing t as long as f (t) is decreasing.

Putting the concept into code, it looks like �gure 10.1 for an ellipsoid.

Abbildung 10.1.: Screenshot of Realtime OpenCL Raytracer, visualizing an ellipsoid in nine-dimensional G6,3 Algebra.

Note that this method is not exclusive to the G6,3 Algebra. It should work out-of-the-box for any other Geometric

Algebra for which the IPNS is de�ned.
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10.2 Source Code

The following subsections show and explain the most important parts of the source code of the raytracer.

10.2.1 Inner Product Space

Each point inside the three dimensional Inner Product Space scalar �eld is computed using the following OpenCL

code.

f l o a t computeIPS ( const f l o a t 4 p_vec )
{
#pragma gpc begin
const f l o a t px = p_vec . x ;
const f l o a t py = p_vec . y ;
const f l o a t pz = p_vec . z ;
#pragma c l u c a l c begin
mv = c r e a t eE l l i p s o i d ( 3 , 1 , 1 , 0 , 0 , 0 ) ;
p = crea t ePo in t (px , py , pz ) ;
? I = mv. p ;
#pragma c l u c a l c end
#pragma gpc end

f l o a t sum = 0 ;
f o r ( unsigned i n t i = 0 ; i < s i z e o f ( I ) / s i z e o f ( f l o a t ) ; ++i ) {

const f l o a t c o e f f = I [ i ] ;
sum += c o e f f * c o e f f ;

}

re turn sum ;
}

createEllipsoid () creates the ellipsoid shown in �gure 10.1, with radii 1 in y and z dimensions, and radius 3 in

x-dimension.

The point p is constructed at the coordinates px, py, and pz, taken from the OpenCL vector p_vec.

The inner product . of multivector mv and point p is assigned to the multivector I, which is optimized to an array.

Since the result of the inner product is not necessarily a scalar, it is then iterated through, each element is squared

and added to sum.

10.2.2 One-dimensional search

The one-dimensional search along each ray is performed using the code below:

void in t e r s e c tRayMul t i v ec to r ( const RTRay* ray ,
__constant RTPrimitive* pr imi t ive ,
RTIntersect ion * r e s u l t )

{
const f l o a t 4 ray_dir = ray−>d i r e c t i o n ;

f l o a t s t e p s i z e = 0 .01 f ;
f l o a t t = 0 .0 f ;
f l o a t 4 x_last ;
f l o a t 4 x = ray−>o r i g i n ;
f l o a t y_last ;
f l o a t y = computeIPS (x ) ;
do {

x_last = x ;
y_last = y ;
const f l o a t 4 s = s t e p s i z e * ray_dir ;
x = x_last + s ;
y = computeIPS (x ) ;
t += s t e p s i z e ;
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} whi l e ( y − y_last < 0 .0 f ) ;

i f ( y > 0.001 f )
re turn ;

r e su l t−>t = t ;
r e su l t−>p = 0 ;

}

For each pixel in camera-space, a line search is now performed along the viewing direction ray−>direction, starting at

the pixel's position in 3D-space ray−>origin.

For this, we will save the last position x_last, the current position x, the value y_last at the last position, and the

value at the current position y.

The stepsize is prede�ned now, but should be automatically adapted by future algorithms for faster convergence. The

step vector s is simply the 3D-distance between two iteration positions, such that the sum of old position x_last and

s equals the current position x.

t is the current one-dimensional coordinate along the ray, such that x = ray−>origin + t*s holds.

The function computeIPS(), de�ned in subsection 10.2.1, is used to compute the value at the current position in each

step.

The algorithm now computes the current position x and the value y at that position in each step, and computes

the di�erence of y to the last value y_last. The do while() loop condition checks in each step, that this di�erence is

negative, meaning that the values are getting smaller each step.

If the di�erence is positive, it is assumed that the �rst minimum on the line has just been passed, and the loop is

exited. Even though a minimum was found, the object might not have been found, and it is therefore required to

check for y being zero with a tolerance.

If the above is true, we save the found line distance t in the structure result of type RTIntersection.

10.2.3 Computing normals

Computing the normals comes down to computing the gradient using �nite di�erences on the Inner Product Space

and normalizing it:

f l o a t 4 computeNormalFromIPS ( f l o a t 4 p)
{

const f l o a t s t e p s i z e = 0.001 f ;

const f l o a t ip = computeIPS (p ) ;
const f l o a t ipx = computeIPS (p + ( f l o a t 4 ) ( s t ep s i z e , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ) ;
const f l o a t ipy = computeIPS (p + ( f l o a t 4 ) ( 0 . 0 f , s t e p s i z e , 0 . 0 f , 0 . 0 f ) ) ;
const f l o a t ipz = computeIPS (p + ( f l o a t 4 ) ( 0 . 0 f , 0 . 0 f , s t e p s i z e , 0 . 0 f ) ) ;

const f l o a t 4 normal = ( f l o a t 4 ) ( ipx − ip , ipy − ip , i pz − ip , 0 . 0 f ) ;
r e turn normal / l ength ( normal ) ;

}

10.2.4 Shading

Finally, the shading is done using the following code:

f l o a t 4 po s i t i o n = ray . o r i g i n + ray . d i r e c t i o n * r e s u l t . t ;
f l o a t 4 normal = computeNormalFromIPNS( po s i t i o n ) ;

f l o a t 4 l i g h tD i r = ray . d i r e c t i o n ;
f l o a t NdL = max(0 . 0 f , dot ( normal , l i g h tD i r ) ) ;

c o l o r = ( f l o a t 4 ) ( 0 . 0 f , 0 . 0 f , 1 . 0 f , 0 . 0 f ) * NdL;
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This code snippet shades the object of colour blue with exactly one light source, that is always pointing along the

camera direction.

The basic math here is to compute the dot product between normal and the light direction lightDir . The dot product

gives a measure of how much a point on a surface in space is lit, given its normal and the light direction. This measure

is exactly one at the brightest level, zero if not lit, and negative if the light is behind the surface. By clamping at zero

and storing in NdL, we assure that if the light is behind the surface, we just render the point as not lit.

The �nal color is simply computed by multiplying a di�use color, in this case blue ( �oat4 )(0.0 f ,0.0 f ,1.0 f ,0.0 f) with

NdL.
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11 Future Work

This chapter is meant to discuss some ideas on how to further improve Gaalop Precompiler in the future.

Gaalop GPC for Java and other languages

Apart from C++, OpenCL and CUDA, other languages Java, Microsoft DirectCompute and shading languages (CG,

HLSL) are interesting target languages for Gaalop GPC and promising topics for further research. Development of

Gaalop GPC for Java has already been started, but needs to be continued. The basic functionality is implemented,

but some organizational matters still need to be decided.

Headers

More thought should be put into the way Gaalop GPC handles header �les. To this point, it does not perform any

optimizations in them, but would doing so make sense at all? Some general questions need to be answered, some

concepts need to be worked out.

OpenCL-Extension for Geometric Algebra

The concept of the direct integration of Geometric Algebra code into OpenCL-code carries signi�cant advantages

for OpenCL developers, as they would not have to install additional software to integrate GA-support into their

toolchains. It would lower the initial barriers, while moderating the learning curve, because the connection of both

languages could be established even smoother and the number of dependencies would be reduced.

Algebraic multivector rendering for Conformal Geometric Algebra as a language feature

Gaalop GPC will be expanded in future work to support algebraic rendering of multivectors similar to CLUCalc (see

�gure 11.1 for example). That is, given a particular multivector m, which is marked for visualization using the colon

: pre�x in Geometric Algebra code, equal to the functionality in CLUCalc, Gaalop GPC will �rstly determine its

representation in three-dimensional space (e.g. sphere, plane, circle, line, point-pair or point). Given the representation

and its parameters, Gaalop GPC will render the appropriate object with OpenGL [19] or other rendering APIs. Work

on this has been started, but is far from complete yet.

Direct multivector raytracing for higher algebras as a language feature

The raytracer application in section 10 showed ways to render the objects of the nine-dimensional G6,3 Algebra.

Future applications could pro�t a direct visualization method embedded in Gaalop GPC, that would allow rendering

G6,3 Algebra multivectors by pre�xing them with a colon, similar to CLUCalc.

11.1 Applications

This section is intended to show promising applications, which would pro�t from an implementation based on Gaalop

GPC.

11.1.1 A moving least squares approach to rendering surfaces using higher dimensional Geometric Algebras

The moving least squares or weighted least squares approach is a useful method of �tting arbitrary point clouds with

a set of weighted continuous functions. More speci�c, multiple subsets of a point-cloud are �tted by independent

continuous functions and the surface is then de�ned through weighted interpolations of these functions. These con-

tinuous functions could now be de�ned through the �tting of higher-dimensional multivectors to the subsets of the

point-cloud. Work on this has been started by Christian Steinmetz with promising results and will be published in

his Master thesis.
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Abbildung 11.1.: An example of CLUCalc generated graphics

11.1.2 Physics Libraries

Modern physics libraries like Bullet [1] could pro�t from GA-based collision detection. Versors and velocity screws are

an interesting basis upon which to de�ne dynamics in physics libraries. Theoretical background on this has been laid

by [14].

11.1.3 Computer Graphics and Games

Eric Lengyel presented his research on Grassmann Algebra at the Game Developers Conference 2012 in San Francisco 1.

Although he is not considering algebras with dimensionality higher than four, his proposals could also be implemented

using Gaalop GPC. A full set of Gaalop GPC-based computer gaming oriented libraries could be a promising topic

for Geometric Algebra.

11.1.4 Molecular dynamics with focus on polymer-chains

Chapter 9 showed the applicability of Geometric Algebra in molecular dynamics, for molecules with a limited number

of atoms.

Special interest for further work lies on simulating so called semi-rigid polymer-chains. Polymers are macromolecules

that have a chain-like composition. The chain itself consists of a large number of atoms, most of which are strongly-

bonded.

The idea is now to de�ne these strongly-bonded groups of atoms as rigid, giving multiple semi-rigid groups of atoms,

that interact with each other. These semi-rigid groups of atoms can now be simulated according to Newton's and

Euler's laws of motion.

We expect a computational speed-up by reducing the number of force calculations, since force computations between

strongly-bonded atoms within the groups are no longer required.

1 http://www.terathon.com/gdc12_lengyel.pdf
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12 Conclusion

Code simplicity, elegance and intuitiveness are the major goals of this work. Recalling the code examples shows

that these goals were reached. As Gaalop GPC directly pro�ts from any improvements within Gaalop through its

invocation, a high runtime performance is achieved on-the-�y.

Gaalop GPC symbolically optimizes the embedded Geometric Algebra code in order to improve runtime performance.

A longer compile time is a natural consequence of the concept. However, we do not recommend putting much research

into this aspect, as the build process can already be parallelized in many build automation tools like GNU Make [13].

It is found, that in reality, using parallel builds, longer compile time is not a problem.

We would like to conclude, that Gaalop Precompiler goes far beyond the frontiers set by Gaalop Compiler Driver

and makes it even easier to work with GA inclusions in native code. Instead of separating code generation and code

compilation into two distinct processes, it is a single simpli�ed process with tight coupling support between native

and embedded language.

Especially the combination of GA with OpenCL or CUDA enables new methods of research, while GAPP language

helps to utilize the power of advanced SIMD GPU-architectures.

Higher algebras open the door to a completely new �eld of mathematics. As it is now easier to develop with, we hope

that more scientists, game and software programmers will �nd their way into the applications of Geometric Algebra.
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A A Guide to Gaalop GPC

This section shows the particular steps that need to be performed, to create, setup and build an application using

Gaalop GPC for C++ and OpenCL.

A.1 How To Use Gaalop GPC for C++

This manual shows the particular steps that need to be performed, to create, setup and build an application using

Gaalop GPC for C++.

1. Create the �le horizon.cpg with the contents below. For a mathematical description of the code, you may refer

to chapter 8.

#inc lude <iostream>
#inc lude <gpc . h>

in t main ( ) {
#pragma gpc begin

#pragma c l u c a l c begin
P = VecN3 ( 1 , 1 , 0 ) ;
r = 1 ;
S = e0−0.5* r * r * e i n f ;
C = S^(P+(P. S)* e i n f ) ;
? homogeneousCenter = C* e i n f *C;
? s c a l e = −homogeneousCenter . e i n f ;
? Eucl ideanCenter = homogeneousCenter / s c a l e ;

#pragma c l u c a l c end
std : : cout << mv_get_bladecoeff ( homogeneousCenter , e0)<<std : : endl ;
s td : : cout << mv_get_bladecoeff ( Eucl ideanCenter , e0)<<std : : endl ;
s td : : cout << mv_get_bladecoeff ( Eucl ideanCenter , e1 )
<< " , " << mv_get_bladecoeff ( Eucl ideanCenter , e2 )
<< " , " << mv_get_bladecoeff ( Eucl ideanCenter , e3 ) ;

#pragma gpc end
return 0 ;

}

Listing A.1: horizon.cpg source �le

2. Create the CMakeLists.txt build script:

CMAKE_MINIMUM_REQUIRED(VERSION 2 . 6 )
PROJECT( hor i zon )
SET(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
FIND_PACKAGE(GPC)
GPC_CXX_ADD_EXECUTABLE( hor i zon " hor i zon . cpg" )

Listing A.2: CMakeLists.txt build script

3. Start CMake.

4. Fill in the source directory. (�rst input �eld). Fill in the destination directory. (second input �eld).

5. In the window opening, choose GNU make generator.

6. Click Con�gure.

7. Fill in the root path to Gaalop GPC in the GPC_ROOT_DIR �eld. On Linux this should be automatically

discovered.

8. Click Con�gure again. All other Gaalop GPC-related paths should now be discovered.

9. Click Generate.

Figure A.1 shows how CMake may look like after Con�guration and Generation.
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Abbildung A.1.: CMake con�guration for Gaalop GPC for C++

10. Open the CMake generated destination directory in your terminal or console.

Enter make (Unix) or MinGW (Windows) and con�rm with the Enter key.

Wait until the build processes �nishes.

Hint: Using CMake and Gaalop GPC, builds are also easily possible with Visual Studio, Borland Builder or

any other build tool of your choice.

11. Start the compiled application (�gure A.2).

Unix: ./horizon

Windows: horizon.exe

Abbildung A.2.: Screenshot of Gaalop GPC for C++ build process.

A.2 How To Use Gaalop GPC for OpenCL

The Horizon example is not perfectly suited as an OpenCL application, but here is how the horizon could be computed

for thousands of observers at once.
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1. Create the �le horizon.clg with the following contents:

__kernel void hor izonKerne l ( __global f l o a t * c i r c l eCen t e r s ,
__global const f l o a t * points ,
const unsigned i n t num_points ) {

const i n t id = get_global_id ( 0 ) ;
#pragma gpc begin

P = VecN3( po in t s [ id ] ,
po in t s [ id ]+num_points ,
po in t s [ id ]+2*num_points ) ;

#pragma c l u c a l c begin
r = 1 ;
S = e0−0.5* r * r * e i n f ;
C = S^(P+(P. S)* e i n f ) ;

? homogeneousCenter = C* e i n f *C;
? s c a l e = −homogeneousCenter . e i n f ;
? Eucl ideanCenter = homogeneousCenter / s c a l e ;

#pragma c l u c a l c end
c i r c l eC en t e r s = mv_to_stridedarray ( Eucl ideanCenter ,

id , num_points , e1 , e2 , e3 ) ;
#pragma gpc end

}

Listing A.3: horizon.clg OpenCL kernel source �le

2. The fastest way to carry out the following steps is to copy one of the examples that come with your OpenCL

distribution and modify it according to your needs. Only the most important parts of the code are pointed out

in the following listings. The code resides in the horizon.cpp source-�le.

3. // l i s t p la t fo rms
std : : vector<c l : : Platform> plat fo rms ;
c l : : Platform : : get (&plat fo rms ) ;
s td : : cout << " l i s t i n g s  p lat fo rms \n" ;
f o r ( std : : vector<c l : : Platform >: : c on s t_ i t e r a to r i t =

plat fo rms . begin ( ) ; i t != p lat fo rms . end ( ) ; ++i t )
std : : cout << i t−>get In fo<CL_PLATFORM_NAME> () << std : : endl ;

// c r e a t e context
c l_context_proper t i e s p r op e r t i e s [ ] = { CL_CONTEXT_PLATFORM,

( c l_context_proper t i e s ) ( p la t fo rms [ 0 ] ) ( ) , 0 } ;
c l : : Context context (CL_DEVICE_TYPE_ALL, p r op e r t i e s ) ;
s td : : vector<c l : : Device> dev i c e s = context . ge t In fo<

CL_CONTEXT_DEVICES> ( ) ;
c l : : Device& dev i ce = dev i c e s . f r on t ( ) ;

// c r e a t e command queue
c l : : CommandQueue commandQueue( context , dev i c e ) ;

Listing A.4: List platforms and create context and command queue.

4. // s e t t i n g s
const s i ze_t numPoints = 10000 ;
c l_ f l o a t c i r c l eC en t e r s [ 3* numPoints ] ;
c l_ f l o a t po in t s [ 3* numPoints ] ;

Listing A.5: Create a host bu�er.

5. // Al l o ca t e the OpenCL bu f f e r memory ob j e c t s f o r source
// and r e s u l t on the dev i ce GMEM
clDeviceVector<c l_f l oa t> dev_c i rc l e_center s ( context ,

commandQueue , numPoints * 3 ,CL_MEM_READ_ONLY) ;
c lDeviceVector<c l_f l oa t> dev_points ( context ,

commandQueue , numPoints * 3 ,CL_MEM_READ_ONLY) ;

Listing A.6: Create a device bu�er with the same size.
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6. // Asynchronous wr i t e o f data to GPGPU dev i ce
dev_points = po in t s ;

Listing A.7: Copy the host bu�er to the device bu�er.

7. // read the OpenCL program from source f i l e
std : : s t r i n g sou r c eS t r i ng ;
r e adF i l e ( sourceSt r ing , " hor i zon . g c l . c l " ) ;
c l : : Program : : Sources c l s o u r c e (1 , s td : : make_pair (

s ou r c eS t r i ng . c_str ( ) , s ou r c eS t r i ng . l ength ( ) ) ) ;
c l : : Program program ( context , c l s o u r c e ) ;

// bu i ld
program . bu i ld ( dev i c e s ) ;
s td : : cout

<< program . getBu i ld In fo<CL_PROGRAM_BUILD_LOG> ( dev i ce )
<< std : : endl ;

// c r e a t e ke rne l and func to r
c l : : Kernel hor i zonKerne l ( program , " hor i zonKerne l " ) ;
c l : : KernelFunctor hor izonFunctor =

hor izonKerne l . bind (commandQueue ,
c l : : NDRange( numPoints ) , c l : : NullRange ) ;

Listing A.8: Load the OpenCL kernel.

8. // Launch ke rne l
hor izonFunctor ( dev_c i rc l e_center s . g e tBu f f e r ( ) ,

dev_points . g e tBu f f e r ( ) ) ;

// Synchronous/ b lock ing read o f r e s u l t s , and check accumulated e r r o r s
dev_c i rc l e_center s . copyTo ( c i r c l eC en t e r s ) ;

Listing A.9: Set the device bu�ers as kernel arguments and start the kernel by using the functor.

9. // Synchronous/ b lock ing read o f r e s u l t s ,
// and check accumulated e r r o r s
dev_c i rc l e_center s . copyTo ( c i r c l eC en t e r s ) ;

Listing A.10: Read back the results from device to host.

10. // p r in t f i r s t c i r c l e c en t e r
std : : cout << c i r c l eC en t e r s [ 0 ] << " , " << c i r c l eC en t e r s [ 1 ]

<< " , " << c i r c l eC en t e r s [ 2 ] << std : : endl ;

Listing A.11: Print the center of the �rst circle.

11. CMAKE_MINIMUM_REQUIRED(VERSION 2 . 6 )
PROJECT( hor i zon )
SET(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR})
FIND_PACKAGE(OpenCL REQUIRED)
FIND_PACKAGE(GPC REQUIRED)
GPC_OPENCL_ADD_EXECUTABLE( hor i zon " hor i zon . cpp" " hor i zon . c l g " )

Listing A.12: Create the �le CMakeLists.txt with the following contents.

12. Start CMake.

13. Fill in the source directory (�rst input �eld). Fill in the destination directory (second input �eld).

14. In the window opening, choose GNU make as generator.

15. Click Con�gure.

16. Fill in the path to Gaalop GPC in the GPC_ROOT_DIR �eld.
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17. Set OPENCL_INCLUDE_DIR to the include directory of your OpenCL distribution and OPEN-

CL_LIBRARIES to the corresponding library. (Hint: ATI Stream SDK OpenCL library is located in

/lib/x86/*OpenCL.lib.)

18. Click Con�gure again.

19. Click Generate.

Figure A.3 shows how CMake may look like after Con�guration and Generation.

Abbildung A.3.: CMake con�guration for Gaalop GPC for OpenCL.

20. Open the CMake generated destination directory in your terminal or console.

Enter make (Unix) or MinGW (Windows) and con�rm with the Enter key.

Wait until the build processes �nishes.

21. Start the compiled application (�gure A.4).

Unix: ./horizon

Windows: horizon.exe

Abbildung A.4.: Screenshot of a Gaalop GPC for OpenCL build process.
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