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Abstract Geometric algebra covers many mathematical areas such as vector alge-
bra, complex numbers, Pluecker coordinates, quaternions. It is geometrically intu-
itive and has a lot of potential for optimization and parallelization. In this paper,
we develop an approach for the specialized machine instruction set GAPP based on
our table-based compilation approach for geometric algebra computing. GAPP can
be used as a representation from which consecutive target platform optimizations
may be performed. An FPGA platform implementation is even capable of executing
this instruction set directly without further transformations, thereby fully exploit-
ing parallelism. An implementation of GAPP as a back end for the Gaalop com-
piler is already available. This is an important step towards the long term vision of
microcomputers specifically designed for Geometric Algebra (Geometric Algebra
Computers).
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1 Introduction

Conformal Geometric Algebra (CGA) is a new way of expressing many geometry-
focused mathematical problems. It deals naturally with intersections and transfor-
mations of planes, lines, spheres, circles, points, and point pairs, and is also expres-
sive enough to represent kinematics and dynamics. In Linear Algebra one would
have to differentiate a plane-sphere intersection into three distinct cases, namely,
circle intersection, point intersection and no intersection. In Conformal Geometric
Algebra the intersection itself is formulated as one operation on the plane (P) and
the sphere (S), respectively.

R = S∧P

The three different cases of Linear Algebra are implicitly contained in the one
result R of Conformal Geometric Algebra, which is compact and better readable.
Similar observations can be made in other applications of geometry related mathe-
matics. Therefore, when applied to computer programs, CGA has a high potential
for improving code readability and to shorten production cycles. It has also been
proven, that if implemented correctly, Geometric Algebra has at least similar perfor-
mance, but sometimes even better performance, than conventional approaches [8].

This paper works out a table-based compilation approach for Geometric Algebra,
as introduced in [5], and extends it in order to achieve higher adaptation to the target
computing platforms and better runtime performance.

Most multivector calculations derived with the proposed table-based approach
break down to a scalar multiplication (dot product) of two equal-sized n-dimensional
vectors. Such a scalar multiplication intrinsically contains a high level of paral-
lelism. This gives motivation to the abstract language defined in the next section.

2 Geometric Algebra Algorithm Parallelism Programs (GAPP)

The instruction set of modern microcomputers contains operations that are per-
formed on vectors in parallel (Intel SSE, AMD 3DNow!). A vector in this context
is simply a concatenation of scalar values. Multiplying two vectors means parallely
multiplying all elements of vector a to the corresponding elements of vector b. Also,
Field Programmable Gate Arrays may be configured to support similar operations.

Unfortunately, finding such fine grained parallelism is usually a hard task and a
very common problem in compiler construction. Most interestingly, Geometric Al-
gebra and the presented table-based approach intrinsically expose instruction level-
parallelism. In order to support as many of the various target platform instruction-
sets as possible, our approach is to define an abstract language, that is subsequently
being transformed into the target instruction set. This language is defined in table 1.

As described in the introduction, a scalar multiplication (or dot product) of two
equal-sized n-dimensional vectors is a reoccurring pattern. Since a scalar multiplica-
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resetMv mvdest;
Zeros all blades of multivector mvdest.
assignMv mvdest[sel0, . . . ,seln] = {const1, . . . ,constn};
Assigns the constants const1, . . . ,constn to the multivector mvdest as blade coefficients specified by
the selectors sel0, . . . ,seln.
setMv mvdest [dest0, . . . ,destn] = mvsrc[src0, . . . ,srcn];
Copies the selected blades from multivector mvsrc to multivector mvdest . dest0, src0, dest1, src1, up
to dest31 and src31, are blade selectors. Note that it is invalid language syntax to have more than
one source multivector specified in this command. To copy elements from several multivectors it
is required to use multiple setMv commands, one for each multivector. This command is restricted
to one source and destination multivector.
setVector partdest = mvsrc[sel0, . . . ,seln];
Composes the vector (part of a multivector) partdest from selected elements. sel0, sel1, up to sel31,
are a blade selectors. Parts and blade selectors are explained below.
dotVectors mvdest[sel] =< part1,part2 >;
Performs a scalar multiplication (dot product) on the two vectors (parts of multivectors) part1 and
part2. Saves the result in multivector mvdest at the location selected by selector sel.

Table 1 The main commands of the Geometric Algebra Parallelism Programs (GAPP) language;
a more detailed list can be found in [10]

tion intrinsically contains a high level of parallelism, in our abstract GAPP language
it is defined in the dotVectors command.

A vector in this sense is simply the concatenation of selected blades, as in the
command setVector. It does not contain any information about the blades itself,
which differentiates it from a multivector. All this information is removed by setVec-
tor. A vector is nothing more than an array of signed real numbers and is a prepara-
tion of the data for the actual computation performed by dotVectors.
For example, if we select blades E0,−E2, E3, E5, and −E4, those blades are stored
in a five-dimensional vector in the same order and with the applied sign. Figure 1
visualizes the example.

Multivector Vector

Blade E0
Blade E1
Blade E2
Blade E3
Blade E4
Blade E5
Blade E6

Blade E31
...

slot 1
slot 2
slot 3
slot 4

+

-
+

slot 0

+

-

Fig. 1 Selected blades E0,−E2, E3, E5, and −E4 are stored in a five-dimensional vector in the
same order and with the sign selected.
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Depending on the implementation, vectors may also be higher-dimensional with
all remaining elements being set to zero, because zero-elements do not have any
impact on the result of the scalar multiplication. An FPGA implementation may, for
example, always allocate 32-dimensional vectors for implementational reasons.

The selecting of multivector parts can for example be established by a parallel
cascade of multiplexers. The scalar product of multivector parts is decomposed into
one parallel multiplication command and log2(n) parallel additions, with n being
the dimensionality of a multivector part. See the example in figure 2.
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sl
o t

 3

...

sl
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 0

sl
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o t

 3
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…
* * * * * n parallel multiplications

+ + +

+ + log(n) parallel additions

+ = Vector0*Vector1

Fig. 2 Parallel scalar product of two vectors, as performed by dotVectors.

A blade selector consists of the index of a multivector entry and its sign. The
multivector entry index is equal to one of the indices from table 2. To select signed
multivector entries we use the indices stated in the table. For example, selecting
with index 10 returns the coefficient of blade e2 ∧ e3. Accordingly, selecting with
index −10 returns the negated coefficient of the same blade. This can be efficiently
implemented on parallel hardware.

3 Compilation

In order to perform geometric algebra algorithms, the rules for the computation
of the products of multivectors must be known. These products can be summa-
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pos neg blade grade
0 -0 1 0
1 -1 e1 1
2 -2 e2 1
3 -3 e3 1
4 -4 e∞ 1
5 -5 e0 1
6 -6 e1∧ e2 2
7 -7 e1∧ e3 2
8 -8 e1∧ e∞ 2
9 -9 e1∧ e0 2

10 -10 e2∧ e3 2
11 -11 e2∧ e∞ 2
12 -12 e2∧ e0 2
13 -13 e3∧ e∞ 2
14 -14 e3∧ e0 2
15 -15 e∞∧ e0 2
16 -16 e1∧ e2∧ e3 3
17 -17 e1∧ e2∧ e∞ 3
18 -18 e1∧ e2∧ e0 3
19 -19 e1∧ e3∧ e∞ 3
20 -20 e1∧ e3∧ e0 3
21 -21 e1∧ e∞∧ e0 3
22 -22 e2∧ e3∧ e∞ 3
23 -23 e2∧ e3∧ e0 3
24 -24 e2∧ e∞∧ e0 3
25 -25 e3∧ e∞∧ e0 3
26 -26 e1∧ e2∧ e3∧ e∞ 4
27 -27 e1∧ e2∧ e3∧ e0 4
28 -28 e1∧ e2∧ e∞∧ e0 4
29 -29 e1∧ e3∧ e∞∧ e0 4
30 -30 e2∧ e3∧ e∞∧ e0 4
31 -31 e1∧ e2∧ e3∧ e∞∧ e0 5

Table 2 The 32 blades of 5D Conformal Geometric Algebra, that compose a multivector, with
corresponding selectors. The first column entry is the corresponding selector. It indexes the positive
coefficient of the corresponding blade. The second column is a selector that points to the same
coefficient, but brings about a negation of the selected coefficient.

rized (and pre-computed) in multiplication tables describing the product of different
blades of the algebra.

The geometric product, the outer product, and the inner product are linear prod-
ucts. They are distributive over addition (see [4] for details). For instance, the geo-
metric product

x = ab =

(
∑

i
aiEi

)(
∑

j
b jE j

)
(1)
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Table 3 Multiplication table for the geometric product of the 2D geometric algebra. This algebra
consists of basic algebraic objects of grade (dimension) 0, the scalar, of grade 1, the two basis
vectors e1 and e2 and of grade 2, the bivector e1∧ e2.

1 e1 e2 e1∧ e2

1 1 e1 e2 e1∧ e2
e1 e1 1 e1∧ e2 e2
e2 e2 -e1∧ e2 1 -e1
e1∧ e2 e1∧ e2 -e2 e1 -1

Table 4 Multiplication table of the 2D geometric algebra in terms of its basis blades E1, E2, E3
and E4.

b b1 b2 b3 b4
E1 E2 E3 E4

a 1 e1 e2 e1∧ e2

a1 E1 1 E1 E2 E3 E4
a2 E2 e1 E2 E1 E4 E3
a3 E3 e2 E3 -E4 E1 -E2
a4 E4 e1∧ e2 E4 -E3 E2 -E1

of two arbitrary multivectors a = ∑
i

aiEi and b = ∑
j

b jE j can be written as

x = ∑
i

∑
j

aib j(EiE j) (2)

or as a linear combination of blades Ei, j

x = ∑
i

∑
j

aib j(mi, jEi, j) (3)

with mi, j being 0, 1 or -1, or as

x = ∑
i

∑
j

ci, jEi, j (4)

with coefficients ci, j = mi, jaib j .
This can be rearranged to

x = ∑
k

ckEk (5)

with
ck = ∑

i, j:Ei, j=Ek

mi, jaib j. (6)
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To clarify the concept, we hereby provide some simple algorithmic steps in
pseudo-code for the computation of a product of two general multivectors a=∑

i
aiEi

and b = ∑
j

b jE j.

Set all blades of result multivector c to zero;

for each blade coeff ai of multivector a
for each blade coeff b j of multivector b

Look up target blade Ei, j and
sign mi, j from Multiplication Table;
(i is the row index and

j is the column index.)

Add simple arithmetic product ai ∗ b j
with sign mi, j to target blade Ei, j
of result multivector c:
c[Ei, j] = c[Ei, j] + mi, j ∗ (ai ∗ b j);

end;
end;

For the 2D Euclidean GA this is described in table 4. Each entry mi, jEi, j describes
the geometric product of two basis blades Ei and E j expressed in terms of the basis
blades Ek with positive or negative sign. Each coefficient ck of the product x = ab
can be computed by summing up the products±ai ∗b j based on the Ek table entries,
for instance c1 = a1 ∗b1 +a2 ∗b2 +a3 ∗b3−a4 ∗b4 for the E1 table entries.

4 Example

As an example for the compilation of GAPP code we use the example of [5] . Note
that this example is based on 3D Euclidean geometric algebra, whereas we have
used 5D conformal geometric algebra in Table. 2. In order to stay compatible to
[5], we use the multiplication tables of [5], while, in the meantime, these has been
changed to multiplication tables starting with an index of 0 (see Table. 2). A consis-
tent description will be published in [6].

Our example uses the following expression

f = a∧ (a+ab) (7)

of two 3D vectors a and b. In terms of a CLUCalc script [9], this can be expressed
as follows:

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
f=aˆ(a+a*b);
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First, the compiler must transform complex expressions to expressions that can eas-
ily be handled by multiplication tables. A corresponding CLUCalc script with only
simple expressions could look as follows:

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
c=a*b;
d=a+c;
f=aˆd;

Let us now compile this script step by step into the intermediate language represen-
tation explained in section 2.

The first two lines are used for the definitio,n as well as for an automatic special-
ization of the two multivectors a = a1E1 + a2E2 + a3E3. a1,a2,a3,b1,b2, and b3
are regular scalar variables.

resetMv a;
assignMv a[1,2,3] = {a1,a2,a3};

and b = b1E1 +b2E2 +b3E3

resetMv b;
assignMv b[1,2,3] = {b1,b2,b3};

For both, only the entries 1, 2 and 3 are needed since they correspond to the three
basis vectors e1,e2,e3. Table 3 of the paper [5] shows the corresponding multipli-
cation table for the geometric product of these multivectors. It is derived from the
table 1 of the paper [5] with empty rows and columns for multivector entries not
needed for a and b. The resulting multivector c only needs the coefficients for the
blades E1,E5,E6,E7 (see table 3 of the paper [5]). Each coefficient c[k] can be com-
puted by summing up the products±aib j based on the Ek table entries, for instance,
c1 = a1b1 +a2b2 +a3b3.

Expressed in the GAPP language defined in section 2, the code looks as follows.

setVector tmp1 = a[1,2,3];
setVector tmp2 = b[1,2,3];
dotVectors c[1] = <tmp1,tmp2>;
setVector tmp1 = a[1,-2];
setVector tmp2 = b[2,1];
dotVectors c[5] = <tmp1,tmp2>;
setVector tmp1 = a[2,-3];
setVector tmp2 = b[3,2];
dotVectors c[6] = <tmp1,tmp2>;
setVector tmp1 = a[1,-3];
setVector tmp2 = b[3,1];
dotVectors c[7] = <tmp1,tmp2>;

In the fourth line of the CLUCalc script, the two multivectors a and c are added
resulting in the multivector d:

In the GAPP language.
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setMv d[1,5,6,7] = c[1,5,6,7];
setMv d[2,3,4] = a[2,3,4];

This sets the coefficients of blades [1,5,6,7] of multivector c as coefficients of blades
[1,5,6,7] of multivector d. Coefficients [2,3,4] of a are set as coefficients [2,3,4] of
d with corresponding serial code:

d[1]=c[1];
d[2]=a[1];
d[3]=a[2];
d[4]=a[3];
d[5]=c[5];
d[6]=c[6];
d[7]=c[7];

The evaluation of the outer product of a with this just computed multivector d
leads to the following GAPP language code.

setVector tmp1 = a[1];
setVector tmp2 = d[1];
dotVectors f[2] = <tmp1,tmp2>;
setVector tmp1 = a[2];
setVector tmp2 = d[1];
dotVectors f[3] = <tmp1,tmp2>;
setVector tmp1 = a[3];
setVector tmp2 = d[1];
dotVectors f[4] = <tmp1,tmp2>;
setVector tmp1 = a[1,-2];
setVector tmp2 = d[3,2];
dotVectors f[5] = <tmp1,tmp2>;
setVector tmp1 = a[2,-3];
setVector tmp2 = d[4,3];
dotVectors f[6] = <tmp1,tmp2>;
setVector tmp1 = a[1,-3];
setVector tmp2 = d[4,2];
dotVectors f[7] = <tmp1,tmp2>;
setVector tmp1 = a[-2,3,1];
setVector tmp2 = d[7,5,6];
dotVectors f[8] = <tmp1,tmp2>;

For this computation, you can use the multiplication table 2 of the paper [5].
Associating the rows with the multivector a and the columns with d we are able
to set the rows 1, 5, 6, 7, 8 as well as the column 8 to zero. We recognize that the
remaining entries are for the coefficients 2, 3, 4, 5, 6, 7 and 8, E2 for instance in the
second row and the first column associated with the product a1 ∗d[1].

5 Target Architectures

GAPP instructions can be mapped to a number of different processor architectures
and parallel execution models. This can extend to shared-memory multiprocessor
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approaches such as OpenMP, short-vector instructions such as SSE4/5 and AVX
extending conventional CPUs, the highly-threaded operations on general-purpose
GPUs, but also to application-specific computers realized in reconfigurable hard-
ware.

The core arithmetic operation of GAPP is the scalar (dot) product of two vectors,
which is a well supported primitive on all of the target architectures given above.
However, especially for the smaller vectors (at most a few dozen elements) used in
the GAPP primitives, the coarse-grain parallelism in OpenMP for the GPGPU allow
only limited scaling with the number of processor cores.

Short-vector instruction sets such as Intel SSE4/5 [3], available on most desktop
and server CPUs, also allow the efficient processing of the smaller vectors typi-
cal for GAPP. However, all of the processor architectures described thus far have
only very limited support for efficiently performing the flexible vector permutations
(sometimes called shuffle) operations required by GAPP.

Such permutations, on the other hand, could be very efficiently implemented on
an application-specific compute architecture realized using reconfigurable devices
such as FPGAs. For example, an arbitrary permutation of 32 single-precision num-
bers could be realized within a single clock cycle by using a parallel multiplexer
network in hardware. Current-generation FPGAs support floating-point computa-
tions. For example., a single-precision architecture, processing 32-element vectors,
requires just 30% of the FPGA capacity of a reconfigurable computer such as the
Convey HC-1ex [2]. It can perform the 32-element dot product within six clock cy-
cles and has a peak memory bandwidth of 80 GB/s, far exceeding that of a current-
model CPU (typically peaking at 25.6 GB).

Given that GAPP itself is machine independent, the high-level optimizations de-
scribed in prior sections can be performed in early compiler passes. Only the back-
end of a compiler using GAPP as an intermediate language must deal with mapping
the primitives to the specific target architecture.

In the meantime, the described table-based compilation approach is part of the
Gaalop compiler[10] and the GAPP instruction set is used for the OpenCL backend
and for the Gaalop precompiler for OpenCL [1], available for download at [7].

6 Conclusion and Future Work

Currently, the presented parallel computing platforms can be seen as approximations
to perfect geometric computers. The GAPP language has already been implemented
as a back end of the Gaalop compiler (www.Gaalop.de). As our long-term vision,
we hope that this research will lead to computing platforms optimally supporting
geometric algebra computers in the future.
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